Skip to main content

GenExSt: A Tool to Identify Correlation of Gene Expression After Normalization with Housekeeping Genes

  • Conference paper
  • First Online:
Advances in Information and Communication (FICC 2021)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1364))

Included in the following conference series:

  • 804 Accesses

Abstract

Interaction between genes is one driving force that can influence a biological outcome. In a genetic disease such as cancer, understanding genetic interactions may help us elucidate mechanisms sustaining cancer growth. A computational approach is one way to detect genetic interactions in the context of cancer. In this article, we introduce a tool, GenExSt, and its underlying method to study gene interactions. We applied our method to discover gene-pairs whose expressions demonstrate patterns of correlation. For this demonstration, we selected ten breast cancer gene expression data sets from the Genomic Data Commons Data Portal through National Cancer Institute. We focused on genes that suppress genome instability, or instability suppressing genes (GIS), many of which play an important role in cancer. We applied our method to an inter-comparison across data sets. Here we tested statistical normalization approaches derived from the combined expressions of randomly selected, single, housekeeping (HK) genes, and from the calculated mean of three expressions. In addition, our method derives \(R^{2}\) values from linear models in which the expressions of all possible pairs of GIS genes are placed in a linear model to produce heatmaps to indicate probable correlations. We show that results from our method are suited to normalized data, extracted from multiple genes simultaneously, rather than using single gene expression values. GenExSt may be used to study gene expression data in other settings provided that the concept of gene interactions is appropriate in the context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atwan, Z.W., et al.: GAPDH spike RNA as an alternative for housekeeping genes in relative gene expression assay using real-time PCR. Bul. Nat. Res. Centre 44(1), 1–8 (2020)

    Article  Google Scholar 

  2. Burrell, R.A., McGranahan, N., Bartek, J., Swanton, C.: The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501(7467), 338 (2013)

    Article  Google Scholar 

  3. Feng, C., Wang, H., Lu, N., Chen, T., Hua, H.E., Lu, Y., et al.: Log-transformation and its implications for data analysis. Shanghai Arch. Psychiatry 26(2), 105 (2014)

    Google Scholar 

  4. Chen, H., Li, C., Peng, X., Zhou, Z., Weinstein, J.N., Caesar-Johnson, S.J., Demchok, J.A., Felau, I., Kasapi, M., Ferguson, M.L., et al.: A pan-cancer analysis of enhancer expression in nearly 9000 patient samples. Cell 173(2), 386–399 (2018)

    Article  Google Scholar 

  5. Conrad, L.B., Lin, K.Y., Nandu, T., Gibson, B.A., Lea, J.S., Lee Kraus, W.: ADP-ribosylation levels and patterns correlate with gene expression and clinical outcomes in ovarian cancers. Mol. Cancer Therapeut. 19(1), 282–291 (2020)

    Article  Google Scholar 

  6. Cordell, H.J.: Detecting gene-gene interactions that underlie human diseases. Nat. Rev. Genet. 10(6), 392–404 (2009)

    Article  Google Scholar 

  7. de Almeida, B.P., Vieira, A.F., Paredes, J., Bettencourt-Dias, M., Barbosa-Morais, N.L.: Pan-cancer association of a centrosome amplification gene expression signature with genomic alterations and clinical outcome. PLoS Comput. Biol. 15(3), e1006832 (2019)

    Article  Google Scholar 

  8. Dehnen, L., Janz, M., Verma, J.K., Psathaki, O.K., Langemeyer, L., Fröhlich, F., Heinisch, J.J., Meyer, H., Ungermann, C., Paululat, A.: A trimeric metazoan rab7 GEF complex is crucial for endocytosis and scavenger function. J. Cell Sci. (2020)

    Google Scholar 

  9. Eisenberg, E., Levanon, E.Y.: Human housekeeping genes, revisited. Trends Genet. 29(10), 569–574 (2013)

    Article  Google Scholar 

  10. Farmer, H., McCabe, N., Lord, C.J., Tutt, A.N.J., Johnson, D.A., Richardson, T.B., Santarosa, M., Dillon, K.J., Hickson, I., Knights, C., et al.: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035), 917 (2005)

    Article  Google Scholar 

  11. Fernandez-Pozo, N., Haas, F.B., Meyberg, R., Ullrich, K.K., Hiss, M., Perroud, P.-F., Hanke, S., Kratz, V., Powell, A.F., Vesty, E.F., et al.: Peatmoss (physcomitrella expression atlas tool): a unified gene expression atlas for the model plant physcomitrella patens. Plant J. 102(1), 165–177 (2020)

    Article  Google Scholar 

  12. Gaudelet, T., Malod-Dognin, N., Sánchez-Valle, J., Pancaldi, V., Valencia, A., Pržulj, N.: Unveiling new disease, pathway, and gene associations via multi-scale neural network. PloS one 15(4), e0231059 (2020)

    Article  Google Scholar 

  13. Plotly Technologies Inc. Collaborative data science (2015)

    Google Scholar 

  14. Jerby-Arnon, L., Pfetzer, N., Waldman, Y.Y., McGarry, L., James, D., Shanks, E., Seashore-Ludlow, B., Weinstock, A., Geiger, T., Clemons, P.A., et al.: Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality. Cell 158(5), 1199–1209 (2014)

    Article  Google Scholar 

  15. Liu, L., Dalal, C., Heineike, B., Abate, A.R.: High throughput gene expression profiling of yeast colonies with microgel-culture drop-seq. Lab on a Chip (2019)

    Google Scholar 

  16. Luidy-Imada, E., Matam, T., Collado-Torres, L., Dinalankara, W., Stupnikov, A., Wilks, C., Jaffe, A.E., Langmead, B., Leek, J.T., Favorov, A., et al.: Differential analysis of gene expression across the human genome using recount2 and fantom-cat (2018)

    Google Scholar 

  17. Nijman, S.M.B.: Synthetic lethality: general principles, utility and detection using genetic screens in human cells. FEBS Lett. 585(1), 1–6 (2011)

    Article  Google Scholar 

  18. Putnam, C.D., Srivatsan, A., Nene, R.V., Martinez, S.L., Clotfelter, S.P., Bell, S.N., Somach, S.B., De Souza, J.E., Fonseca, A.F., De Souza, S.J., et al.: A genetic network that suppresses genome rearrangements in saccharomyces cerevisiae and contains defects in cancers. Nat. Commu. 7, 11256 (2016)

    Article  Google Scholar 

  19. Rahit, K.M., Tarailo-Graovac, M.: Genetic modifiers and rare mendelian disease. Genes 11(3), 239 (2020)

    Article  Google Scholar 

  20. Soneson, C., Robinson, M.D.: Bias, robustness and scalability in single-cell differential expression analysis. Nat. Methods 15(4), 255 (2018)

    Article  Google Scholar 

  21. Spainhour, J.C.G., Lim, H.S., Yi, S.V., Qiu, P.: Correlation patterns between DNA methylation and gene expression in the cancer genome atlas. Cancer Inf. 18, 1176935119828776 (2019)

    Google Scholar 

  22. Tang, W., Bertaux, F., Thomas, P., Stefanelli, C., Saint, M., Marguerat, S., Shahrezaei, V.: baynorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data. Bioinformatics 36(4), 1174–1181 (2020)

    Google Scholar 

  23. Tsherniak, A., Vazquez, F., Montgomery, P.G., Weir, B.A., Kryukov, G., Cowley, G.S., Gill, S., Harrington, W.F., Pantel, S., Krill-Burger, J., et al.: Defining a cancer dependency map. Cell 170(3), 564–576 (2017)

    Article  Google Scholar 

  24. Van Leeuwen, J., Pons, C., Mellor, J.C., Yamaguchi, T.N., Friesen, H., Koschwanez, J., Mattiazzi Ušaj, M., Pechlaner, M., Mehmet Takar, Matej Ušaj, et al. Exploring genetic suppression interactions on a global scale. Science, 354(6312), aag0839 (2016)

    Google Scholar 

  25. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., Speleman, F.: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3(7), research0034–1 (2002)

    Google Scholar 

  26. Wang, X., Fu, A.Q., McNerney, M.E., White, K.P.: Widespread genetic epistasis among cancer genes. Nat. Commun. 5, 4828 (2014)

    Article  Google Scholar 

Download references

Acknowledgment

We would like to thank Janyl Jumadinova for her help in proofing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Bonham-Carter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonham-Carter, O., Thu, Y.M. (2021). GenExSt: A Tool to Identify Correlation of Gene Expression After Normalization with Housekeeping Genes. In: Arai, K. (eds) Advances in Information and Communication. FICC 2021. Advances in Intelligent Systems and Computing, vol 1364. Springer, Cham. https://doi.org/10.1007/978-3-030-73103-8_5

Download citation

Publish with us

Policies and ethics