Skip to main content
Log in

Synthesis, rheological, and thermal properties of waterborne hyperbranched polyurethane acrylate dispersions for UV curable coatings

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A series of waterborne hyperbranched polyurethane acrylate (WHUAs) ionomers used for ultraviolet curable waterborne coatings were synthesized. The average particle size of aqueous dispersion ranged between 48.2 and 75.3 nm at 0.05% concentration determined by laser light scattering. The effects of end group of WHUAs on rheological properties were investigated. WHUAs have much lower viscosity than EB2002, commercial linear waterborne polyurethane acrylate. Moreover, the glass transition temperature (Tg) evaluated by differential scanning calorimetry of samples showed that the influence of end capping by hard segment consisting of toluene diisocyanate–hydroxyethyl acrylate is significant due to the increase of crosslink density. All cured WHUA have higher glass transition temperatures than those of cured EB2002. The results of thermogravimetric analysis for cured WHUA films indicated good thermal stability with no appreciable weight loss until 200°C, and that an increase in the hard segment content provoked the increases in thermal degradation temperature. The activation energies were calculated by Flynn–Wall method to be 91.3, 114.3, and 139.7 kJ mol−1 for cured WHUA62, WHUA44, and WHUA26, with the individual ratios of 6:2, 4:4, and 2:6 for salt-like group to double bond at the terminals, compared with 81.1 kJ mol−1 of EB2002 in N2 atmosphere, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Decker C (1996) Prog Polym Sci 21:593

    Article  CAS  Google Scholar 

  2. Chattopadhyay DK, Raju KVSN (2007) Prog Polym Sci 32:352

    Article  CAS  Google Scholar 

  3. Yang JW, Wang ZM, Zeng ZH, Chen YL (2002) J Appl Polym Sci 84:1818

    Article  CAS  Google Scholar 

  4. Barrre M, Landfester K (2003) Macromolecules 36:5119

    Article  Google Scholar 

  5. Shin JH, Kim BK (2002) Colloid Polym Sci 280:716

    Article  Google Scholar 

  6. Wang ZM, Gao DB, Yang JW, Chen YL (1999) J Appl Polym Sci 73:2869

    Article  CAS  Google Scholar 

  7. Asif A, Shi WF, Shen XF (2005) Polymer 46:11066

    Article  CAS  Google Scholar 

  8. Tielemans M, Roose P, Groote PD, Vanovervelt JC (2006) Prog Org Coat 55:128

    Article  CAS  Google Scholar 

  9. Zhu X, Jiang XB, Zhang Z, Kong XZ (2008) Prog Org Coat 62:251

    Article  CAS  Google Scholar 

  10. Tomalia DA, Hall M, Hedstrand DM (1987) J Am Chem Soc 109:1601

    Article  CAS  Google Scholar 

  11. Yates CR, Hayes W (2004) Eur Polym J 40:1257

    Article  CAS  Google Scholar 

  12. Cho MJ, Choi DH, Sullivan PA, Akelaitis AJP, Dalton LR (2008) Prog Polym Sci 33:1013

    Article  CAS  Google Scholar 

  13. Fu Q, Cheng LL, Zhang Y, Shi WF (2008) Polymer 49:4981

    Article  CAS  Google Scholar 

  14. Asif A, Shi WF (2003) Eur Polym J 39:933

    Article  CAS  Google Scholar 

  15. Asif A, Huang CY, Shi WF (2003) Polym Adv Technol 14:609

    Article  CAS  Google Scholar 

  16. Xu G, Shi WF, Gong M, Yu F, Feng JP (2004) Eur Polym J 40:483

    Article  CAS  Google Scholar 

  17. Hepburn C (1992) Polyurethane elastomers, 2nd edn. Elsevier, New York

    Google Scholar 

  18. Asif A, Huang CY, Shi WF (2004) Colloid Polym Sci 283:200

    Article  CAS  Google Scholar 

  19. Lee JJ, Chi ZK, Chang HH, Chao DY (1995) J Appl Polym Sci 57:1005

    Article  CAS  Google Scholar 

  20. Decker C, Masson F, Schwalm R (2003) Macromol Mater Eng 288:17

    Article  CAS  Google Scholar 

  21. Tielemans M, Roose P (2008) Prog Org Coat 63:182

    Article  CAS  Google Scholar 

  22. Flickinger GL, Dairanieh IS, Zukoski CF (1999) J Non-Newton Fluid Mech 87:283

    Article  CAS  Google Scholar 

  23. Kim YB, Kim HK, Yoo JK, Hong JW (2002) Surf Coat Technol 157:40

    Article  CAS  Google Scholar 

  24. Petrovic SZ, Zavargo Z, Flynn JH, Macknight WJ (1994) J Appl Polym Sci 51:1087

    Article  CAS  Google Scholar 

  25. Kim BK, Lee JC (1996) J Polym Sci A Polym Chem 34:1095

    Article  CAS  Google Scholar 

  26. Flynn J, Wall L (1967) Polym Lett 5:191

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was subsidized by the National Natural Science Foundation of China (No. 50233030) and China NKBRSF Project (No. 2001CB049600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anila Asif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asif, A., Hu, L. & Shi, W. Synthesis, rheological, and thermal properties of waterborne hyperbranched polyurethane acrylate dispersions for UV curable coatings. Colloid Polym Sci 287, 1041–1049 (2009). https://doi.org/10.1007/s00396-009-2062-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2062-8

Keyword

Navigation