Skip to main content

Mechanisms of Hypoxemia in the Acute Respiratory Distress Syndrome

  • Chapter
  • First Online:
Annual Update in Intensive Care and Emergency Medicine 2021

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

  • 1254 Accesses

Abstract

Acute respiratory distress syndrome (ARDS) is characterized by hypoxemia and bilateral infiltrates due to non-cardiogenic pulmonary edema. In the context of growing awareness of the considerable heterogeneity of this syndrome, differences in the pathophysiology of hypoxemia might help characterize ARDS phenotypes and guide treatment. In this chapter we focus on the mechanisms involved in the onset and persistence of hypoxemia in patients with ARDS. Intrapulmonary shunt due to perfusion of non-ventilated areas, associated with loss of aeration and low compliance, is the main mechanism of hypoxemia in the classical “baby lung” model of ARDS. Alternative/additional causes of hypoxemia originate from overperfusion of poorly ventilated areas due to redistribution of pulmonary blood flow in the presence of increased dead space and/or impairment of hypoxic pulmonary vasoconstriction. Moreover, low mixed oxygen venous saturation, due to an imbalance between oxygen delivery and peripheral oxygen consumption, may be a ‘metabolic’ cause of hypoxemia. Finally, intra-cardiac or intra-pulmonary anatomical shunts contribute to hypoxemia in the presence of patent foramen ovale or massive pulmonary vasodilation or neoangiogenesis. Bedside physiological reasoning aimed at identification of the prevalent mechanisms of hypoxemia in ARDS could represent a novel personalized approach to management of this deadly syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307:2526–33.

    PubMed  Google Scholar 

  2. Constantin JM, Jabaudon M, Lefrant JY, Jaber S, Quenot JP, Langeron O, et al. Personalised mechanical ventilation tailored to lung morphology versus low positive end-expiratory pressure for patients with acute respiratory distress syndrome in France (the LIVE study): a multicentre, single-blind, randomised controlled trial. Lancet Respir Med. 2019;7:870–80.

    Article  PubMed  Google Scholar 

  3. Gattinoni L, Caironi P, Pelosi P, Goodman R. What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med. 2001;164:1701–11.

    Article  CAS  PubMed  Google Scholar 

  4. Thille AW, Esteban A, Fernández-Segoviano P, Rodriguez JM, Aramburu JA, Peñuelas O, et al. Comparison of the Berlin definition for acute respiratory distress syndrome with autopsy. Am J Respir Crit Care Med. 2013;187:761–7.

    Article  PubMed  Google Scholar 

  5. Bachofen M, Weibel ER. Alterations of the gas exchange apparatus in adult respiratory insufficiency associated with septicemia. Am Rev Respir Dis. 1977;116:589–615.

    Article  CAS  PubMed  Google Scholar 

  6. Taskar V, John J, Evander E, Robertson B, Jonson B. Surfactant dysfunction makes lungs vulnerable to repetitive collapse and reexpansion. Am J Respir Crit Care Med. 1997;155:313–20.

    Article  CAS  PubMed  Google Scholar 

  7. Chiumello D, Carlesso E, Cadringher P, Caironi P, Valenza F, Polli F, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178:346–55.

    Article  PubMed  Google Scholar 

  8. Scaramuzzo G, Spinelli E, Spadaro S, Santini A, Tortolani D, Dalla Corte F, et al. Gravitational distribution of regional opening and closing pressures, hysteresis and atelectrauma in ARDS evaluated by electrical impedance tomography. Crit Care. 2020;24:622.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Crotti S, Mascheroni D, Caironi P, Pelosi P, Ronzoni G, Mondino M, et al. Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med. 2001;164:131–40.

    Article  CAS  PubMed  Google Scholar 

  10. Bellani G, Guerra L, Musch G, Zanella A, Patroniti N, Mauri T, et al. Lung regional metabolic activity and gas volume changes induced by tidal ventilation in patients with acute lung injury. Am J Respir Crit Care Med. 2011;183:1193–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Millar FR, Summers C, Griffiths MJ, Toshner MR, Proudfoot AG. The pulmonary endothelium in acute respiratory distress syndrome: insights and therapeutic opportunities. Thorax. 2016;71:462–73.

    Article  PubMed  Google Scholar 

  12. Zimmerman GA, Albertine KH, Carveth HJ, Gill EA, Grissom CK, Hoidal JR, et al. Endothelial activation in ARDS. Chest. 1999;116(1 Suppl):18S–24S.

    Article  CAS  PubMed  Google Scholar 

  13. Panwar R, Madotto F, Laffey JG, van Haren FMP. Compliance phenotypes in early acute respiratory distress syndrome before the COVID-19 pandemic. Am J Respir Crit Care Med. 2020;202:1244–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mauri T, Spinelli E, Scotti E, Colussi G, Basile MC, Crotti S, et al. Potential for lung recruitment and ventilation-perfusion mismatch in patients with the acute respiratory distress syndrome from coronavirus disease 2019. Crit Care Med. 2020;48:1129–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383:120–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Greene R, Zapol WM, Snider MT, Reid L, Snow R, O'Connell RS, Novelline RA. Early bedside detection of pulmonary vascular occlusion during acute respiratory failure. Am Rev Respir Dis. 1981;124:593–601.

    CAS  PubMed  Google Scholar 

  17. Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet JF, Eisner MD, Matthay MA. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med. 2002;346:1281–6.

    Article  PubMed  Google Scholar 

  18. Levy SE, Simmons DH. Redistribution of alveolar ventilation following pulmonary thromboembolism in the dog. J Appl Physiol. 1974;36:60–8.

    Article  CAS  PubMed  Google Scholar 

  19. Santolicandro A, Prediletto R, Fornai E, Formichi B, Begliomini E, Giannella-Neto A, Giuntini C. Mechanisms of hypoxemia and hypocapnia in pulmonary embolism. Am J Respir Crit Care Med. 1995;152:336–47.

    Article  CAS  PubMed  Google Scholar 

  20. Langer T, Castagna V, Brusatori S, Santini A, Mauri T, Zanella A, Pesenti A. Short-term physiologic consequences of regional pulmonary vascular occlusion in pigs. Anesthesiology. 2019;131:336–43.

    Article  CAS  PubMed  Google Scholar 

  21. Kiefmann M, Tank S, Tritt MO, Keller P, Heckel K, Schulte-Uentrop L, et al. Dead space ventilation promotes alveolar hypocapnia reducing surfactant secretion by altering mitochondrial function. Thorax. 2019;74:219–28.

    Article  PubMed  Google Scholar 

  22. Busana M, Giosa L, Cressoni M, Gasperetti A, Di Girolamo L, Martinelli A, et al. The impact of ventilation - perfusion inequality in COVID-19: a computational model. J Appl Physiol (1985). 2021;130:865–76.

    Article  CAS  Google Scholar 

  23. Mauri T, Spinelli E, Scotti E, Marongiu I, Mazzucco A, Wang Y, et al. Occlusion of the left pulmonary artery induces bilateral lung injury in healthy swines. Am J Respir Crit Care Med. 2020; 201:A5250 (abst).

    Google Scholar 

  24. Severinghaus JW, Stupfel M. Alveolar dead space as an index of distribution of blood flow in pulmonary capillaries. J Appl Physiol. 1957;10:335–48.

    Article  CAS  PubMed  Google Scholar 

  25. Marshall BE, Hanson CW, Frasch F, Marshall C. Role of hypoxic pulmonary vasoconstriction in pulmonary gas exchange and blood flow distribution. 2. Pathophysiology. Intensive Care Med. 1994;20:379–89.

    Article  CAS  PubMed  Google Scholar 

  26. Dunham-Snary KJ, Wu D, Sykes EA, Thakrar A, Parlow LRG, Mewburn JD, et al. Hypoxic pulmonary vasoconstriction: from molecular mechanisms to medicine. Chest. 2017;151:181–92.

    Article  PubMed  Google Scholar 

  27. Herrmann J, Mori V, Bates JHT, Suki B. Modeling lung perfusion abnormalities to explain early COVID-19 hypoxemia. Nat Commun. 2020;11:4883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Patel BV, Arachchillage DJ, Ridge CA, Bianchi P, Doyle JF, Garfield B, et al. Pulmonary angiopathy in severe COVID-19: physiologic, imaging, and hematologic observations. Am J Respir Crit Care Med. 2020;202:690–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Snow RL, Davies P, Pontoppidan H, Zapol WM, Reid L. Pulmonary vascular remodeling in adult respiratory distress syndrome. Am Rev Respir Dis. 1982;126:887–92.

    CAS  PubMed  Google Scholar 

  30. Light RB. Indomethacin and acetylsalicylic acid reduce intrapulmonary shunt in experimental pneumococcal pneumonia. Am Rev Respir Dis. 1986;134:520–5.

    CAS  PubMed  Google Scholar 

  31. Sprague RS, Stephenson AH, Dahms TE, Lonigro AJ. Effect of cyclooxygenase inhibition on ethchlorvynol-induced acute lung injury in dogs. J Appl Physiol (1985). 1986;61:1058–64.

    Article  CAS  Google Scholar 

  32. Schulman LL, Lennon PF, Ratner SJ, Enson Y. Meclofenamate enhances blood oxygenation in acute oleic acid lung injury. J Appl Physiol (1985). 1988;64:710–8.

    Article  CAS  Google Scholar 

  33. Enkhbaatar P, Murakami K, Shimoda K, Mizutani A, Traber L, Phillips GB, et al. The inducible nitric oxide synthase inhibitor BBS-2 prevents acute lung injury in sheep after burn and smoke inhalation injury. Am J Respir Crit Care Med. 2003;167:1021–6.

    Article  PubMed  Google Scholar 

  34. Fischer SR, Deyo DJ, Bone HG, McGuire R, Traber LD, Traber DL. Nitric oxide synthase inhibition restores hypoxic pulmonary vasoconstriction in sepsis. Am J Respir Crit Care Med. 1997;156:833–9.

    Article  CAS  PubMed  Google Scholar 

  35. Mohsenifar Z, Goldbach P, Tashkin DP, Campisi DJ. Relationship between O2 delivery and O2 consumption in the adult respiratory distress syndrome. Chest. 1983;84:267–71.

    Article  CAS  PubMed  Google Scholar 

  36. Lemaire F, Teisseire B, Harf A. Evaluation de l'hématose dans l'insuffisance respiratoire aiguë. Mesure de la différence alvéolo-artérielle d'oxygène ou calcul du shunt? [Assessment of acute respiratory failure: shunt versus alveolar arterial oxygen difference]. Ann Fr Anesth Reanim. 1982;1:59–64.

    Article  CAS  PubMed  Google Scholar 

  37. Rossaint R, Hahn SM, Pappert D, Falke KJ, Radermacher P. Influence of mixed venous PO2 and inspired O2 fraction on intrapulmonary shunt in patients with severe ARDS. J Appl Physiol (1985). 1995;78:1531–6.

    Article  CAS  Google Scholar 

  38. Manier G, Castaing Y. Influence of cardiac output on oxygen exchange in acute pulmonary embolism. Am Rev Respir Dis. 1992;145:130–6.

    Article  CAS  PubMed  Google Scholar 

  39. Dantzker DR, Lynch JP, Weg JG. Depression of cardiac output is a mechanism of shunt reduction in the therapy of acute respiratory failure. Chest. 1980;77:636–42.

    Article  CAS  PubMed  Google Scholar 

  40. Homma S, Messé SR, Rundek T, Sun YP, Franke J, Davidson K, et al. Patent foramen ovale. Nat Rev Dis Primers. 2016;2:15086.

    Article  PubMed  Google Scholar 

  41. Mekontso Dessap A, Boissier F, Leon R, Carreira S, Campo FR, Lemaire F, Brochard L. Prevalence and prognosis of shunting across patent foramen ovale during acute respiratory distress syndrome. Crit Care Med. 2010;38:1786–92.

    Article  PubMed  Google Scholar 

  42. Lhéritier G, Legras A, Caille A, Lherm T, Mathonnet A, Frat JP, et al. Prevalence and prognostic value of acute cor pulmonale and patent foramen ovale in ventilated patients with early acute respiratory distress syndrome: a multicenter study. Intensive Care Med. 2013;39:1734–42.

    Article  PubMed  Google Scholar 

  43. Fritz JS, Fallon MB, Kawut SM. Pulmonary vascular complications of liver disease. Am J Respir Crit Care Med. 2013;187:133–43.

    Google Scholar 

  44. Reynolds AS, Lee AG, Renz J, DeSantis K, Liang J, Powell CA, Ventetuolo CE, Poor HD. Pulmonary vascular dilatation detected by automated transcranial Doppler in COVID-19 pneumonia. Am J Respir Crit Care Med. 2020;202:1037–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ackermann M, Mentzer SJ, Kolb M, Jonigk D. Inflammation and intussusceptive angiogenesis in COVID-19: everything in and out of flow. Eur Respir J. 2020;56:2003147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pelosi P, Brazzi L, Gattinoni L. Prone position in acute respiratory distress syndrome. Eur Respir J. 2002;20:1017–28.

    Article  CAS  PubMed  Google Scholar 

  47. Sahetya SK, Goligher EC, Brower RG. Fifty years of research in ARDS. Setting positive end-expiratory pressure in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195:1429–38.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ranucci M, Ballotta A, Di Dedda U, Bayshnikova E, Dei Poli M, Resta M, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost. 2020;18:1747–51.

    Article  CAS  PubMed  Google Scholar 

  49. Radermacher P, Maggiore SM, Mercat A. Fifty years of research in ARDS. Gas exchange in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;196:964–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mauri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marongiu, I., Pavlovsky, B., Mauri, T. (2021). Mechanisms of Hypoxemia in the Acute Respiratory Distress Syndrome. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2021. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-73231-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73231-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73230-1

  • Online ISBN: 978-3-030-73231-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics