Skip to main content

Physiology of Heart Rate

  • Chapter
  • First Online:
Cardiopulmonary Monitoring

Abstract

Changes in heart rate are a major regulator of normal cardiac output, and thus a key component of adaptations in the cardiovascular system. The direct regulation of heart rate at the cellular level has evolved with a complex system of processes that regulate the currents across the cardiac membranes. These set spontaneous cyclic activation and lengths of the action potential which determine the lengths of systole and diastole. This cyclic nature of cardiac output creates important limitations on the circulation because it sets the time available for filling and the time available for ejection. These limits affect the maximum possible outputs from the heart and can lead to pathological processes. Heart rate is regulated by intrinsic processes in the membranes of the pacemaker of the heart (sinoatrial node), the conducting system of the heart, and neural and humoral regulating factors. Heart rate normally increases in proportion to what is called the relative workload but also can be altered by many factors not directly related to metabolic needs. The interplay of all these factors need to be considered by critical care physicians managing patients at the bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Accili EA, Redaelli G, DiFrancesco D. Activation of the hyperpolarization-activated current (if) in sino-atrial node myocytes of the rabbit by vasoactive intestinal peptide. Pflugers Arch. 1996;431(5):803–5.

    CAS  PubMed  Google Scholar 

  • Accili EA, Redaelli G, DiFrancesco D. Two distinct pathways of muscarinic current responses in rabbit sino-atrial node myocytes. Pflugers Arch. 1998;437(1):164–7.

    Article  CAS  PubMed  Google Scholar 

  • Anand-Srivastava MB. Natriuretic peptide receptor-C signaling and regulation. Peptides. 2005;26(6):1044–59.

    Article  CAS  PubMed  Google Scholar 

  • Ardell JL, Armour JA. Neurocardiology: structure-based function. Compr Physiol. 2016;6(4):1635–53.

    Article  PubMed  Google Scholar 

  • Armour JA. Potential clinical relevance of the 'little brain' on the mammalian heart. Exp Phys. 2008;93(2):165–76.

    Article  CAS  Google Scholar 

  • Astrand PO. Quantification of exercise capability and evaluation of physical capacity in man. In: Sonnenblick EH, Lesch M, editors. Exercise and heart disease. A progress in cardiovascular disease reprint. New York: Grune and Stratton; 1976. p. 87–103.

    Google Scholar 

  • Astrand PO, Rodahl K. Physiological bases of exercise. Textbook of work physiology. Montreal: McGraw-Hill; 1977.

    Google Scholar 

  • Ã…strand P-O, Cuddy TE, Saltin B, Stenberg J. Cardiac output during submaximal and maximal work. J Appl Physiol. 1964;19(2):268–74.

    Article  PubMed  Google Scholar 

  • Azer J, Hua R, Vella K, Rose RA. Natriuretic peptides regulate heart rate and sinoatrial node function by activating multiple natriuretic peptide receptors. J Mol Cell Cardiol. 2012;53(5):715–24.

    Article  CAS  PubMed  Google Scholar 

  • Azer J, Hua R, Krishnaswamy PS, Rose RA. Effects of natriuretic peptides on electrical conduction in the sinoatrial node and atrial myocardium of the heart. J Physiol. 2014;592(Pt 5):1025–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bainbridge FA. The influence of venous filling upon the rate of the heart. J Physiol. 1915;50(2):65–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett CJ, Bolter CP, Wilson SJ. The intrinsic rate response of the isolated right atrium of the rat, Rattus norvegicus. Comp Biochem Physiol A Mol Integr Physiol. 1998;120(3):391–7.

    Article  CAS  PubMed  Google Scholar 

  • Bartos DC, Grandi E, Ripplinger CM. Ion channels in the heart. Compr Physiol. 2015;5(3):1423–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beadling C, Druey KM, Richter G, Kehrl JH, Smith KA. Regulators of G protein signaling exhibit distinct patterns of gene expression and target G protein specificity in human lymphocytes. J Immunol. 1999;162(5):2677–82.

    CAS  PubMed  Google Scholar 

  • Beaulieu P, Lambert C. Peptidic regulation of heart rate and interactions with the autonomic nervous system. Cardiovasc Res. 1998;37(3):578–85.

    Article  CAS  PubMed  Google Scholar 

  • Bell D, McDermott BJ. Calcitonin gene-related peptide in the cardiovascular system: characterization of receptor populations and their (patho)physiological significance. Pharmacol Rev. 1996;48(2):253–88.

    CAS  PubMed  Google Scholar 

  • Bellamy RF. Diastolic coronary artery pressure-flow relations in the dog. Circ Res. 1978;43(1):92–101.

    Article  CAS  PubMed  Google Scholar 

  • Bellamy RF. Calculation of coronary vascular resistance. Cardiovasc Res. 1980;14:261–9.

    Article  CAS  PubMed  Google Scholar 

  • Blinks JR. Positive chronotropic effect of increasing right atrial pressure in the isolated mammalian heart. Am J Phys. 1956;186(2):299–303.

    Article  CAS  Google Scholar 

  • Bettex DA, Pretre R, Chassot PG. Is our heart a well-designed pump? The heart along animal evolution. Eur Heart J. 2014;35(34):2322–32.

    Google Scholar 

  • Bolter CP. Intrinsic cardiac rate regulation in the anaesthetized rabbit. Acta Physiol Scand. 1994;151(4):421–8.

    Article  CAS  PubMed  Google Scholar 

  • Bolter CP. Effect of changes in transmural pressure on contraction frequency of the isolated right atrium of the rabbit. Acta Physiol Scand. 1996;156(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  • Bolter CP, Wilson SJ. Influence of right atrial pressure on the cardiac pacemaker response to vagal stimulation. Am J Phys. 1999;276(4 Pt 2):R1112–7.

    CAS  Google Scholar 

  • Brooks CM, Lu HH, Lange G, Mangi R, Shaw RB, Geoly K. Effects of localized stretch of the sinoatrial node region of the dog heart. Am J Phys. 1966;211(5):1197–202.

    Article  CAS  Google Scholar 

  • Cabanac M. Regulation and modulation in biology. A reexamination of temperature regulation. Ann N Y Acad Sci. 1997;813:21–31.

    Article  CAS  PubMed  Google Scholar 

  • Calloe K, Elmedyb P, Olesen SP, Jorgensen NK, Grunnet M. Hypoosmotic cell swelling as a novel mechanism for modulation of cloned HCN2 channels. Biophys J. 2005;89(3):2159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmeliet E. Intracellular Ca(2+) concentration and rate adaptation of the cardiac action potential. Cell Calcium. 2004;35(6):557–73.

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet E. Action potential duration, rate of stimulation, and intracellular sodium. J Cardiovasc Electrophysiol. 2006;17(Suppl 1):S2–7.

    Article  PubMed  Google Scholar 

  • Cassidy S, Mitchell J. Effects of positive pressure breathing on right and left ventricular preload and afterload. Fed Proc. 1981;40:2178–81.

    CAS  PubMed  Google Scholar 

  • Centurion D, Ortiz MI, Saxena PR, Villalon CM. The atypical 5-HT2 receptor mediating tachycardia in pithed rats: pharmacological correlation with the 5-HT2A receptor subtype. Br J Pharmacol. 2002;135(6):1531–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandler NJ, Greener ID, Tellez JO, Inada S, Musa H, Molenaar P, et al. Molecular architecture of the human sinus node: insights into the function of the cardiac pacemaker. Circulation. 2009;119(12):1562–75.

    Article  PubMed  Google Scholar 

  • Chang F, Yu H, Cohen IS. Actions of vasoactive intestinal peptide and neuropeptide Y on the pacemaker current in canine Purkinje fibers. Circ Res. 1994;74(1):157–62.

    Article  CAS  PubMed  Google Scholar 

  • Chiba S. Pharmacologic analysis of stretch-induced sinus acceleration of the isolated dog atrium. Jpn Heart J. 1977;18(3):398–405.

    Article  CAS  PubMed  Google Scholar 

  • Chorev M. Parathyroid hormone 1 receptor: insights into structure and function. Receptors Channels. 2002;8(3–4):219–42.

    Article  CAS  PubMed  Google Scholar 

  • Coleridge HM, Coleridge JC. Cardiovascular afferents involved in regulation of peripheral vessels. Annu Rev Physiol. 1980;42:413–27.

    Article  CAS  PubMed  Google Scholar 

  • Cooper PJ, Kohl P. Species- and preparation-dependence of stretch effects on sino-atrial node pacemaking. Ann N Y Acad Sci. 2005;1047:324–35.

    Article  PubMed  Google Scholar 

  • Cooper PJ, Lei M, Cheng LX, Kohl P. Selected contribution: axial stretch increases spontaneous pacemaker activity in rabbit isolated sinoatrial node cells. J Appl Physiol. 2000;89(5):2099–104.

    Article  CAS  PubMed  Google Scholar 

  • Critchley LA, Lee A, Ho AM. A critical review of the ability of continuous cardiac output monitors to measure trends in cardiac output. Anesth Anal. 2010;111(5):1180–92.

    Article  Google Scholar 

  • Crystal GJ, Salem MR. The Bainbridge and the "reverse" Bainbridge reflexes: history, physiology, and clinical relevance. Anesth Analg. 2012;114(3):520–32.

    Article  CAS  PubMed  Google Scholar 

  • Deck KA. Dehnungseffekte am spontanschlagenden, isolierten Sinusknoten. Pflugers Arch Gesamte Physiol Menschen Tiere. 1964;280:120–30.

    Article  CAS  PubMed  Google Scholar 

  • DiFrancesco D. The role of the funny current in pacemaker activity. Circ Res. 2010;106(3):434–46.

    Article  CAS  PubMed  Google Scholar 

  • DiFrancesco D, Noble D. The funny current has a major pacemaking role in the sinus node. Heart Rhythm. 2012;9(2):299–301.

    Article  PubMed  Google Scholar 

  • Dobson GP. On being the right size: heart design, mitochondrial efficiency and lifespan potential. Clinical and experimental pharmacology & physiology. 2003;30(8):590–7.

    Google Scholar 

  • Donald DE, Shepherd JT. Reflexes from the heart and lungs: physiological curiosities or important regulatory mechanisms. Cardiovasc Res. 1978;12(8):446–69.

    Article  CAS  PubMed  Google Scholar 

  • Fagraeus L, Linnarsson D. Autonomic origin of heart rate fluctuations at the onset of muscular exercise. J Appl Physiol. 1976;40(5):679–82.

    Article  CAS  PubMed  Google Scholar 

  • Gagliardi M, Randall WC, Bieger D, Wurster RD, Hopkins DA, Armour JA. Activity of in vivo canine cardiac plexus neurons. Am J Phys. 1988;255(4 Pt 2):H789–800.

    CAS  Google Scholar 

  • Gloss B, Trost S, Bluhm W, Swanson E, Clark R, Winkfein R, et al. Cardiac ion channel expression and contractile function in mice with deletion of thyroid hormone receptor alpha or beta. Endocrinology. 2001;142(2):544–50.

    Article  CAS  PubMed  Google Scholar 

  • Gordan R, Gwathmey JK, Xie LH. Autonomic and endocrine control of cardiovascular function. World J Cardiol. 2015;7(4):204–14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gothert M, Schlicker E, Kollecker P. Receptor-mediated effects of serotonin and 5-methoxytryptamine on noradrenaline release in the rat vena cava and in the heart of the pithed rat. Naunyn Schmiedeberg’s Arch Pharmacol. 1986;332(2):124–30.

    Article  CAS  Google Scholar 

  • Guyton AC. Textbook of medical physiology. 1st ed. Philadelphia: W.B. Saunders; 1956.

    Google Scholar 

  • Habuchi Y, Lu LL, Morikawa J, Yoshimura M. Angiotensin II inhibition of L-type Ca2+ current in sinoatrial node cells of rabbits. Am J Phys. 1995;268(3 Pt 2):H1053–60.

    CAS  Google Scholar 

  • Hakumaki MO. Seventy years of the Bainbridge reflex. Acta Physiol Scand. 1987;130(2):177–85.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton-Davies C, Mythen MD, Salmon JB, Jacobson D, Shukla A, Webb AR. Comparison of commonly used clinical indicators of hypovolaemia with gastrointestinal tonometry. Intensive Care Med. 1997;23:276–81.

    Article  CAS  PubMed  Google Scholar 

  • Hodgin JB, Krege JH, Reddick RL, Korach KS, Smithies O, Maeda N. Estrogen receptor alpha is a major mediator of 17 beta-estradiol's atheroprotective effects on lesion size in Apoe-/- mice. J Clin Investig. 2001;107(3):333–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoover DB. Effects of guinea pig vasoactive intestinal peptide on the isolated perfused guinea pig heart. Peptides. 1989;10(2):343–7.

    Article  CAS  PubMed  Google Scholar 

  • Hussain SNA, Chatillon A, Comtois A, Roussos C, Magder S. Chemical activation of thin-fiber phrenic afferents: (2) the cardiovascular responses. J Appl Physiol. 1991;70:159–67.

    Article  Google Scholar 

  • Irisawa H, Brown HF, Giles W. Cardiac pacemaking in the sinoatrial node. Physiol Rev. 1993;73(1):197–227.

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa T, Yanagisawa M, Kimura S, Goto K, Masaki T. Positive inotropic action of novel vasoconstrictor peptide endothelin on guinea pig atria. Am J Physiol Heart Circ Physiol. 1988;255:H970–H3.

    Article  CAS  Google Scholar 

  • James TN. The chronotropic action of serotonin studied by direct perfusion of the sinus node. J Pharmacol Exp Ther. 1964;146:209–14.

    CAS  PubMed  Google Scholar 

  • Janvier NC, McMorn SO, Harrison SM, Taggart P, Boyett MR. The role of Na(+)-Ca2+ exchange current in electrical restitution in ferret ventricular cells. J Physiol. 1997;504(Pt 2):301–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jose AD, Collison D. The normal range and determinants of the intrinsic heart rate in man. Cardiovasc Res. 1970;4(2):160–7.

    Article  CAS  PubMed  Google Scholar 

  • Jose AD, Taylor RR. Autonomic blockade by propranolol and atropine to study intrinsic myocardial function in man. J Clin Invest. 1969;48(11):2019–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju YK, Chu Y, Chaulet H, Lai D, Gervasio OL, Graham RM, et al. Store-operated Ca2+ influx and expression of TRPC genes in mouse sinoatrial node. Circ Res. 2007;100(11):1605–14.

    Article  CAS  PubMed  Google Scholar 

  • Ju YK, Liu J, Lee BH, Lai D, Woodcock EA, Lei M, et al. Distribution and functional role of inositol 1,4,5-trisphosphate receptors in mouse sinoatrial node. Circ Res. 2011;109(8):848–57.

    Article  CAS  PubMed  Google Scholar 

  • Katz AM. Energy utilization (work and heat). Physiology of the heart. 2nd ed. New York: Raven Press; 1992. p. 129–50.

    Google Scholar 

  • Kaufman MP, Iwamoto GA, Longhurst JC, Mitchell JH. Effects of capsaicin and bradykinin on afferent fibers with endings in skeletal muscle. Circ Res. 1982;50:133–9.

    Article  CAS  PubMed  Google Scholar 

  • Kaufman MP, Rybicki KJ, Mitchell JH. Hindlimb muscular contraction reflexly decreases total pulmonary resistance in dogs. J Appl Physiol. 1985;59:1521–6.

    Article  CAS  PubMed  Google Scholar 

  • Kevelaitis E, Abraitis R, Lazhauskas R. Histamine and pacemaker shift in the sinoatrial node. Agents Actions. 1994;41 Spec No:C87–8.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Furukawa Y, Chiba S. Positive chronotropic and inotropic effects of angiotensin II in the dog heart. Eur J Pharmacol. 1978;50(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  • Lakatta EG, Vinogradova TM, Maltsev VA. The missing link in the mystery of normal automaticity of cardiac pacemaker cells. Ann N Y Acad Sci. 2008;1123:41–57.

    Article  CAS  PubMed  Google Scholar 

  • Lakatta EG, Maltsev VA, Vinogradova TM. A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ Res. 2010;106(4):659–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert C. Mechanisms of angiotensin II chronotropic effect in anaesthetized dogs. Br J Pharmacol. 1995;115(5):795–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert LE, Whitten JP, Baron BM, Cheng HC, Doherty NS, McDonald IA. Nitric oxide synthesis in the CNS, endothelium and macrophages differs in its sensitivity to inhibition by arginine analogues. Life Sci. 1991;48:69–75.

    Article  CAS  PubMed  Google Scholar 

  • Larsson HP. How is the heart rate regulated in the sinoatrial node? Another piece to the puzzle. J Gen Physiol. 2010;136(3):237–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei M, Zhang H, Grace AA, Huang CL. SCN5A and sinoatrial node pacemaker function. Cardiovasc Res. 2007;74(3):356–65.

    Article  CAS  PubMed  Google Scholar 

  • Levine HJ. Rest heart rate and life expectancy. Journal of American College of Cardiology. 1997;30(4):1104–6.

    Google Scholar 

  • Li Y, Sirenko S, Riordon DR, Yang D, Spurgeon H, Lakatta EG, et al. CaMKII-dependent phosphorylation regulates basal cardiac pacemaker function via modulation of local Ca2+ releases. Am J Physiol Heart Circ Physiol. 2016;311(3):H532–44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin W, Laitko U, Juranka PF, Morris CE. Dual stretch responses of mHCN2 pacemaker channels: accelerated activation, accelerated deactivation. Biophys J. 2007;92(5):1559–72.

    Article  CAS  PubMed  Google Scholar 

  • Linden A, Desmecht D, Amory H, Lekeux P. Cardiovascular response to intravenous administration of 5-hydroxytryptamine after type-2 receptor blockade, by metrenperone, in healthy calves. Vet J. 1999;157(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  • Linnarsson D. Dynamics of pulmonary gas exchange and heart rate changes at start and end of exercise. Acta Physiol Scand. 1974;415:1–68.

    CAS  Google Scholar 

  • Lonardo G, Cerbai E, Casini S, Giunti G, Bonacchi M, Battaglia F, et al. Atrial natriuretic peptide modulates the hyperpolarization-activated current (If) in human atrial myocytes. Cardiovasc Res. 2004;63(3):528–36.

    Article  CAS  PubMed  Google Scholar 

  • Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, et al. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev. 2000;52(3):375–414.

    CAS  PubMed  Google Scholar 

  • MacDonald EA, Stoyek MR, Rose RA, Quinn TA. Intrinsic regulation of sinoatrial node function and the zebrafish as a model of stretch effects on pacemaking. Prog Biophys Mol Biol. 2017;130(Pt B):198–211.

    Article  PubMed  Google Scholar 

  • MacDonald EA, Rose RA, Quinn TA. Neurohumoral control of sinoatrial node activity and heart rate: experimental insight and findings from human. Front Physiol. 2020;11:170.

    Google Scholar 

  • Magder S. Venous mechanics of contracting gastrocnemius muscle and the muscle pump theory. J Appl Physiol. 1995;79(6):1930–5.

    Article  CAS  PubMed  Google Scholar 

  • Magder S. Effects of respiratory muscle afferent on the breathing and the afferent hypothesis. In: Scharf SM, Pinsky MR, Magder S, editors. Respiratory-circulatory interactions in health and disease. 2nd ed. New York: Marcel Dekker, Inc.; 2001. p. 405–25.

    Google Scholar 

  • Magder SA. The ups and downs of heart rate. Crit Care Med. 2012;40(1):239–45.

    Article  PubMed  Google Scholar 

  • Magder S, Bafaqeeh F. The clinical role of central venous pressure measurements. J Intensive Care Med. 2007;22(1):44–51.

    Article  PubMed  Google Scholar 

  • Magder SA, Daughters GT, Hung J, Savin WM, Alderman EL, Ingels NB Jr. Adaptation of human left ventricular volumes to the onset of supine exercise. Eur J Appl Physiol. 1987;56:467–73.

    Article  CAS  Google Scholar 

  • Magder S, Famulari G, Gariepy B. Periodicity, time constants of drainage and the mechanical determinants of peak cardiac output during exercise. J Appl Physiol. 2019;127(6):1611–9.

    Article  PubMed  Google Scholar 

  • Maltsev VA, Lakatta EG. The funny current in the context of the coupled-clock pacemaker cell system. Heart Rhythm. 2012;9(2):302–7.

    Article  PubMed  Google Scholar 

  • Maltsev VA, Vinogradova TM, Lakatta EG. The emergence of a general theory of the initiation and strength of the heartbeat. J Pharmacol Sci. 2006;100(5):338–69.

    Article  CAS  PubMed  Google Scholar 

  • Mangoni ME, Nargeot J. Genesis and regulation of the heart automaticity. Physiol Rev. 2008;88(3):919–82.

    Article  CAS  PubMed  Google Scholar 

  • McCloskey DI, Mitchell JH. Reflex cardiovascular and respiratory responses originating in exercising muscle. J Physiol (Lond). 1972;224(1):173–86.

    Article  CAS  Google Scholar 

  • Mesirca P, Torrente AG, Mangoni ME. Functional role of voltage gated Ca(2+) channels in heart automaticity. Front Physiol. 2015;6:19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Minkes RK, Bellan JA, Saroyan RM, Kerstein MD, Coy DH, Murphy WA, et al. Analysis of cardiovascular and pulmonary responses to endothelin-1 and endothelin-3 in the anesthetized cat. J Pharmacol Exp Ther. 1990;253(3):1118–25.

    CAS  PubMed  Google Scholar 

  • Mitchell JH, Shephard JT. Control of the circulation during exercise. In: Paul McNeil H, editor. Exercise – the physiological challenge. Auckland: Conference Pub.; 1993. p. 55–85.

    Google Scholar 

  • Modell H, Cliff W, Michael J, McFarland J, Wenderoth MP, Wright A. A physiologist’s view of homeostasis. Adv Physiol Educ. 2015;39(4):259–66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moghtadaei M, Polina I, Rose RA. Electrophysiological effects of natriuretic peptides in the heart are mediated by multiple receptor subtypes. Prog Biophys Mol Biol. 2016;120(1–3):37–49.

    Article  CAS  PubMed  Google Scholar 

  • Nabauer M, Beuckelmann DJ, Uberfuhr P, Steinbeck G. Regional differences in current density and rate-dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation. 1996;93(1):168–77.

    Article  CAS  PubMed  Google Scholar 

  • Notarius CF, Magder S. Central venous pressure during exercise: role of muscle pump. Can J Physiol Pharmacol. 1996;74(6):647–51.

    Article  CAS  PubMed  Google Scholar 

  • Notarius CF, Levy RD, Tully A, Fitchett D, Magder S. Cardiac vs. non-cardiac limits to exercise following heart transplantation. Am Heart J. 1998;135:339–48.

    Article  CAS  PubMed  Google Scholar 

  • Ono K, Masumiya H, Sakamoto A, Christe G, Shijuku T, Tanaka H, et al. Electrophysiological analysis of the negative chronotropic effect of endothelin-1 in rabbit sinoatrial node cells. J Physiol. 2001;537(Pt 2):467–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pachucki J, Burmeister LA, Larsen PR. Thyroid hormone regulates hyperpolarization-activated cyclic nucleotide-gated channel (HCN2) mRNA in the rat heart. Circ Res. 1999;85(6):498–503.

    Article  CAS  PubMed  Google Scholar 

  • Pathak CL. Autoregulation of chronotropic response of the heart through pacemaker stretch. Cardiology. 1973;58(1):45–64.

    Article  CAS  PubMed  Google Scholar 

  • Peyronnet R, Nerbonne JM, Kohl P. Cardiac mechano-gated ion channels and arrhythmias. Circ Res. 2016;118(2):311–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potter B, Magder S. Protocol performance of randomized trial of colloid vs crystalloid for fluids after cardiac surgery. Proc Am Thorac Soc. 2006;3(April):A651.

    Google Scholar 

  • Potthoff SA, Janus A, Hoch H, Frahnert M, Tossios P, Reber D, et al. PTH-receptors regulate norepinephrine release in human heart and kidney. Regul Pept. 2011;171(1–3):35–42.

    Article  CAS  PubMed  Google Scholar 

  • Quinn TA, Kohl P. Mechano-sensitivity of cardiac pacemaker function: pathophysiological relevance, experimental implications, and conceptual integration with other mechanisms of rhythmicity. Prog Biophys Mol Biol. 2012;110:257–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn TA, Kohl P. Rabbit models of cardiac mechano-electric and mechano-mechanical coupling. Prog Biophys Mol Biol. 2016;121(2):110–22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Quinn TA, Bayliss RA, Kohl P. Mechano-electric feedback in the heart: effects on heart rate and rhythm. In: Tripathi ON, Ravens U, Sanguinetti MC, editors. Heart rate and rhythm: molecular basis, pharmacological modulation and clinical implications. 1st ed. Heidelberg: Springer; 2011. p. 133–51.

    Chapter  Google Scholar 

  • Quinn TA, Kohl P, Ravens U. Cardiac mechano-electric coupling research: fifty years of progress and scientific innovation. Prog Biophys Mol Biol. 2014;115(2–3):71–5.

    Article  PubMed  Google Scholar 

  • Raven PB, Young BE, Fadel PJ. Arterial baroreflex resetting during exercise in humans: underlying signaling mechanisms. Exerc Sport Sci Rev. 2019;47(3):129–41.

    Article  PubMed  Google Scholar 

  • Reinhart K, Kuhn HJ, Hartog C, Bredle DL. Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med. 2004;30(8):1572–8.

    Article  PubMed  Google Scholar 

  • Renaudon B, Bois P, Bescond J, Lenfant J. Acetylcholine modulates I(f) and IK(ACh) via different pathways in rabbit sino-atrial node cells. J Mol Cell Cardiol. 1997;29(3):969–75.

    Article  CAS  PubMed  Google Scholar 

  • Renaudon B, Lenfant J, Decressac S, Bois P. Thyroid hormone increases the conductance density of f-channels in rabbit sino-atrial node cells. Receptors Channels. 2000;7(1):1–8.

    CAS  PubMed  Google Scholar 

  • Rose RA, Giles WR. Natriuretic peptide C receptor signalling in the heart and vasculature. J Physiol. 2008;586(2):353–66.

    Article  CAS  PubMed  Google Scholar 

  • Rose RA, Lomax AE, Kondo CS, Anand-Srivastava MB, Giles WR. Effects of C-type natriuretic peptide on ionic currents in mouse sinoatrial node: a role for the NPR-C receptor. Am J Physiol Heart Circ Physiol. 2004;286(5):H1970–7.

    Article  CAS  PubMed  Google Scholar 

  • Rosen MR, Nargeot J, Salama G. The case for the funny current and the calcium clock. Heart Rhythm. 2012;9(4):616–8.

    Article  PubMed  Google Scholar 

  • Said SI. Vasoactive intestinal peptide. J Endocrinol Investig. 1986;9(2):191–200.

    Article  CAS  Google Scholar 

  • Saito K, Gutkind JS, Saavedra JM. Angiotensin II binding sites in the conduction system of rat hearts. Am J Phys. 1987;253(6 Pt 2):H1618–22.

    CAS  Google Scholar 

  • Saxena PR, Villalon CM. Cardiovascular effects of serotonin agonists and antagonists. J Cardiovasc Pharmacol. 1990;15(Suppl 7):S17–34.

    Article  CAS  PubMed  Google Scholar 

  • Sechi LA, Griffin CA, Grady EF, Kalinyak JE, Schambelan M. Characterization of angiotensin II receptor subtypes in rat heart. Circ Res. 1992;71(6):1482–9.

    Article  CAS  PubMed  Google Scholar 

  • Sheng JW, Wang WY, Xu YF. Angiotensin II decreases spontaneous firing rate of guinea-pig sino-atrial node cells. Eur J Pharmacol. 2011;660(2–3):387–93.

    Article  CAS  PubMed  Google Scholar 

  • Shimoni Y. Hormonal control of cardiac ion channels and transporters. Prog Biophys Mol Biol. 1999;72(1):67–108.

    Article  CAS  PubMed  Google Scholar 

  • Springer J, Azer J, Hua R, Robbins C, Adamczyk A, McBoyle S, et al. The natriuretic peptides BNP and CNP increase heart rate and electrical conduction by stimulating ionic currents in the sinoatrial node and atrial myocardium following activation of guanylyl cyclase-linked natriuretic peptide receptors. J Mol Cell Cardiol. 2012;52(5):1122–34.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Habuchi Y, Yamamoto T, Nishio M, Morikawa J, Yoshimura M. Negative chronotropic actions of endothelin-1 on rabbit sinoatrial node pacemaker cells. Br J Pharmacol. 1997;122(2):321–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tateyama M, Kurokawa J, Terrenoire C, Rivolta I, Kass RS. Stimulation of protein kinase C inhibits bursting in disease-linked mutant human cardiac sodium channels. Circulation. 2003;107(25):3216–22.

    Article  CAS  PubMed  Google Scholar 

  • Teitelbaum J, Vanelli G, Hussain SNA. Thin-fibre phrenic afferents mediate the ventilatory response to diaphragmatic ischemia. Respir Physiol. 1993;91:195–206.

    Article  CAS  PubMed  Google Scholar 

  • Torrente AG, Mesirca P, Neco P, Rizzetto R, Dubel S, Barrere C, et al. L-type Cav1.3 channels regulate ryanodine receptor-dependent Ca2+ release during sino-atrial node pacemaker activity. Cardiovasc Res. 2016;109(3):451–61.

    Article  CAS  PubMed  Google Scholar 

  • Vatner SF, Boettcher DH, Heyndrickx GR, McRitchie RJ. Reduced baroreflex sensitivity with volume loading in conscious dogs. Circ Res. 1975;37(2):236–42.

    Article  CAS  PubMed  Google Scholar 

  • Villalon CM, Centurion D. Cardiovascular responses produced by 5-hydroxytriptamine:a pharmacological update on the receptors/mechanisms involved and therapeutic implications. Naunyn Schmiedeberg’s Arch Pharmacol. 2007;376(1–2):45–63.

    Article  CAS  Google Scholar 

  • Vinogradova TM, Lyashkov AE, Zhu W, Ruknudin AM, Sirenko S, Yang D, et al. High basal protein kinase A-dependent phosphorylation drives rhythmic internal Ca2+ store oscillations and spontaneous beating of cardiac pacemaker cells. Circ Res. 2006;98(4):505–14.

    Article  CAS  PubMed  Google Scholar 

  • Wilson SJ, Bolter CP. Interaction of the autonomic nervous system with intrinsic cardiac rate regulation in the guinea-pig, Cavia porcellus. Comp Biochem Physiol A Mol Integr Physiol. 2001;130(4):723–30.

    Article  CAS  PubMed  Google Scholar 

  • Wilson SJ, Bolter CP. Do cardiac neurons play a role in the intrinsic control of heart rate in the rat? Exp Physiol. 2002;87(6):675–82.

    Article  PubMed  Google Scholar 

  • Zhang H, Holden AV, Boyett MR. Sustained inward current and pacemaker activity of mammalian sinoatrial node. J Cardiovasc Electrophysiol. 2002;13(8):809–12.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheldon Magder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quinn, T.A., Magder, S. (2021). Physiology of Heart Rate. In: Magder, S., Malhotra, A., Hibbert, K.A., Hardin, C.C. (eds) Cardiopulmonary Monitoring. Springer, Cham. https://doi.org/10.1007/978-3-030-73387-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73387-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73386-5

  • Online ISBN: 978-3-030-73387-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics