Skip to main content

Waterborne Polyurethanes Additive Technologies

  • Chapter
  • First Online:
Sustainable Production and Applications of Waterborne Polyurethanes

Part of the book series: Advances in Science, Technology & Innovation ((ASTI))

Abstract

Waterborne polyurathenes (WBPUs) possess flexible properties and are environmentally friendly, these properties of WBPUs have attracted growing interest in an extensive range of industrial applications. While wide work on WBPU synthesis has been reported, still some primary component roles in synthesis remain uncertain. WBPU can be formulated in minimal to no co-solvent coatings and adhesives forming films that form films. These are highly adherent to numerous materials that include polymeric fibres and glass. These eco-friendly WBPUs do not contaminate the soil or generate wastewater as well as are non-flammable and safe. Generally, WBPUs are water insoluble and hydrophobic and for dispersion of WBPUs in water, these need to be modified. This chapter summarizes various modified WBPUs composites along with their properties and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdullah, N. M., Mohd Rus, A. Z., & Abdullah, M. F. L. (2019). Functionalized waterborne polyurethane-based graphite-reinforced composites. Advances in Materials Science and Engineering, 2019, 8710370.

    Article  Google Scholar 

  • Akindoyo, J. O., Beg, M. D. H., Ghazali, S., Islam, M. R., Jeyaratnam, N., & Yuvaraj, A. R. (2016). Polyurethane types, synthesis and applications-a review. RSC Advances, 6, 114453–114482.

    Article  Google Scholar 

  • Akesson, B., Bengtsson, M., & Floren, I. (1986). Visual disturbances after industrial triethylamine exposure. International Archives of Occupational and Environmental Health, 57, 297–309.

    Article  Google Scholar 

  • Akram, N., Zia, K. M., Saeed, M., Mansha, A., & Khan, W. G. (2018). Morphological studies of polyurethane based pressure sensitive adhesives by tapping mode atomic force microscopy. Journal of Polymer Research, 25, 1591–1596.

    Article  Google Scholar 

  • Akram, N., Zia, K. M., Saeed, M., Usman, M., Khan, W. G., & Bashir, M. A. (2019). Investigation of non-adhesive behaviour of waterborne polyurethane dispersions. Journal of Polymer Research, 26, 45.

    Article  Google Scholar 

  • Al-Deyab, S. S., Al-Hazmi, A. M., & El-Newehy, M. H. (2010). Synthesis and characterization of organotin containing copolymers: Reactivity ratio studies. Molecules, 15, 1784–1797.

    Article  Google Scholar 

  • Alvarez, G. A., Fuensant, M., Orozco, V. H., Giraldo, L. F., & Martín-Martínez, J. M. (2018). Hybrid waterborne polyurethane/acrylate dispersion synthesized with bisphenol A-glicidylmethacrylate (Bis-GMA) grafting agent. Progress in Organic Coatings, 118, 30–39.

    Article  Google Scholar 

  • Arnoldus, R. (1990). Waterborne Coating, Surface Coating. In A. D. Wilson, J. W. Nicholson, & H. J. Prosser (Eds.), Surface coating (Vol. 3, pp. 93–127). Elsevier Applied Science.

    Google Scholar 

  • Asif, A., Hu, L., & Shi, W. (2009). Synthesis, rheological and thermal properties of waterborne hyperbranched polyurethane acrylate dispersions for UV curable coatings. Colloid and Polymer Science, 287, 1041–1049.

    Article  Google Scholar 

  • Asif, A., Huang, C. Y., & Shi, W. F. (2005b). Photopolymerization of waterborne polyurethane acrylate dispersions based on hyperbranched aliphatic polyester and properties of the cured films. Colloid and Polymer Science, 283, 721–730.

    Article  Google Scholar 

  • Asif, A., Shi, W., Shen, X., & Nie, K. (2005a). Physical and thermal properties of UV curable waterborne polyurethane dispersions incorporating hyperbranched aliphatic polyester of varying generation number. Polymer, 46, 11066–11078.

    Article  Google Scholar 

  • Asif, A., & Shi, W. (2004). UV curable waterborne polyurethane acrylate dispersions based on hyperbranched aliphatic polyester: Effect of molecular structure on physical and thermal properties. Polymers for Advanced Technologies, 15, 669–675.

    Article  Google Scholar 

  • Bai, C. Y., Zhang, X. Y., Dai, J. B., & Zhang, C. Y. (2007). Water resistance of the membranes for UV curable waterborne polyurethane dispersions. Progress in Organic Coatings, 59, 331–336.

    Article  Google Scholar 

  • Barikani, M., Ebrahimi, M. V., & Mohaghegh, S. M. S. (2007). Influence of diisocyanate structure on the synthesis and properties of ionic polyurethane dispersions. Polymer-Plastics Technology and Engineering, 46, 1087–1092.

    Article  Google Scholar 

  • Behl, M., Razzaq, M. Y., & Lendlein, A. (2010). Multifunctional shape-memory polymers. Advanced Materials, 22, 3388–3410.

    Article  Google Scholar 

  • Bhavsar, R., Raj, R., & Parmar, R. (2013). Studies of sedimentation behaviour of high pigmented alkyd primer: A rheological approach. Progress in Organic Coatings, 76, 852–857.

    Article  Google Scholar 

  • Chakraborty, A., Agresti, A., Pizzoferrato, R., Matteis, F. D., Orsini, A., & Medaglia, P. G. (2017). Study of structural and optical properties of low temperature photo-activated ZnO-rGO composite thin film. Materials Research Bulletin, 91, 227–231.

    Article  Google Scholar 

  • Chattopadhyay, D. K., & Raju, K. V. S. N. (2007). Structural engineering of polyurethane coatings for high performance applications. Progress in Polymer Science, 32, 352–418.

    Article  Google Scholar 

  • Chen, S., & Chen, L. (2003). Structure and properties of polyurethane/polyacrylate latex interpenetrating networks hybrid emulsions. Colloid and Polymer Science, 282, 14–20.

    Article  Google Scholar 

  • Chen, J. K., Guo, H., Ding, P., Pan, R. Z., Wang, W. B., Xuan, W. P., Wang, X. Z., Jin, H., Dong, S. R., & Luo, J. K. (2016). Transparent triboelectric generators based on glass and polydimethylsiloxane. Nano Energy, 30, 235–241.

    Article  Google Scholar 

  • Chen, H., Jiang, X., He, L., Zhang, T., Xu, M., & Yu, X. (2002). Novel biocompatible waterborne polyurethane using l-lysine as an extender. Journal of Applied Polymer Science, 84, 2474–2480.

    Article  Google Scholar 

  • Chiu, H. T., Chang, C. Y., Chen, C. L., Chiang, T. Y., & Guo, M. T. (2011). Preparation and characterization of UV-curable organic/inorganic hybrid composites for NIR cutoff and antistatic coatings. Journal of Applied Polymer Science, 120, 202–211.

    Article  Google Scholar 

  • Chiu, S. C., Yu, H. C., & Li, Y. Y. (2010). High electromagnetic wave absorption performance of silicon carbide nanowires in the gigahertz range. Journal of Physical Chemistry C, 114, 1947–1952.

    Article  Google Scholar 

  • Corcione, C. E., Striani, R., & Frigione, M. (2013). UV-cured siloxane-modified methacrylic system containing hydroxyapatite as potential protective coating for carbonate stones. Progress in Organic Coatings, 76, 1236–1242.

    Article  Google Scholar 

  • Cunha, E., & Paiva, M. C. (2019). Composite films of waterborne polyurethane and few-layer graphene-enhancing barrier, mechanical and electrical properties. Journal of Composites Science, 3, 35.

    Article  Google Scholar 

  • Deka, A., & Dey, N. (2019). Rheological studies of two component high build epoxy and polyurethane based high performance coatings. Journal of Coatings Technology and Research, 10, 305–315.

    Article  Google Scholar 

  • Delebecq, E., Pascault, J. P., Boutevin, B., & Ganachaud, F. (2013). On the versatility of urethane/urea bonds: Reversibility, blocked isocyanate and non-isocyanate polyurethane. Chemical Reviews, 113, 80–118.

    Article  Google Scholar 

  • Dundua, A., Franzka, S., & Ulbricht, M. (2016). Improved antifouling properties of polydimethylsiloxane films via formation of polysiloxane/polyzwitterion interpenetrating networks. Macromolecular Rapid Communications, 37, 2030–2036.

    Article  Google Scholar 

  • Dieterich, D., Keberle, W., & Witth, H. (1970). Polyurethane ionomers, a new class of block polymers. Angewandte Chemie International Edition Engineering, 9, 40–50.

    Article  Google Scholar 

  • Feng, S. X., Lunney, P., & Wargo, R. (1999). Effects of additives on the performance of two-component waterborne polyurethane coatings. Journal of Coatings Technology, 71, 143–149.

    Article  Google Scholar 

  • Florian, P., Jena, K. K., Allauddin, S., Narayan, R., & Raju, K. V. S. N. (2010). Preparation and characterization of waterborne hyperbranched polyurethane-urea and their hybrid coatings. Industrial and Engineering Chemistry Research, 49, 4517–4527.

    Article  Google Scholar 

  • Gao, N., Zhang, Z., & Dong, Q. (2013). Preparation and properties of two-component and double-crosslinking waterborne polyurethane-acrylic dispersions. Open Journal of Organic Polymer Materials, 3, 27–33.

    Article  Google Scholar 

  • García-Pacios, V., Colera, M., Iwata, Y., & Martín-Martínez, J. M. (2013). Incidence of the polyol nature in waterborne polyurethane dispersions on their performance as coatings on stainless steel. Progress in Organic Coatings, 76, 1726–1729.

    Article  Google Scholar 

  • Garcia-Pacios, V., Jofre-Reche, J. A., Costa, V., Colera, M., & Martin-Martinez, J. M. (2013). Coatings prepared from waterborne polyurethane dispersions obtained with polycarbonates of 1,6-hexanediol of different molecular weights. Progress in Organic Coatings, 76, 1484–1493.

    Article  Google Scholar 

  • Ge, Z., Zhang, X., Dai, J., Li, W., & Luo, Y. (2009). Synthesis, characterization and properties of a novel fluorinated polyurethane. European Polymer Journal, 45, 530–536.

    Article  Google Scholar 

  • Guo, S., Ding, Z., Pang, X., Wang, W., Yin, Y., & You, G. (2018b). Study on the functionalized graphene modified waterborne polyurethane materials. In Albu, L., & Deselnicu, V. (Eds.), Proceedings of International Conference on Advanced Materials and Systems  (pp. 99–104). Bucharest, Romania.

    Google Scholar 

  • Guo, L., Huang, S., & Qu, J. (2018a). Synthesis and properties of high functionality hydroxyl-terminated polyurethane dispersions. Progress in Organic Coatings, 119, 214–220.

    Article  Google Scholar 

  • Guo, Z., Lee, S. E., Kim, H., Park, S., Hahn, H. T., Karki, A. B., & Young, D. P. (2009). Fabrication, characterization and microwave properties of polyurethane nanocomposites reinforced with iron oxide and barium titanate nanoparticles. Acta Materialia, 57, 267–277.

    Article  Google Scholar 

  • Guo, Y. H., Li, S. C., Wang, G. S., Ma, W., & Huang, Z. (2012). Waterborne polyurethane/poly(n-butyl acrylate-styrene) hybrid emulsions: Particle formation, film properties and application. Progress in Organic Coatings, 74, 248–256.

    Article  Google Scholar 

  • Guo, W. J., Wan, J. Q., & Fu, H. Q. (2010). Adhesion mechanism of multi-modified waterborne polyurethane adhesive for polyolefin films. China Adhesive, 22, 178–189.

    Google Scholar 

  • Haas, K. H., Amberg-Schwab, S., & Rose, K. (1999). Functionalized coating materials based on inorganic-organic polymers. Thin Solid Films, 351, 198–203.

    Article  Google Scholar 

  • Han, W., Lin, B., Yang, H., & Zhang, X. (2012). Synthesis and properties of UV-curable hyperbranched polyurethane acrylate oligomers containing carboxyl groups. Polymer Bulletin, 68, 1009–1022.

    Article  Google Scholar 

  • Harjunalanen, T., & Lahtinen, M. (2003). The effects of altered reaction conditions on the properties of anionic poly(urethane-urea) dispersions and films cast from the dispersions. European Polymer Journal, 39, 817–824.

    Article  Google Scholar 

  • He, H., Yan, Y., Qiu, Z., & Tan, X. (2017). A novel antistatic polyurethane hybrid based on nanoscale ionic material. Progress in Organic Coatings, 113, 110–116.

    Article  Google Scholar 

  • Hepburn, C. (1982). Polyurethane elastomers (pp. 355–406). Applied Science Publisher.

    Google Scholar 

  • Hirose, M., Zhou, J. H., & Nagai, K. (2000). The structure and properties of acrylic- polyurethane hybrid emulsions. Progress in Organic Coating, 38, 27–34.

    Google Scholar 

  • Honarkar, H. (2017). Waterborne polyurethanes: A review. Journal of Dispersion Science and Technology, 39, 507–516.

    Article  Google Scholar 

  • Honarkar, H., Barmar, M., & Barikani, M. (2016). New sulfonated waterborne polyurethane dispersions: Preparation and characterization. Journal of Dispersion Science and Technology, 37, 1219–1225.

    Article  Google Scholar 

  • Hourston, D. J., Williams, G., Satguru, R., Padget, J. D., & Pears, D. (1999). The influence of the degree of neutralization, the ionic moiety and the counterion on water-dispersible polyurethanes. Journal of Applied Polymer and Science, 74, 556–566.

    Article  Google Scholar 

  • Jana, D., Samanta, S., Maikap, S., & Cheng, H. M. (2016). Evolution of complementary resistive switching characteristics using IrOx/GdOx/Al2O3/TiN structure. Applied Physics Letters, 108, 011605.

    Google Scholar 

  • Jeevananda, T., & Siddaramaiah, H. (2003). Synthesis and characterization of polyaniline filled PU/PMMA interpenetrating polymer networks. European Polymer Journal, 39, 569–578.

    Article  Google Scholar 

  • Ji, X., Wang, H., Ma, X., Hou, C., & Ma, G. (2017). Progress in polydimethylsiloxane-modified waterborne polyurethanes. RSC Advances, 7, 34086–34086.

    Article  Google Scholar 

  • Jin, J., Huang, S. Z., Li, Y., Tian, H., Wang, H. E., Yu, Y., Chen, L. H., Hasan, T., & Su, B. L. (2015). Hierarchical nanosheet-constructed yolk–shell TiO2 porous microspheres for lithium batteries with high capacity, superior rate and long cycle capability. Nanoscale, 7, 12979–12989.

    Article  Google Scholar 

  • Jiang, W. C., Huang, Y., Gu, G. T., Meng, W. D., & Qing, F. L. (2006). A novel waterborne polyurethane containing short fluoroalkyl chains: Synthesis, characterization and its application on cotton fabrics surface. Applied Surface Science, 253, 2304–2309.

    Article  Google Scholar 

  • Kang, S. Y., Ji, Z., Tseng, L. F., Turner, S. A., Villanueva, D. A., Johnson, R., Albano, A., & Langer, R. (2018). Design and synthesis of waterborne polyurethanes. Advanced Materials, 30, 1706237.

    Article  Google Scholar 

  • Kästner, U. (2001). The impact of rheological modifiers on water-borne coatings. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 183, 805–821.

    Article  Google Scholar 

  • Kim, H. A., & Kim, B. K. (2019). Synthesis and properties of waterborne polyurethane/hydroxyapatite chemical hybrids. Progress in Organic Coatings, 128, 69–74.

    Article  Google Scholar 

  • Király, A., & Ronkay, F. (2015). Temperature dependence of electrical properties in conductive polymer composites. Polymer Testing, 43, 154–162.

    Article  Google Scholar 

  • Kuan, H. C., Ma, C. C. M., Chang, W. P., Yuen, S. M., Wu, H. H., & Lee, T. M. (2005). Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Composites Science and Technology, 65, 1703–1710.

    Article  Google Scholar 

  • Kwak, Y. S., Kim, H. D., & Lee, J. B. (2005). Comparison of the properties of waterborne polyurethane-ureas containing different tri block glycols for water vapor permeable coatings. Colloid and Polymer Science, 283, 880–886.

    Article  Google Scholar 

  • Lee, S. K., & Kim, B. K. (2009). High solid and high stability waterborne polyurethanes via ionic groups in soft segments and chain termini. Journal of Colloid and Interface Science, 336, 208–214.

    Article  Google Scholar 

  • Lee, H. J., Kim, S. E., Choi, H. W., Kim, C. W., Kim, K. J., & Lee, S. C. (2007). The effect of surface-modified nano-hydroxyapatite on biocompatibility of poly(ε-caprolactone)/hydroxyapatite nanocomposites. European Polymer Journal, 43, 1602–1608.

    Article  Google Scholar 

  • Lee, J. S., Shin, J. H., Kim, B. K., & Kang, Y. S. (2001). Modification of aqueous polyurethanes by forming latex interpenetrating polymer networks with polystyrene. Colloid Polymer Science, 79, 959–965.

    Google Scholar 

  • Lewandowski, K., Krepski, L. R., Mickus, D. E., Roberts, R. R., Heilmann, S. M., LarsonWK, P. M. D., Koecher, S. D., Johnson, S. A., Mcgurran, J. R., Chris, S. V., Pather, K. A., & Thakur, M. (2002). Synthesis and properties of waterborne self-crosslinkable sulfo-urethane silanol dispersions. Journal of Polymer Science: Part a: Polymer Chemistry, 40, 3037–3045.

    Article  Google Scholar 

  • Lei Wa, F. C., Zhou, X., Li, J., Yang, R., Zhang, Z., & Liuc, D. (2017). Morphology and thermal properties of polyurethane elastomer based on representative structural chain extenders. Journal of Materials Science and Technology, 33, 1424–1432.

    Google Scholar 

  • Li, Q. A., & Sun, D. C. (2007). Synthesis and characterization of high solid content aqueous polyurethane dispersion. Journal of Applied Polymer Science, 105, 2516–2524.

    Article  Google Scholar 

  • Li, J., Zheng, W., Zeng, W., Zhang, D., & Peng, X. (2014). Structure, properties and application of a novel low-glossed waterborne polyurethane. Applied Surface Science, 307, 255–262.

    Article  Google Scholar 

  • Li, Y. Q., Zhu, W. B., Yu, X. G., Huang, P., Fu, S. Y., Hu, N., & Liao, K. (2016). Multifunctional wearable device based on flexible and conductive carbon sponge/polydimethylsiloxane composite. ACS Applied Materials & Interfaces, 8, 33189–33196.

    Article  Google Scholar 

  • Liu, H., Li, C., & Sun, X. S. (2017). Soy-oil-based waterborne polyurethane improved wet strength of soy protein adhesives on wood. International Journal of Adhesion and Adhesives, 73, 66–74.

    Article  Google Scholar 

  • Liu, Y., Liang, H. Q., Sihan Li, S., Liu, D., Long, Y. J., Liang, G. D., & Zhu, F. M. (2019). Preparation of waterborne polyurethane with high solid content and elasticity. Journal of Polymer Research, 26, 146.

    Article  Google Scholar 

  • Liu, H., Xue, X., Zhang, W., & Lin, F. (2020). Synthesis of waterborne polyurethane acrylate–modified epoxy resin. IOP Conference Series: Material Science and Engineering, 770, 012062.

    Google Scholar 

  • Liu, W. K., Zhao, Y., Wang, R., Luo, F., Li, J. S., Li, H. J., & Tan, H. (2018). Effect of chain extender on hydrogen bond and microphase structure of biodegradable thermoplastic polyurethanes. Chinese Journal of Polymer Science, 36, 520–524.

    Article  Google Scholar 

  • Luong, N. D., Korhonen, J. T., Soininen, A. J., Ruokolainen, J., Johansson, L. S., & Seppala, J. (2013). Processable polyaniline suspensions through in situ polymerization onto nanocellulose. European Polymer Journal, 49, 335–344.

    Article  Google Scholar 

  • Madbouly, S. A., & Otaigbe, J. U. (2009). Recent advances in synthesis, characterization and rheological properties of polyurethanes and POSS/polyurethane nanocomposites dispersions and films. Progress in Polymer Science, 34, 1283–1332.

    Article  Google Scholar 

  • Mahdi, E. M., & Tan, J. C. (2016). Dynamic molecular interactions between polyurethane and ZIF-8 in a polymer-MOF nanocomposite: Microstructural, thermo-mechanical and viscoelastic effects. Polymer, 97, 31–43.

    Article  Google Scholar 

  • Mathew, A., Kurmvanshi, S., Mohanty, S., & Nayak, S. K. (2018). Sustainable production of polyurethane from castor oil, functionalized with epoxy- and hydroxyl-terminated poly (dimethyl siloxane) for biomedical applications. Journal of Materials Science, 53(5), 3119–3130.

    Article  Google Scholar 

  • Meng, Q. B., Lee, S. I., Nah, C., & Lee, Y. S. (2009). Preparation of waterborne polyurethanes using an amphiphilic diol for breathable waterproof textile coatings. Progress in Organic Coatings, 66, 382–386.

    Article  Google Scholar 

  • Mishra, V., Desai, J., & Patel, I. K. (2018). (UV/Oxidative) dual curing polyurethane dispersion from cardanol basedpolyol: Synthesis and characterization. Industrial Crops and Products, 11, 165–178.

    Google Scholar 

  • Noreen, A., Zia, K. M., Zuber, M., Tabasum, S., & Saif, M. J. (2016). Recent trends in environmentally friendly water-borne polyurethane coatings: A review. Korean Journal of Chemical Engineering, 33, 388–400.

    Article  Google Scholar 

  • Olad, A., & Gharekhani, H. (2015). Preparation and electrochemical investigation of the polyaniline/activated carbon nanocomposite for supercapacitor applications. Progress in Organic Coatings, 81, 19–26.

    Article  Google Scholar 

  • Osterhold, M., & Wagner, G. (2002). Methods for characterizing the mar resistance. Progress in Organic Coatings, 45, 365–371.

    Article  Google Scholar 

  • Papaj, E. A., Mills, D. J., & Jamali, S. (2014). Effect of hardener variation on protective properties of polyurethane coating. Progress in Organic Coatings, 77, 2086–2090.

    Article  Google Scholar 

  • Pardoa, J. I., Suna, P., Benthem, R. A. T. M., & Estevesa, A. C. C. (2018). Design of self-dispersible charged-polymer building blocks for waterborne polyurethane dispersions. European Polymer Journal, 101, 324–331.

    Article  Google Scholar 

  • Park, J. H., Bae, S. Y., & Kim, B. K. (2013). Hyperbranched waterborne polyurethanes. Polymer Bulletin, 70, 859–869.

    Google Scholar 

  • Peng, C., & Joy, A. (2015). Self-emulsion polymerization of baylis-Hillman-derived α-hydroxymethyl-substituted acrylates. Journal of Polymer Science and Polymer Chemistry, 53, 1743–1747.

    Article  Google Scholar 

  • Pettersson, B. (1996). Hyperbranched polymers: Unique design tools for multi-property control in resins and coatings. Pigment & Resin Technology, 25, 4–14.

    Article  Google Scholar 

  • Pielichowska, K., Bieda, J., & Szatkowski, P. (2016). Polyurethane/graphite nano-platelet composites for thermal energy storage. Renewable Energy, 91, 456–465.

    Article  Google Scholar 

  • Planes, M., Brand, J., Lewandowski, S., Remaury, S., Sole, S., Le Coz, C., Carlotti, S., & Sebe, G. (2016). Improvement of the thermal and optical performances of protective polydimethylsiloxane space coatings with cellulose nanocrystal additives. ACS Applied Materials & Interfaces, 8, 28030–28039.

    Article  Google Scholar 

  • Poussard, L., Lazko, J., Mariage, J., Raquez, J. M., & Dubois, P. (2016). Biobased waterborne polyurethanes for coating applications: How fully biobased polyols may improve the coating properties. Progress in Organic Coatings, 97, 175–183.

    Article  Google Scholar 

  • Qiu, F. X., Zhang, J. L., Wu, D. M., & Yang, D. Y. (2010). Waterborne polyurethane and modified polyurethane acrylate composites. Plastics, Rubber and Composites, 39, 454–459.

    Article  Google Scholar 

  • Rahman, M. M., & Lee, W. K. (2010). Properties of isocyanate-reactive waterborne polyurethane adhesives: Effect of cure reaction with various polyol and chain extender content. Journal of Applied Polymer Science, 114, 3767–3773.

    Article  Google Scholar 

  • Rahman, M. M., Kim, H. D., & Lee, W. K. (2009). Properties of waterborne polyurethane adhesives: Effect of chain extender and polyol content. Journal of Adhesion Science and Technology, 23, 177–193.

    Article  Google Scholar 

  • Rosthauser, J. W., & Nachtkamp, K. (1987). Waterborne polyurathenes. In Klempner D., & Frisch, K. C. (Eds.), Advances in urethane science and technology (pp. 121–162). Lancaster, Technomic.

    Google Scholar 

  • Saeed, A., & Shabir, G. (2013). Synthesis of thermally stable high gloss water dispersible polyurethane/polyacrylate resins. Progress in Organic Coatings, 76, 1135–1143.

    Article  Google Scholar 

  • Santamaria-Echart, A., Fernandes, I., Saralegi, A., Costa, M. R. P. F. N., Barreiro, F., Corcuera, M. A., & Eceiza, A. (2016). Synthesis of waterborne polyurethane-urea dispersions with chain extension step in homogeneous and heterogeneous media. Journal of Colloid and Interface Science, 476, 184–192.

    Article  Google Scholar 

  • Saralegi, A., Etxeberria, A., Fernández-d’Arlas, B., Mondragon, I., Eceiza, A., & Corcuera, M. A. (2013). Effect of H12MDI isomer composition on mechanical and physico-chemical properties of polyurethanes based on amorphous and semicrystalline soft segments. Polymer Bulletin, 70, 2193–2210.

    Article  Google Scholar 

  • Sattar, R., Kausar, A., & Siddiq, M. (2014). Advances in thermoplastic polyurethane composites reinforced with carbon nanotubes and carbon nanofibers: A review. Journal of Plast Film & Sheeting, 31, 186–224.

    Article  Google Scholar 

  • Seethapathy, S., & Gorecki, T. (2012). Applications of polydimethylsiloxane in analytical chemistry: A review. Analytica Chimica Acta, 750, 48–62.

    Article  Google Scholar 

  • Shah, S. A. A., Imran, M., Lian, Q., Shehzad, F. Q., Athir, N., Zhang, J., & Cheng, J. (2018). Curcumin incorporated polyurethane urea elastomers with tunable thermomechanical properties. Reactive and Functional Polymers, 128, 97–103.

    Article  Google Scholar 

  • Shen, W., Feng, L., Liu, X., Luo, H., Liu, Z., Tong, P., & Zhang, W. (2016). Multiwall carbon nanotubes-reinforced epoxy hybrid coatings with high electrical conductivity and corrosion resistance prepared via electrostatic spraying. Progress in Organic Coatings, 90, 139–146.

    Article  Google Scholar 

  • Si, H. Y., Liu, H., Shang, S. B., Song, J., Liao, S. L., Wang, D., & Song, Z. Q. (2016). Preparation and properties of maleopimaric acid-based polyester polyol dispersion for two-component waterborne polyurethane coating. Progress in Organic Coatings, 90, 309–316.

    Article  Google Scholar 

  • Spanhel, L. (2006). Colloidal ZnO nanostructures and functional coatings: A survey. Journal of Solgel Science and Technology, 39, 7–24.

    Article  Google Scholar 

  • Szycher, M. (2013). Szycher’s handbook of polyurethane (2nd ed., pp. 417–447). CRC Press.

    Google Scholar 

  • Tan, H., Xie, X., Li, J., Zhong, Y., & Fu, Q. (2004). Synthesis and surface mobility of segmented polyurethanes with fluorinated side chains attached to hard blocks. Polymer, 45, 1495–1502.

    Article  Google Scholar 

  • Tanaka, H., & Kunimura, M. (2002). Mechanical properties of thermoplastic polyurethanes containing aliphatic polycarbonate soft segments with different chemical structures. Polymer Engineering and Science, 42, 1333–1349.

    Article  Google Scholar 

  • Tao, Q. Y., Xing, H. L., Guo, W. M., & Zhou, G. E. (2013). Study on synthesis of waterborne polyurethane for thermal infrared stealth coating. Paint and Coatings Industry, 43, 31–38.

    Google Scholar 

  • Tsurumaki, A., Tajima, S., Iwata, T., Scrosati, B., & Ohno, H. (2015). Antistatic effects of ionic liquids for polyether-based polyurethanes. Electrochimica Acta, 175, 13–17.

    Article  Google Scholar 

  • Wang, L. F., & Wei, Y. H. (2005). Effect of soft segment length on properties of fluorinated polyurethanes. Colloids and Surfaces. b, Biointerfaces, 41, 249–255.

    Article  Google Scholar 

  • Wang, J., Zhang, C., Du, Z., Li, H., & Zou, W. (2016). Functionalization of MWCNTs with silver nanoparticles decorated polypyrrole and their application in antistatic and thermal conductive epoxy matrix nanocomposite. RSC Advances, 6, 31782–31789.

    Article  Google Scholar 

  • Wei, H., Ding, D., Wei, S., & Guo, Z. (2013). Anticorrosive conductive polyuratene multiwalled carbon nanotube nanocomposites. Journal of Materials Chemistry A, 1, 10805–10813.

    Article  Google Scholar 

  • Wena, J., Suna, Z., Fana, H., Chena, Y., & Yana, J. (2019). Synthesis and characterization of a novel fluorinated waterborne polyurethane. Progress in Organic Coatings, 131, 291–300.

    Article  Google Scholar 

  • Weng, C. J., Chen, Y. L., Jhuo, Y. S., Yi-Li, L., & Yeh, J. M. (2013). Advanced antistatic/anticorrosion coatings prepared from polystyrene composites incorporating dodecylbenzenesulfonic acid-doped SiO2@polyaniline core-shell microspheres. Polymer International, 62, 774–782.

    Article  Google Scholar 

  • Wu, G., Xu, X., He, X., & Yan, Y. (2018). Preparation and characterization of graphene oxide-modified sapium sebiferum oil-based polyurethane composites with improved thermal and mechanical properties. Polymers, 10, 13.

    Article  Google Scholar 

  • Xia, C., Zhang, S., Ren, H., Shi, S. Q., Zhang, H., Cai, L., & Li, J. (2016). Scalable fabrication of natural-fiber reinforced composites with electromagnetic interference shielding properties by incorporating powdered activated carbon. Materials, 9, 1–9.

    Google Scholar 

  • Xu, F., Qian, B. R., Hu, Z., Chen, W. D., Zhuang, Z. Y., Zhu, B. Y., Zhang, H. Q., & Zhu, K. (2013). A novel route to emulsifier-free, waterborne hydroxyl functional polyacrylate with low VOC level and its application in 2K-WPU coatings. Journal of Macromolecular Science Part A, 50, 555–561.

    Article  Google Scholar 

  • Yang, L. W., Zhang, X. S., Liu, H. T., & Zu, M. (2017). Thermal resistant, mechanical and electrical properties of a novel ultrahigh-content randomly-oriented CNTs reinforced SiC matrix composite-sheet. Composites. Part b, Engineering, 119, 10–17.

    Article  Google Scholar 

  • Yates, C. R., & Hayes, W. (2004). Synthesis and applications of hyperbranched polymers. European Polymer Journal, 40, 1257–1281.

    Article  Google Scholar 

  • Yen, M. S., & Kuo, S. C. (1997). PCL-PEG-PCL triblock copolydiol-based waterborne polyurethane. I. Effects of the soft-segment composition on the structure and physical properties. Journal of Applied Polymer Science, 65, 883–892.

    Article  Google Scholar 

  • Yen, M. S., & Kuo, S. C. (2015). PCL-PEG-PCL triblock ester-ether copolydiol-based waterborne polyurethane. II. Effect of NCO/OH mole ratio and DMPA content on the physical properties. Journal of Applied Polymer Science, 67, 1301–1311.

    Article  Google Scholar 

  • Yousefi, E., Dolati, A., & Najafkhani, H. (2020). Preparation of robust antistatic waterborne polyurethane coating. Progress in Organic Coating, 139, 105450.

    Google Scholar 

  • Zhanga, H. H., Niua, R., Guan, X. B., Xua, D. H., & Shia, T. F. (2015). Rheological properties of waterborne polyurethane paints. Chinese Journal of Polymer Science, 33, 1750–1756.

    Article  Google Scholar 

  • Zhao, C. X., & Zhang, W. D. (2008). Preparation of waterborne polyurethane nanocomposites: Polymerization from functionalized hydroxyapatite. European Polymer Journal, 44, 1988–1995.

    Article  Google Scholar 

  • Zheng, F., Jiang, P., Hu, L., Bao, Y., & Xia, J. (2019). Functionalization of graphene oxide with different diisocyanates and their use as a reinforcement in waterborne polyurethane composites. Journal of Macromolecular Science Part A, 56, 1071–1081.

    Article  Google Scholar 

  • Zheng, A., Xu, X., Xiao, H., Li, N., Guan, Y., & Li, S. (2012). Antistatic modification of polypropylene by incorporating Tween/modified Tween. Applied Surface Science, 258, 8861–8866.

    Article  Google Scholar 

  • Zhou, X., Li, Y., Fang, C., Li, S., Cheng, Y., Lei, W., & Meng, X. (2015). Recent advances in synthesis of waterborne polyurethane and their application in water-based ink: A review. Journal of Materials Science and Technology, 31, 708–722.

    Article  Google Scholar 

  • Zhou, X., Fang, C., Lei, W., Du, J., Huang, T., Li, Y., & Cheng, Y. (2016). Various nanoparticle morphologies and surface properties of waterborne polyurethane controlled by water. Science and Reports, 6, 34574.

    Article  Google Scholar 

  • Zhu, J., Huang, H., & Peng, X. (2016b). Preparation and characterization of antiglare waterborne polyurethane. RSC Advances, 6, 102368–102372.

    Google Scholar 

  • Zhu, Z., Li, R., Zhang, C., & Gong, S. (2018). Preparation and properties of high solid content and low viscosity waterborne polyurethane–acrylate emulsion with a reactive emulsifier. Polymers, 10, 154.

    Article  Google Scholar 

  • Zhu, R., Wang, Y., Zhang, Z., Ma, D., & Wang, X. (2016a). Synthesis of polycarbonate urethane elastomers and effects of the chemical structures on their thermal, mechanical and biocompatibility properties. Heliyon, 2, e00125.

    Google Scholar 

  • Zia, F., Zia, K. M., Zuber, M., Kamal, S., & Aslam, N. (2015). Starch based polyurethanes: A critical review updating recent literature. Carbohydrate Polymers, 134, 784–798.

    Article  Google Scholar 

  • Zvonkina, I. J., & Soucek, M. D. (2016). Inorganic-organic hybrid coatings: Common and new approaches. Current Opinion in Chemical Engineering, 11, 123–127.

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Pallavi Jain is grateful to SRM Institute of Science & Technology, Modinagar for providing the facilities to research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallavi Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, P., Raghav, S. (2021). Waterborne Polyurethanes Additive Technologies. In: Inamuddin, Boddula, R., Khan, A. (eds) Sustainable Production and Applications of Waterborne Polyurethanes. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-72869-4_4

Download citation

Publish with us

Policies and ethics