Skip to main content

Cardiopulmonary Monitoring in the Patient with an Inflamed Lung

  • Chapter
  • First Online:
Cardiopulmonary Monitoring

Abstract

The acute respiratory distress syndrome (ARDS) is a predominantly inflammatory lung disease that develops in consequence of a wide spectrum of pulmonary and extrapulmonary conditions. Its biological hallmarks are the production of proinflammatory cytokines, increased vascular and alveolar permeability, alveolar edema, and infiltration with polymorphonucleate cells. The syndrome has wide inter-individual variability, and recent research has underlined the existence of at least two different phenotypes, one presenting with significantly increased inflammation features. Mechanical ventilation is the main supportive therapy for ARDS, but it can cause, depending on the intensity of its application, different levels of lung damage, from gross lung parenchyma ruptures (nowadays very rare) to minor lesions at the cellular level, to release of more inflammatory mediators, which can enhance the already present inflammatory reaction. These processes are mediated by complex mechanisms of transduction of physical forces into biological signals. Moreover, due to the increased intercellular permeability and the lack of compartmentalization, inflammatory mediators can spread in the organism and favor the development of multisystem organ failure. Although “protective” mechanical ventilation settings are now widely implemented, mortality due to ARDS and ventilator-induced lung injury is still high. The concept of modulating the inflammatory response seems rational and promising, but the results to date are disappointing, since none of the therapies aimed at reducing or controlling the lung inflammatory response have showed any benefit in terms of outcome. Innovative approaches to inflammation modulation (such as the infusion of mesenchymal stromal cells) are still under evaluation and could deliver results in the next years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.

    Article  Google Scholar 

  • ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307:2526–33.

    Google Scholar 

  • Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet (London, England). 1967;2:319–23.

    Article  CAS  Google Scholar 

  • Bellingan G, Brealey D, Mancebo J, et al. Comparison of the efficacy and safety of FP-1201-lyo (intravenously administered recombinant human interferon beta-1a) and placebo in the treatment of patients with moderate or severe acute respiratory distress syndrome: study protocol for a randomized co. Trials. 2017;18:1–9.

    Article  CAS  Google Scholar 

  • Boyle AJ, Sweeney RM, McAuley DF. Pharmacological treatments in ARDS; a state-of-the-art update. BMC Med. 2013;11:166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Thompson BT, National Heart, Lung and BIACTN. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351:327–36.

    Article  PubMed  Google Scholar 

  • Cabrera-Benítez NE, Parotto M, Post M, et al. Mechanical stress induces lung fibrosis by epithelial–mesenchymal transition. Crit Care Med. 2012;40:510–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabrera-Benitez NE, Laffey JG, Parotto M, Spieth PM, Villar J, Zhang H, Slutsky AS. Mechanical ventilation-associated lung fibrosis in acute respiratory distress syndrome: a significant contributor to poor outcome. Anesthesiology. 2014;121:189–98.

    Article  PubMed  Google Scholar 

  • Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med. 2014;2:611–20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiumello D, Carlesso E, Cadringher P, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178:346–55.

    Article  PubMed  Google Scholar 

  • Collino F, Rapetti F, Vasques F, et al. Positive end-expiratory pressure and mechanical power. Anesthesiology. 2019;130:119–30.

    Article  PubMed  Google Scholar 

  • Correa-Meyer E, Pesce L, Guerrero C, Sznajder JI. Cyclic stretch activates ERK1/2 via G proteins and EGFR in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2002;282:L883–91.

    Article  CAS  PubMed  Google Scholar 

  • Cressoni M, Gotti M, Chiurazzi C, et al. Mechanical power and development of ventilator-induced lung injury. Anesthesiology. 2016;124:1100–8.

    Article  PubMed  Google Scholar 

  • de Prost N, Ricard J-D, Saumon G, Dreyfuss D. Ventilator-induced lung injury: historical perspectives and clinical implications. Ann Intensive Care. 2011;1:28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Sorbo L, Tonetti T, Ranieri VM. Alveolar recruitment in acute respiratory distress syndrome: should we open the lung (no matter what) or may accept (part of) the lung closed? Intensive Care Med. 2019;45(10):1436–39.

    Google Scholar 

  • Dreyfuss D, Saumon G. Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis. 1993;148:1194–203.

    Article  CAS  PubMed  Google Scholar 

  • Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema: respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis. 1988;137:1159–64.

    Article  CAS  PubMed  Google Scholar 

  • Dudek SM, Garcia JGN. Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol. 2001;91:1487–500.

    Article  CAS  PubMed  Google Scholar 

  • Famous KR, Delucchi K, Ware LB, Kangelaris KN, Liu KD, Thompson BT, Calfee CS. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med. 2017;195:331–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan E, Gattinoni L, Combes A, et al. Venovenous extracorporeal membrane oxygenation for acute respiratory failure: a clinical review from an international group of experts. Intensive Care Med. 2016;42:712–24.

    Article  CAS  PubMed  Google Scholar 

  • Fan E, Del Sorbo L, Goligher EC, et al. An official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine clinical practice guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195:1253–63.

    Article  PubMed  Google Scholar 

  • Fanelli V, Ranieri VM. Mechanisms and clinical consequences of acute lung injury. Ann Am Thorac Soc. 2015;12:S3–8.

    Article  PubMed  Google Scholar 

  • Fanelli V, Mascia L, Puntorieri V, et al. Pulmonary atelectasis during low stretch ventilation: “open lung” versus “lung rest” strategy. Crit Care Med. 2009;37:1046–53.

    Article  PubMed  Google Scholar 

  • Frank JA, Pittet JF, Lee H, Godzich M, Matthay MA. High tidal volume ventilation induces NOS2 and impairs cAMP-dependent air space fluid clearance. Am J Physiol Lung Cell Mol Physiol. 2003;284:791–8.

    Article  Google Scholar 

  • Frick M, Bertocchi C, Jennings P, Haller T, Mair N, Singer W, Pfaller W, Ritsch-Marte M, Dietl P. Ca 2+ entry is essential for cell strain-induced lamellar body fusion in isolated rat type II pneumocytes. Am J Physiol Lung Cell Mol Physiol. 2004;286:L210–20.

    Article  CAS  PubMed  Google Scholar 

  • Gattinoni L, Carlesso E, Cadringher P, Valenza F, Vagginelli F, Chiumello D. Physical and biological triggers of ventilator-induced lung injury and its prevention. Eur Respir J. 2003;22:15s–25s.

    Article  Google Scholar 

  • Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42:1567–75.

    Article  CAS  PubMed  Google Scholar 

  • Gattinoni L, Quintel M, Marini JJ. Volutrauma and atelectrauma: which is worse? Crit Care. 2018;22:264.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heise RL, Stober V, Cheluvaraju C, Hollingsworth JW, Garantziotis S. Mechanical stretch induces epithelial-mesenchymal transition in alveolar epithelia via hyaluronan activation of innate immunity. J Biol Chem. 2011;286:17435–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotchkiss JR, Blanch L, Murias G, Adams AB, Olson DA, Wangensteen OD, Leo PH, Marini JJ. Effects of decreased respiratory frequency on ventilator-induced lung injury. Am J Respir Crit Care Med. 2000;161:463–8.

    Article  PubMed  Google Scholar 

  • Kawano T, Mori S, Cybulsky M, Burger R, Ballin A, Cutz E, Bryan AC. Effect of granulocyte depletion in a ventilated surfactant-depleted lung. J Appl Physiol. 1987;62:27–33.

    Article  CAS  PubMed  Google Scholar 

  • Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11:875–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Pontoppidan H, Falke KJ, Wilson RS, Laver MB. Pulmonary barotrauma during mechanical ventilation. Crit Care Med. 1973;1:181–6.

    Article  CAS  PubMed  Google Scholar 

  • Lazrak A, Iles KE, Liu G, Noah DL, Noah JW, Matalon S. Influenza virus M2 protein inhibits epithelial sodium channels by increasing reactive oxygen species. FASEB J. 2009;23:3829–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lionetti V, Lisi A, Patrucco E, et al. Lack of phosphoinositide 3-kinase-γ attenuates ventilator-induced lung injury. Crit Care Med. 2006;34:134–41.

    Article  CAS  PubMed  Google Scholar 

  • Louise C, Powell JT, Simon G, Sculpher MJ. Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med. 2006;354:2213–24.

    Article  Google Scholar 

  • Madtes DK, Rubenfeld G, Klima LD, Milberg JA, Steinberg KP, Martin TR, Raghu G, Hudson LD, Clark JG. Elevated transforming growth factor-α levels in bronchoalveolar lavage fluid of patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1998;158:424–30.

    Article  CAS  PubMed  Google Scholar 

  • Marini JJ, Culver BH. Systemic gas embolism complicating mechanical ventilation in the adult respiratory distress syndrome. Ann Intern Med. 1989;110:699–703.

    Article  CAS  PubMed  Google Scholar 

  • Marshall RP, Bellingan G, Webb S, Puddicombe A, Goldsack N, McAnulty RJ, Laurent GJ. Fibroproliferation occurs early in the acute respiratory distress syndrome and impacts on outcome. Am J Respir Crit Care Med. 2000;162:1783–8.

    Article  CAS  PubMed  Google Scholar 

  • Martin C, Papazian L, Payan M-J, Saux P, Gouin F. Pulmonary fibrosis correlates with outcome in adult respiratory distress syndrome. Chest. 1995;107:196–200.

    Article  CAS  PubMed  Google Scholar 

  • Matthay MA, Calfee CS, Zhuo H, et al. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial. Lancet Respir Med. 2019;7:154–62.

    Article  PubMed  Google Scholar 

  • Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol. 1970;28:596–608.

    Article  CAS  PubMed  Google Scholar 

  • Meade MO, Cook DJ, Guyatt GH, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299:637–45.

    Article  CAS  PubMed  Google Scholar 

  • Mercat A, Richard JM, Vielle B, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299:646–55.

    Article  CAS  PubMed  Google Scholar 

  • Murphy DB, Cregg N, Tremblay L, Engelberts D, Laffey JG, Slutsky AS, Romaschin A, Kavanagh BP. Adverse ventilatory strategy causes pulmonary-to-systemic translocation of endotoxin. Am J Respir Crit Care Med. 2000;162:27–33.

    Article  CAS  PubMed  Google Scholar 

  • Nahum A, Hoyt J, Schmitz L, Moody J, Shapiro R, Marini JJ. Effect of mechanical ventilation strategy on dissemination of intratracheally instilled Escherichia coli in dogs. Crit Care Med. 1997;25:1733–43.

    Article  CAS  PubMed  Google Scholar 

  • Parker JC. Inhibitors of myosin light chain kinase and phosphodiesterase reduce ventilator-induced lung injury. J Appl Physiol. 2000;89:2241–8.

    Article  CAS  PubMed  Google Scholar 

  • Parker JC, Ivey CL, Tucker JA. Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs. J Appl Physiol. 1998;84:1113–8.

    Article  CAS  PubMed  Google Scholar 

  • Peters DM, Vadász I, Wujak Ł, et al. TGF-β directs trafficking of the epithelial sodium channel ENaC which has implications for ion and fluid transport in acute lung injury. Proc Natl Acad Sci U S A. 2014;111:E374–83.

    Article  CAS  PubMed  Google Scholar 

  • Protti A, Maraffi T, Milesi M, et al. Role of strain rate in the pathogenesis of ventilator-induced lung edema∗. Crit Care Med. 2016;44:e838–45.

    Article  PubMed  Google Scholar 

  • Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, Bruno F, Slutsky AS. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA. 1999;282:54–61.

    Article  CAS  PubMed  Google Scholar 

  • Ranieri VM, Giunta F, Suter PM, Slutsky AS. Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA. 2000;284:43–4.

    Article  CAS  PubMed  Google Scholar 

  • Roux J, McNicholas CM, Carles M, Goolaerts A, Houseman BT, Dickinson DA, Iles KE, Ware LB, Matthay MA, Pittet JF. IL-8 inhibits cAMP-stimulated alveolar epithelial fluid transport via a GRK2/PI3K-dependent mechanism. FASEB J. 2013;27:1095–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozencwajg S, Guihot A, Franchineau G, et al. Ultra-protective ventilation reduces biotrauma in patients on venovenous extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. Crit Care Med. 2019;47:1505.

    Article  PubMed  Google Scholar 

  • Serpa Neto A, Deliberato RO, Johnson AEW, et al. Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts. Intensive Care Med. 2018;44:1914–22.

    Article  CAS  PubMed  Google Scholar 

  • Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369:2126–36.

    Article  CAS  PubMed  Google Scholar 

  • Steinberg KP, Hudson LD, Goodman RB, Hough CL, Lanken PN, Hyzy R, Thompson BT, Ancukiewicz M, National Heart, Lung and BIARDS (ARDS) CTN. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med. 2006;354:1671–84.

    Article  CAS  PubMed  Google Scholar 

  • Thille AW, Esteban A, Fernández-Segoviano P, Rodriguez J-M, Aramburu J-A, Vargas-Errázuriz P, Martín-Pellicer A, Lorente JA, Frutos-Vivar F. Chronology of histological lesions in acute respiratory distress syndrome with diffuse alveolar damage: a prospective cohort study of clinical autopsies. Lancet Respir Med. 2013;1:395–401.

    Article  PubMed  Google Scholar 

  • Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome. N Engl J Med. 2017;377:562–72.

    Article  CAS  PubMed  Google Scholar 

  • Tonetti T, Vasques F, Rapetti F, et al. Driving pressure and mechanical power: new targets for VILI prevention. Ann Transl Med. 2017;5:286.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest. 1997;99:944–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuno K, Miura K, Takeya M, Kolobow T, Morioka T. Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures. Am Rev Respir Dis. 1991;143:1115–20.

    Article  CAS  PubMed  Google Scholar 

  • Uhlig S. Ventilation-induced lung injury and mechanotransduction: stretching it too far? Am J Physiol Lung Cell Mol Physiol. 2002;282:L892–6.

    Article  CAS  PubMed  Google Scholar 

  • Vanderbilt JN, Mager EM, Allen L, Sawa T, Wiener-Kronish J, Gonzalez R, Dobbs LG. CXC chemokines and their receptors are expressed in type II cells and upregulated following lung injury. Am J Respir Cell Mol Biol. 2003;29:661–8.

    Article  CAS  PubMed  Google Scholar 

  • Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, DeBoisblanc B, Connors AF, Hite RD, Harabin AL. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–75.

    Article  CAS  PubMed  Google Scholar 

  • Winston FK, Thibault LE, Macarak EJ. An analysis of the time-dependent changes in intracellular calcium concentration in endothelial cells in culture induced by mechanical stimulation. J Biomech Eng. 1993;115:160–8.

    Article  CAS  PubMed  Google Scholar 

  • Zemans RL, Briones N, Campbell M, et al. Neutrophil transmigration triggers repair of the lung epithelium via β-catenin signaling. Proc Natl Acad Sci U S A. 2011;108:15990–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Zheng B, Liu N, Ge H, Hong Y. Mechanical power normalized to predicted body weight as a predictor of mortality in patients with acute respiratory distress syndrome. Intensive Care Med. 2019;45:856–64.

    Article  PubMed  Google Scholar 

  • Zimmerman JE, Dunbar BS, Klingenmaier CH. Pneumothorax during respirator therapy. Med Ann Dist Columbia. 1974;43:107–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Marco Ranieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tonetti, T., Ranieri, V.M. (2021). Cardiopulmonary Monitoring in the Patient with an Inflamed Lung. In: Magder, S., Malhotra, A., Hibbert, K.A., Hardin, C.C. (eds) Cardiopulmonary Monitoring. Springer, Cham. https://doi.org/10.1007/978-3-030-73387-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73387-2_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73386-5

  • Online ISBN: 978-3-030-73387-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics