Skip to main content

In Vitro and In Vivo Metabolism Studies

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays
  • 45 Accesses

Abstract

Drug metabolism studies play a critical role in the discovery and development of new chemical entities. These studies provide in-depth understanding of absorption, distribution, metabolism, and excretion (ADME) properties of a drug. Optimization of these properties is important to ensure that the exposure is sufficient to achieve proof of concept, and ultimately efficacy and safety in clinical trials to address unmet medical need. In the past two decades, multiple in silico, in vitro, and in vivo ADME tools have been developed and implemented in various stages of the drug discovery and development process to alert chemists of potential ADME issues in the clinic. Most of the ADME studies in drug discovery are conducted using cold material. However, ADME studies in drug development are generally conducted using radiolabeled (3H or 14C) material. The use of radiolabeled material offers a unique mode of quantification of total drug-related molecules.

This chapter describes, in detail, the utility and the challenges of these tools both with in vitro and in vivo metabolism studies that are used to design better molecules that have properties that include lower systemic clearance, and also assist in the selection of nonclinical species for use in safety assessment studies in preclinical development. Additionally, these tools aid in the understanding of reactive metabolites to avoid idiosyncratic adverse drug reactions. Practical case examples are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Arrowsmith J, Miller P (2013) Trial watch: phase II and phase III attrition rates 2011–2012. Nat Rev Drug Discov 12(8):569

    Article  CAS  PubMed  Google Scholar 

  • Ballard TE, Orozco CC, Obach RS (2014) Generation of major human excretory and circulating drug metabolites using a hepatocyte relay method. Drug Metab Dispos 42(5):899–902

    Article  PubMed  Google Scholar 

  • Barton P, Relay RJ (2016) A new paradigm for navigating compound property related drug attrition. Drug Discov Today 21(1):72–81

    Article  PubMed  Google Scholar 

  • Bjornsson TD, Callaghan JT, Einolf HJ, Fischer V, Gan L, Grimm S, Kao J, King SP, Miwa G, Ni L (2013) Pharmaceutical Research and Manufacturers of America (PhRMA) Drug Metabolism/Clinical Pharmacology Technical Working Group; FDA Center for Drug Evaluation and Research (CDER) The conduct of in vitro and in vivo drug-drug interaction studies: a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective. Drug Metab Dispos 31:815–832

    Article  Google Scholar 

  • Bohnert T, Prakash C (2012) ADME profiling in drug discovery and development. In: Shahi J (ed) An overview in encyclopedia of drug metabolism and interactions, vol 2. Wiley, pp 1–42

    Google Scholar 

  • Bohnert T, Patel A, Templeton I, Chen Y, Lu C, Lai G, Leung L, Tse S, Einolf HJ, Wang YY, Sinz M, Stearns R, Walsky R, Geng W, Sudsakorn S, Moore D, He L, Wahlstrom J, Keirns J, Narayanan R, Lang D, Yang X (2016) International consortium for innovation and quality in pharmaceutical development (IQ) victim drug-drug interactions working group evaluation of a new molecular entity as a victim of metabolic drug-drug interactions—an industry perspective. Drug Metab Dispos 44(8):1399–1423

    Article  CAS  PubMed  Google Scholar 

  • Bonn P, Svanberg P, Janefeldt A, Hultman I, Grime KK (2016) Determination of human hepatocyte intrinsic clearance for slowly metabolized compounds: comparison of a primary hepatocyte/stromal cell co-culture with plated primary hepatocytes and HepaRG. Drug Metab Dispos 44:527–533

    Article  CAS  PubMed  Google Scholar 

  • Burton RD, Hieronymus T, Chamem T, Heim D, Anderson S, Zhu X, Hutzler JM (2018) Assessment of the biotransformation of low turnover drugs in the HμREL human hepatocyte coculture model. Drug Metab Dispos 46:1617–1622

    Article  CAS  PubMed  Google Scholar 

  • Caldwell GW, Yan Z, Tang W, Dasgupta M, Hasting B (2009) ADME optimization and toxicity assessment in early- and late-phase drug discovery. Curr Top Med Chem 9(11):965–980

    Article  CAS  PubMed  Google Scholar 

  • Cerny MA (2016) Prevalence of non–cytochrome P450–mediated metabolism in food and drug administration–approved oral and intravenous drugs: 2006–2015. Drug Metab Dispos 44(8):1246–1252

    Article  CAS  PubMed  Google Scholar 

  • Chiba M, Ishii Y, Sugiyama Y (2009) Prediction of hepatic clearance in human from in vitro data for successful drug development. AAPS J 11(2):262–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruciani G, Millettia F, Storchib L, Sfornab G (2009) In Silico pKa prediction and ADME profiling. Chem Biodivers 6(11):1812–1821

    Article  CAS  PubMed  Google Scholar 

  • Dai D, Yang H, Nabhan S, Liu H, Hickman D, Liu G, Zacher J, Vutikullird A, Prakash C, Agresta S, Bowden C, Fan B (2019) Effect of itraconazole, food, and ethnic origin on the pharmacokinetics of ivosidenib in healthy subjects. Eur J Clin Pharmacol 75:1099–1108

    Article  CAS  PubMed  Google Scholar 

  • DiMasi JA, Feldman L, Seckler A, Wilson A (2010) Trends in risks associated with new drug development: success rates for investigational drugs. Clin Pharmacol Ther 87:272–277

    Article  CAS  PubMed  Google Scholar 

  • Evans DC, Watt AP, Nicoll-Griffith DA, Baillie T (2004) Drug-protein adducts: an industry perspective on minimizing the potential for drug bioactivation in drug discovery and development. Chem Res Toxicol 17:3–6

    Article  CAS  PubMed  Google Scholar 

  • FDA Guidance for Industry (2010) Safety testing of drug metabolites guidance for industry. U.S. Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD

    Google Scholar 

  • Foster AJ, Chouhan B, Regan SL et al (2019) Integrated in vitro models for hepatic safety and metabolism: evaluation of a human Liver-Chip and liver spheroid. Arch Toxicol 93:1021–1037

    Article  CAS  PubMed  Google Scholar 

  • Fura A, Shu Y, Zhu M, Hanson RL, Roongta V, Humphreys WG (2004) Discovering drugs through biological transformation: role of pharmacologically active metabolites in drug discovery. J Med Chem 47:4339–4351

    Article  CAS  PubMed  Google Scholar 

  • Gerisch M, Heinig R, Engelen A, Lang D, Kolkhof P, Radtke M, Platzek J, Lovis K, Rohde G, Schwarz T (2018) Biotransformation of finerenone, a novel nonsteroidal mineralocorticoid receptor antagonist, in dogs, rats, and humans, in vivo and in vitro. Drug Metab Dispos 46(11):1546–1555

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Lechon JM, Lahoz A, Gombau L, Castell JV, Donato MT (2010) In vitro evaluation of potential hepatotoxicity induced by drugs. Curr Pharm Des 16:1963–1977

    Article  CAS  PubMed  Google Scholar 

  • Haglund J, Halldin MM, Brunnström A, Eklund G, Kautiainen A, Sandholm A, Iverson SL (2014) Pragmatic approaches to determine the exposures of drug metabolites in preclinical and clinical subjects in the MIST evaluation of the clinical development phase. Chem Res Toxicol 27(4):601–610

    Article  CAS  PubMed  Google Scholar 

  • Hamilton RA, Garnett WR, Kline BJ (1981) Determination of mean valproic acid serum level by assay of a single pooled sample. Clin Pharmacol Ther 29(3):408–413

    Article  CAS  PubMed  Google Scholar 

  • Hop CECA, Wang Z, Chen Q, Kwei G (1998) Plasma-pooling methods to increase throughput for in vivo pharmacokinetic screening. J Pharm Sci 87(7):901–903

    Article  CAS  PubMed  Google Scholar 

  • Hwang TJ, Carpenter D, Lauffenburger JC, Wang B, Franklin JM, Kesselheim AS (2016) Failure of investigational drugs in late-stage clinical development and publication of trial results. JAMA Intern Med 176(12):1826–1833

    Article  PubMed  Google Scholar 

  • International Conference on Harmonization (ICH) (2010) M3(R2) nonclinical safety studies for the conduct of human clinical trials and marketing authorization of pharmaceuticals. The International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use, Geneva, Switzerland

    Google Scholar 

  • Kalgutkar A, Griffith D, Ryder T, Sun H, Miao Z, Bauman J, Didiuk JM, Frederick K, Zhao S, Prakash C, Soglia J, Bagley S, Bechle B, Kelley R, Dirico K, Zawistoski M, Li J, Oliver R, Guzman-Perez A, Liu K, Walker D, Benbow J, Morris J (2010) Discovery tactics to mitigate toxicity risks due to reactive metabolite formation with 2-(2-hydroxyaryl)-5-(trifluoromethyl)pyrido[4,3-d]pyrimidin-4(3H)-one derivatives, potent calcium-sensing receptor antagonists and clinical candidate(s) for the treatment of osteoporosis. Chem Res Toxicol 23(4):1115–1126

    Article  CAS  PubMed  Google Scholar 

  • Kamel A, Harriman S, Prakash C (2013) Strategies for the identification of unusual and novel metabolites using derivatization, hydrogen-deuterium exchange (HDX) and liquid chromatography-nuclear magnetic resonance (LC-NMR) spectroscopy. In: Lee PW, Aizawa H, Gan LL, Prakash C, Zhong D (eds) Techniques in handbook of metabolic pathways of xenobiotics, vol 2. Wiley, pp 591–618

    Google Scholar 

  • Kamel A, Bowlin S, Hosea N, Arkilo D, Laurenza A (2021) In vitro metabolism of slowly cleared TAK-041. Drug Metab Dispos 49(2):121–132

    Article  CAS  PubMed  Google Scholar 

  • Karin A, Sternbeck S, Terelius Y (2021) Evaluation of ADMET predictor in early discovery drug metabolism and pharmacokinetics project work. Drug Metab Dispos 50:95–104

    Google Scholar 

  • Kitamura Y, Saeki KI (2020) Phenotypic analysis of human CYP 2C9 polymorphisms using fluorine-substituted tolbutamide. Drug Discov Ther 14(4):204–208

    Article  CAS  PubMed  Google Scholar 

  • Manevski N, King L, Pitt WR, Lecomte F, Toselli F (2019) Metabolism by aldehyde oxidase: drug design and complementary approaches to challenges in drug discovery. J Med Chem 62(24):10955–10994

    Article  CAS  PubMed  Google Scholar 

  • Miao Z, Scott DO, Griffith DA, Day R, Prakash C (2011) Excretion, metabolism, and pharmacokinetics of 1-(8-(2-chlorophenyl)-9-(4 chlorophenyl)-9h-purin-6-yl)-4-(ethylamino)piperidine-4-carboxamide, cp-945,598, a selective cannabinoid receptor antagonist, in rats, mice and dogs: species and gender related differences. Drug Metab Dispos 39:2191–2208

    Article  CAS  PubMed  Google Scholar 

  • Miao Z, Sun H, Liras J, Prakash C (2012) Excretion, metabolism, and pharmacokinetics of 1-(8-(2-chlorophenyl)-9-(4 chlorophenyl)-9h-purin-6-yl)-4-(ethylamino)piperidine-4-carboxamide, cp-945,598, a selective cannabinoid receptor antagonist in healthy male volunteers. Drug Metab Dispos 40:568–578

    Article  CAS  PubMed  Google Scholar 

  • Morgan P, Van Der Graaf PH, Arrowsmith J, Feltner DE, Drummond KS, Wegner CD, Street SDA (2012) Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving Phase II survival. Drug Discov Today 17:419–424

    Article  CAS  PubMed  Google Scholar 

  • Onakpoya IJ, Heneghan CJ, Aronson JK (2016) Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Med 14:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Penner N, Woodward C, Prakash C (2012a) Drug metabolizing enzymes and biotransformation reactions. In: Zhang D, Surapaneni S (eds) ADME-enabling technologies in drug design and development, pp 545–565

    Google Scholar 

  • Penner N, Xu L, Prakash C (2012b) Radiolabeled absorption, distribution, metabolism, and excretion studies in drug development: why, when, and how? Chem Res Toxicol 25(3):513–531

    Article  CAS  PubMed  Google Scholar 

  • Penner N, Zgoda-Pols J, Prakash C (2014) Early assessment of exposure of drug metabolites in humans using mass spectrometry. In: Lee PW, Aizawa H, Gan LL, Prakash C, Dafang Zhong D (eds) Handbook of metabolic pathways of xenobiotics, vol 2. Wiley, pp 693–722

    Google Scholar 

  • Prakash C, Vaz ADN (2009) In: Xie W (ed) Drug metabolism: significance and challenges. Nuclear receptors in drug metabolism. Wiley, pp 1–42

    Google Scholar 

  • Prakash C, Kamel A, Anderson W, Howard H (1997) Metabolism and excretion of the novel antipsychotic drug ziprasidone in rats after oral administration of a mixture of 14C- and 3H-labeled ziprasidone. Drug Metab Dispos 25(2):206–218

    CAS  PubMed  Google Scholar 

  • Prakash C, Kamel A, Miao Z (2004) In radiochemical tracers: essential tools for the drug metabolism studies. In: Dean DC, Filer CN, KE MC (eds) Syntheis and application of isotopically labelled compounds. Wiley, pp 115–120

    Google Scholar 

  • Prakash C, Shaffer C, Nedderman A (2007) Analytical strategies for identifying drug metabolites. Mass Spectrom Rev 26:340–369

    Article  CAS  PubMed  Google Scholar 

  • Prakash C, Sharma R, Gleave M, Nedderman A (2008a) In vitro screening techniques for reactive metabolites for minimizing the bioactivation potential in drug discovery. Curr Drug Metab 9(9):952–964

    Article  CAS  PubMed  Google Scholar 

  • Prakash C, Chen W, Rossulek M, Johnson K, Zhang C, O'Connell T, Potchoiba M, Dalvie D (2008b) Metabolism, pharmacokinetics, and excretion of a cholesteryl ester transfer protein inhibitor, torcetrapib, in rats, monkeys, and mice: characterization of unusual and novel metabolites by high-resolution liquid chromatography-tandem mass spectrometry and 1H nuclear magnetic resonance. Drug Metab Dispos 36(10):2064–2079

    Article  CAS  PubMed  Google Scholar 

  • Prakash C, Johnson K, Schroeder C, Potchoiba M (2008c) Metabolism, distribution, and excretion of a next generation selective estrogen receptor modulator, lasofoxifene, in rats and monkeys. Drug Metab Dispos 36(9):1753–1769

    Article  CAS  PubMed  Google Scholar 

  • Prakash C, Altaf BFB, Agresta S, Liu H, Yang H (2019) Pharmacokinetics, absorption, metabolism, and excretion of [14C]ivosidenib (AG-120) in healthy male subjects. Cancer Chemother Pharmacol 83(5):837–848

    Article  CAS  PubMed  Google Scholar 

  • Prakash C, Fan B, Ke A, Lee K, Yang H (2020) Physiologically based pharmacokinetic model predictions of ivosidenib (AG-120) as a victim of drug-drug interactions. Cancer Chemother Pharmacol 86(5):619–632

    Article  CAS  PubMed  Google Scholar 

  • Riede J, Wollmann BM, Molden E, Ingelman-Sundberg M (2021) Primary human hepatocyte spheroids as an in vitro tool for investigating drug compounds with low hepatic clearance. Drug Metab Dispos 49(7):501–508

    Article  CAS  Google Scholar 

  • Rock D, Wahlstrom J, Wienkers L (2008) Cytochrome P450s: drug-drug interactions. In: Methods and principles in medicinal chemistry, vol 38, pp 197–246

    Google Scholar 

  • Sanders JM, Beshore DC, Culberson JC, Fells JI, Imbriglio JE, Gunaydin H, Haidle AM, Labroli M, Mattioni BE, Sciammetta N, Shipe WD, Sheridan RP, Suen LM, Verras A, Walji A, Joshi EM, Bueters T (2017) Informing the selection of screening hit series with in silico absorption, distribution, metabolism, excretion, and toxicity profiles. J Med Chem 60:6771–6780

    Article  CAS  PubMed  Google Scholar 

  • Saravanakumar A, Sadighi A, Ryu R, Akhlaghi F (2019) Physicochemical properties, biotransformation, and transport pathways of established and newly-approved medications: a systematic review of the top 200 most prescribed drugs versus the FDA-approved drugs between 2005 and 2016. Clin Pharmacokinet 58(10):1281–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schadt S, Bister B, Chowdhury SK, Funk C, Hop CECA, Humphreys WG, Igarashi F, James AD, Kagan M, Cyrus Khojasteh S, Nedderman A, Prakash C, Runge F, Scheible H, Spracklin DK, Swart P, Tse S, Yuan J, Obach RS (2018) A decade in the MIST: learnings from investigations of drug metabolites in drug development under the “metabolites in safety testing” regulatory guidance. Drug Metab Dispos 46(6):865–878

    Article  CAS  PubMed  Google Scholar 

  • Shaffer CL, Langer CS (2007) Metabolism of a 14C/3H-labeled GABAA receptor partial agonist in rat, dog and human liver microsomes: evaluation of a dual-radiolabel strategy. J Pharm Biomed Anal 43(4):1195–1205

    Article  CAS  PubMed  Google Scholar 

  • Sinha K, Ghosh J, Sil PC (2022) Machine learning in drug metabolism study. Curr Drug Metab. https://doi.org/10.2174/1389200224666221227094144. Epub ahead of print. PMID: 36578255.

  • Smith SR, Lyman MJ, Ma B, Tweedie DJ, Menzel K (2021) Reaction phenotyping of low-turnover compounds in long-term hepatocyte cultures through persistent selective inhibition of cytochromes P450. Drug Metab Dispos 49(11):995–1002

    Article  CAS  PubMed  Google Scholar 

  • Stepan AF, Karki K, Scott McDonald W, Dorff PH, Dutra JK, DiRico KJ, Won A, Subramanyam C, Efremov IV, O’Donnell CJ, Nolan CE, Becker SL, Pustilnik LR, Sneed B, Sun H, Lu Y, Robshaw AE, Riddell D, O'Sullivan TJ, Sibley E, Capetta S, Atchison K, Hallgren AJ, Miller E, Wood A, Obach RS (2011) Metabolism-directed design of oxetane-containing arylsulfonamide derivatives as γ-secretase inhibitors. J Med Chem 54:7772–7778

    Article  CAS  PubMed  Google Scholar 

  • Stypinski D, Fostvedt L, Lam JL, Vaz A, Johnson TR, Boerma JS, Pithavala YK (2020) Metabolism, excretion, and pharmacokinetics of lorlatinib (PF-06463922) and evaluation of the impact of radiolabel position and other factors on comparability of data across 2 ADME studies. J Clin Pharmacol 60(9):1254–1267

    Article  CAS  PubMed  Google Scholar 

  • Tyzack JD, Kirchmair J (2019) Computational methods and tools to predict cytochrome P450 metabolism for drug discovery. Chem Biol Drug Des 93:377–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • US Food and Drug Administration (FDA) (2020) In vitro drug interaction studies —cytochrome P450 enzyme-and transporter-mediated drug interactions. Guidance for industry. Draft Guidance Center for Drug Evaluation and Research (CDER). https://www.fda.gov/media/134582/download

  • Wager TT, Kormos BL, Brady JT, Will Y, Aleo MD, Stedman DB, Kuhn M, Chadrasekaran RY (2013) Improving the odds of success in drug discovery: choosing the best compounds for in vivo toxicology studies. J Med Chem 56:9771–9779

    Article  CAS  PubMed  Google Scholar 

  • Wait JCM, Vaccharajani N, Mitroka J, Jemal M, Khan S, Bonacorsi SJ, Rinehart JK, Iyer RA (2006) Metabolism of [14C]gemopatrilat after oral administration to rats, dogs, and humans. Drug Metab Dispos 34(6):961–970

    Article  CAS  PubMed  Google Scholar 

  • Wang WW, Khetani SR, Krzyzewski S, Duignan DB, Obach RS (2010) Assessment of a micropatterned hepatocyte coculture system to generate major human excretory and circulating drug metabolites. Drug Metab Dispos 38:1900–1905

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Liu W, Shen Z, Jiang L, Wang J, Li S, Li H (2019) Deep learning based drug metabolites prediction. Front Pharmacol 10:1586

    Article  CAS  PubMed  Google Scholar 

  • Wen B, Fitch WL (2009) Screening and characterization of reactive metabolites using glutathione ethyl ester in combination with Q-trap mass spectrometry. J Mass Spectrom 44(1):90–10

    Article  CAS  PubMed  Google Scholar 

  • White RE, Evans DC, Hop CE, Moore DJ, Prakash C, Surapaneni S, Tse FL (2013) Radiolabeled mass-balance excretion and metabolism studies in laboratory animals: a commentary on why they are still necessary. Xenobiotica 43:219–225

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Das B, Prakash C (2012) CYP450 enzymes in drug discovery and development: an overview. In: Encyclopedia of drug metabolism and interaction, vol 6, pp 1–28

    Google Scholar 

  • Yang X, Atkinson K, Di L (2016) Novel cytochrome P450 reaction phenotyping for low-clearance compounds using the hepatocyte relay method. Drug Metab Dispos 44(3):460–465

    Article  PubMed  Google Scholar 

  • Yu C, Chen CL, Gorycki FL, Neiss TG (2007) A rapid method for quantitatively estimating metabolites in human plasma in the absence of synthetic standards using a combination of liquid chromatography/mass spectrometry and radiometric detection. Rapid Commun Mass Spectrom 21:497–502

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Kaplowitz N (2013) Mechanisms of drug-induced liver injury. Clin Liver Dis 17:507–518

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Allyson Jenkins, Agios, for her editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Prakash .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Das, B., Prakash, C. (2023). In Vitro and In Vivo Metabolism Studies. In: Hock, F.J., Gralinski, M.R., Pugsley, M.K. (eds) Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays. Springer, Cham. https://doi.org/10.1007/978-3-030-73317-9_96-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73317-9_96-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73317-9

  • Online ISBN: 978-3-030-73317-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics