Skip to main content

Linking Microbial Decomposer Diversity to Plant Litter Decomposition and Associated Processes in Streams

  • Chapter
  • First Online:
The Ecology of Plant Litter Decomposition in Stream Ecosystems

Abstract

The physiology, biochemistry and diversity of aquatic microbial decomposers have been largely investigated in low-order streams. However, some aspects still need further attention to better ascertain how microbial decomposer diversity can ensure ecosystem processes and services, particularly under the challenges posed by global environmental change. Aquatic microbial decomposers play a key role in processing plant litter in streams by degrading the most recalcitrant compounds and facilitating nutrient and energy transfer to higher trophic levels. Among microbial decomposers, fungi, particularly aquatic hyphomycetes, play a fundamental role at the early stages of plant litter decomposition, while the relevance of bacteria increases at the late stage of the decomposition. High-throughput sequencing and metagenomic techniques open new avenues towards a more comprehensive understanding of microbial decomposer ecology. This chapter provides a general overview of aquatic microbial diversity and activity on decomposing plant litter. Attention will be paid to the relationships between microbial diversity and their ecological functions under the major threats posed by the ongoing global environmental change to provide the response patterns of microbial decomposers to maintain nutrient and energy fluxes in streams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abelho, M. (2009). ATP and ergosterol as indicators of fungal biomass during leaf decomposition in streams: A comparative study. International Review of Hydrobiology, 94, 3–15.

    Article  CAS  Google Scholar 

  • Abelho, M. (2020). ATP as a measure of microbial biomass. In M. A. S. Graça, F. Bärlocher, & M. O. Gessner (Eds.), Methods to study litter decomposition: A practical guide (pp. 291–299). Springer.

    Chapter  Google Scholar 

  • Abelho, M., & Graça, M. A. S. (2006). Effects of nutrient enrichment on decomposition and fungal colonization of sweet chestnut leaves in an Iberian stream (Central portugal). Hydrobiologia, 560, 239–247.

    Article  CAS  Google Scholar 

  • Amani, M., Graça, M. A. S., & Ferreira, V. (2019). Effects of elevated atmospheric CO2 concentration and temperature on litter decomposition in streams: A meta-analysis. International Review of Hydrobiology, 104, 14–25.

    Article  CAS  Google Scholar 

  • Anderson, J. L., & Shearer, C. A. (2011). Population genetics of the aquatic fungus Tetracladium marchalianum over space and time. PLoS ONE, 6, e15908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade, R., Pascoal, C. & Cássio, F. (2016) Effects of inter and intraspecific diversity and genetic divergence of aquatic fungal communities on leaf litter decomposition—a microcosm experiment. FEMS Microbiology Ecology, 92, 1–18.

    Google Scholar 

  • Arce Funck, J., Bec, A., Perrière, F., Felten, V., & Danger, M. (2015). Aquatic hyphomycetes: A potential source of polyunsaturated fatty acids in detritus-based stream food webs. Fungal Ecology, 13, 205–210.

    Article  Google Scholar 

  • Arsuffi, T. L., & Suberkropp, K. (1984). Leaf processing capabilities of aquatic hyphomycetes—Interspecific differences and influence on shredder feeding preferences. Oikos, 42, 144–154.

    Article  Google Scholar 

  • Arsuffi, T. L., & Suberkropp, K. (1985). Selective feeding by stream caddisfly (Trichoptera) detritivores on leaves with fungal-colonized patches. Oikos, 45, 50–58.

    Article  Google Scholar 

  • Arsuffi, T. L., & Suberkropp, K. (1986). Growth of two stream caddisflies (Trichoptera) on leaves colonized by different fungal species. Journal of the North American Benthological Society, 5, 297–305.

    Article  Google Scholar 

  • Artigas, J., Majerholc, J., Foulquier, A., Margoum, C., Volat, B., Neyra, M., & Pesce, S. (2012). Effects of the fungicide tebuconazole on microbial capacities for litter breakdown in streams. Aquatic Toxicology, 122, 197–205.

    Article  PubMed  CAS  Google Scholar 

  • Artigas, J., Romaní, A. M., & Sabater, S. (2008). Effect of nutrients on the sporulation and diversity of aquatic hyphomycetes on submerged substrata in a Mediterranean stream. Aquatic Botany, 88, 32–38.

    Article  CAS  Google Scholar 

  • Baldy, V., Chauvet, E., Charcosset, J.-Y., & Gessner, M. O. (2002). Microbial dynamics associated with leaves decomposing in the mainstem and floodplain pond of a large river. Aquatic Microbial Ecology, 28, 25–36.

    Article  Google Scholar 

  • Baldy, V., Gessner, M. O., & Chauvet, E. (1995). Bacteria, fungi and the breakdown of leaf litter in a large river. Oikos, 74, 93–102.

    Article  Google Scholar 

  • Balian, E. V., Segers, H., Lévèque, C., & Martens, K. (2008). The freshwater animal diversity assessment: An overview of the results. Hydrobiologia, 595, 627–637.

    Article  Google Scholar 

  • Barajas-Aceves, M., Hassan, M., Tinoco, R., & Vazquez-Duhalt, R. (2002). Effect of pollutants on the ergosterol content as indicator of fungal biomass. Journal of Microbiological Methods, 50, 227–236.

    Article  CAS  PubMed  Google Scholar 

  • Bärlocher, F. (1982). Conidium production from leaves and needles in four streams. Canadian Journal of Botany, 60, 1487–1494.

    Article  Google Scholar 

  • Bärlocher, F. (1992). The ecology of aquatic hyphomycetes. Springer-Verlag.

    Book  Google Scholar 

  • Bärlocher, F. (2000). Water-borne conidia of aquatic hyphomycetes: Seasonal and yearly patterns in Catamaran Brook, New Brunswick, Canada. Canadian Journal of Botany-Revue Canadienne De Botanique, 78, 157–167.

    Article  Google Scholar 

  • Bärlocher, F. (2007). Molecular approaches applied to aquatic hyphomycetes. Fungal Biology Reviews, 21, 19–24.

    Article  Google Scholar 

  • Bärlocher, F. (2009). Reproduction and dispersal in aquatic hyphomycetes. Mycoscience, 50, 3–8.

    Article  Google Scholar 

  • Bärlocher, F. (2010). Molecular approaches promise a deeper and broader understanding of the evolutionary ecology of aquatic hyphomycetes. Journal of the North American Benthological Society, 29, 1027–1041.

    Article  Google Scholar 

  • Bärlocher, F. (2020). Sporulation by aquatic hyphomycetes. In F. Bärlocher, M. O. Gessner, & M. A. S. Graça (Eds.), Methods to study litter decomposition. (pp. 241–245). Springer.

    Chapter  Google Scholar 

  • Bärlocher, F., & Corkum, M. (2003). Nutrient enrichment overwhelms diversity effects in leaf decomposition by stream fungi. Oikos, 101, 247–252.

    Article  Google Scholar 

  • Bärlocher, F., & Graça, M. A. S. (2002). Exotic riparian vegetation lowers fungal diversity but not leaf decomposition in Portuguese streams. Freshwater Biology, 47, 1123–1135.

    Article  Google Scholar 

  • Bärlocher, F., Seena, S., Wilson, K. P., & Williams, D. D. (2008). Raised water temperature lowers diversity of hyporheic aquatic hyphomycetes. Freshwater Biology, 53, 368–379.

    Google Scholar 

  • Barros, D., Pradhan, A., Pascoal, C., & Cássio, F. (2020). Proteomic responses to silver nanoparticles vary with the fungal ecotype. Science of the Total Environment, 704, 135385.

    Article  CAS  Google Scholar 

  • Baschien, C. (2003). Development an evaluation of rRNA targeted in situ probes and phylogenetic relationships of freshwater fungi (PhD thesis). Technischen Universität Berlin.

    Google Scholar 

  • Baschien, C., Manz, W., Neu, T. R., & Szewzyk, U. (2001). Fluorescence in situ hybridization of freshwater fungi. International Review of Hydrobiology, 86, 371–381.

    Article  Google Scholar 

  • Baschien, C., Marvanova, L., & Szewzyk, U. (2006). Phylogeny of selected aquatic hyphomycetes based on morphological and molecular data. Nova Hedwigia, 83, 311–352.

    Article  Google Scholar 

  • Baschien, C., Tsui, C.K.-M., Gulis, V., Szewzyk, U., & Marvanová, L. (2013). The molecular phylogeny of aquatic hyphomycetes with affinity to the Leotiomycetes. Fungal Biology, 117, 660–672.

    Article  PubMed  Google Scholar 

  • Batista, D., Tlili, A., Gessner, M. O., Pascoal, C., & Cássio, F. (2020). Nanosilver impacts on aquatic microbial decomposers and litter decomposition assessed as pollution-induced community tolerance (PICT). Environmental Science: Nano, 7, 2130–2139.

    CAS  Google Scholar 

  • Baudy, P., Konschak, M., Sakpal, H., Baschien, C., Schulz, R., Bundschuh, M. & Zubrod, J.P. (2020). The fungicide tebuconazole confounds concentrations of molecular biomarkers estimating fungal biomass. Bulletin of Environmental Contamination and Toxicology, in press.

    Google Scholar 

  • Baudy, P., Zubrod, J. P., Röder, N., Baschien, C., Feckler, A., Schulz, R., & Bundschuh, M. (2019). A glance into the black box: Novel species-specific quantitative real-time PCR assays to disentangle aquatic hyphomycete community composition. Fungal Ecology, 42, 100858.

    Article  Google Scholar 

  • Bauer, R., Begerow, D., Oberwinkler, F., & Marvanová, L. (2003). Classicula: The teleomorph of Naiadella fluitans. Mycologia, 95, 756–764.

    Article  PubMed  Google Scholar 

  • Belliveau, M. J. R., & Bärlocher, F. (2005). Molecular evidence confirms multiple origins of aquatic hyphomycetes. Mycological Research, 109, 1407–1417.

    Article  CAS  PubMed  Google Scholar 

  • Bergmann, M., & Graça, M. A. S. (2020). Uranium affects growth, sporulation, biomass and leaf-litter decomposition by aquatic hyphomycetes. Limnetica, 39, 141–154.

    Article  Google Scholar 

  • Bermingham, S., Dewey, F. M., Fisher, P. J., & Maltby, L. (2001). Use of a monoclonal antibody-based immunoassay for the detection and quantification of Heliscus lugdunensis colonizing alder leaves and roots. Microbial Ecology, 42, 506–512.

    Article  CAS  PubMed  Google Scholar 

  • Bermingham, S., Dewey, F. M., & Maltby, L. (1995). Development of a monoclonal antibody-based immunoassay for the detection and quantification of Anguillospora longissima colonizing leaf material. Applied and Environmental Microbiology, 61, 2606–2613.

    Article  CAS  Google Scholar 

  • Bermingham, S., Maltby, L., & Dewey, F. M. (1996). Monoclonal antibodies as tools to quantify mycelium of aquatic hyphomycetes. New Phytologist, 132, 593–601.

    Article  CAS  Google Scholar 

  • Bermingham, S., Maltby, L., & Dewey, F. M. (1997). Use of immunoassays for the study of natural assemblages of aquatic hyphomycetes. Microbial Ecology, 33, 223–229.

    Article  CAS  PubMed  Google Scholar 

  • Boyero, L., Pearson, R. G., Gessner, M. O., Barmuta, L. A., Ferreira, V., Graça, M. A. S., Dudgeon, D., Boulton, A. J., Callisto, M., Chauvet, E., Helson, J. E., Bruder, A., Albariño, R. J., Yule, C. M., Arunachalam, M., Davies, J. N., Figueroa, R., Flecker, A. S., Ramírez, A., … West, D. C. (2011). A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecology Letters, 14, 289–294.

    Article  PubMed  Google Scholar 

  • Buesing, N., & Gessner, M. O. (2020). Bacterial abundance and biomass determination in plant litter by epifluorescence microscopy. In F. Bärlocher, M. O. Gessner, & M. A. S. Graça (Eds.), Methods to study litter decomposition (pp. 265–273). Springer.

    Chapter  Google Scholar 

  • Campbell, J., Marvanová, L., & Gulis, V. (2009). Evolutionary relationships between aquatic anamorphs and teleomorphs: Tricladium and Varicosporium. Mycological Research, 113, 1322–1334.

    Article  PubMed  Google Scholar 

  • Campbell, J., Shearer, C., & Marvanova, L. (2006). Evolutionary relationships among aquatic anamorphs and teleomorphs: Lemonniera, Margaritispora, and Goniopila. Mycological Research, 110, 1025–1033.

    Article  PubMed  Google Scholar 

  • Canhoto, C., & Graça, M. A. S. (1996). Decomposition of Eucalyptus globulus leaves and three native leaf species (Alnus glutinosa, Castanea sativa and Quercus faginea) in a Portuguese low order stream. Hydrobiologia, 333, 79–85.

    Article  CAS  Google Scholar 

  • Carlisle, D. M., & Clements, W. H. (2005). Leaf litter breakdown, microbial respiration and shredder production in metal-polluted streams. Freshwater Biology, 50, 380–390.

    Article  CAS  Google Scholar 

  • Chapin, F. S., III., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., Hooper, D. U., Lavorel, S., Sala, O. E., Hobbie, S. E., Mack, M. C., & Diaz, S. (2000). Consequences of changing biodiversity. Nature, 405, 234–242.

    Article  CAS  PubMed  Google Scholar 

  • Charcosset, J.-Y., & Chauvet, E. (2001). Effect of culture conditions on ergosterol as an indicator of biomass in the aquatic hyphomycetes. Applied and Environmental Microbiology, 67, 2051–2055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charcosset, J. Y., & Gardes, M. (1999). Infraspecific genetic diversity and substrate preference in the aquatic hyphomycete Tetrachaetum elegans. Mycological Research, 103, 736–742.

    Article  Google Scholar 

  • Chase, J. M., & Myers, J. A. (2011). Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2351–2363.

    Article  Google Scholar 

  • Chauvet, E., Fabre, E., Elosegui, A., & Pozo, J. (1997). The impact of eucalypt on the leaf-associated aquatic hyphomycetes in Spanish streams. Canadian Journal of Botany-Revue Canadienne De Botanique, 75, 880–887.

    Google Scholar 

  • Chauvet, E., & Suberkropp, K. (1998). Temperature and sporulation of aquatic hyphomycetes. Applied and Environmental Microbiology, 64, 1522–1525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheever, B. M., Kratzer, E. B., & Webster, J. R. (2012). Immobilization and mineralization of N and P by heterotrophic microbes during leaf decomposition. Freshwater Science, 31, 133–147.

    Article  Google Scholar 

  • Cleveland, C., & Liptzin, D. (2007). C:N: P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235–252.

    Article  Google Scholar 

  • Cross, W. F., Benstead, J. P., Frost, P. C., & Thomas, S. A. (2005). Ecological stoichiometry in freshwater benthic systems: Recent progress and perspectives. Freshwater Biology, 50, 1895–1912.

    Article  CAS  Google Scholar 

  • Daam, M. A., Teixeira, H., Lillebø, A. I., & Nogueira, A. J. A. (2019). Establishing causal links between aquatic biodiversity and ecosystem functioning: Status and research needs. Science of the Total Environment, 656, 1145–1156.

    Article  CAS  Google Scholar 

  • Dang, C. K., Chauvet, E., & Gessner, M. O. (2005). Magnitude and variability of process rates in fungal diversity-litter decomposition relationships. Ecology Letters, 8, 1129–1137.

    Article  PubMed  Google Scholar 

  • Dang, C. K., Schindler, M., Chauvet, E., & Gessner, M. O. (2009). Temperature oscillation coupled with fungal community shifts can modulate warming effects on litter decomposition. Ecology, 90, 122–131.

    Article  PubMed  Google Scholar 

  • Danger, M., Cornut, J., Chauvet, E., Chavez, P., Elger, A., & Lecerf, A. (2013). Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: A case of aquatic priming effect? Ecology, 94, 1604–1613.

    Article  PubMed  Google Scholar 

  • Danger, M., Daufresne, T., Lucas, F., Pissard, S., & Lacroix, G. (2008). Does Liebig’s law of the minimum scale up from species to communities? Oikos, 117, 1741–1751.

    Article  Google Scholar 

  • Danger, M., Gessner, M. O., & Bärlocher, F. (2016). Ecological stoichiometry of aquatic fungi: Current knowledge and perspectives. Fungal Ecology, 19, 100–111.

    Article  Google Scholar 

  • Das, M., Royer, T. V., & Leff, L. G. (2007). Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream. Applied and Environmental Microbiology, 73, 756–767.

    Article  CAS  PubMed  Google Scholar 

  • Debroas, D., Domaizon, I., Humbert, J.-F., Jardillier, L., Lepère, C., Oudart, A. & Taïb, N. (2017) Overview of freshwater microbial eukaryotes diversity: A first analysis of publicly available metabarcoding data. FEMS Microbiology Ecology, 93.

    Google Scholar 

  • Doak, D. F., Bigger, D., Harding, E. K., Marvier, M. A., O’Malley, R. E., & Thomson, D. (1998). The statistical inevitability of stability-diversity relationships in community ecology. the American Naturalist, 151, 264–276.

    Article  CAS  PubMed  Google Scholar 

  • Duarte, S., Antunes, B., Trabulo, J., Seena, S., Cássio, F., & Pascoal, C. (2019). Intraspecific diversity affects stress response and the ecological performance of a cosmopolitan aquatic fungus. Fungal Ecology, 41, 218–223.

    Article  Google Scholar 

  • Duarte, S., Bärlocher, F., Cássio, F., & Pascoal, C. (2014). Current status of DNA barcoding of aquatic hyphomycetes. Sydowia, 66, 191–202.

    Google Scholar 

  • Duarte, S., Bärlocher, F., Pascoal, C., & Cássio, F. (2016). Biogeography of aquatic hyphomycetes: Current knowledge and future perspectives. Fungal Ecology, 19, 169–181.

    Article  Google Scholar 

  • Duarte, S., Bärlocher, F., Trabulo, J., Cássio, F., & Pascoal, C. (2015). Stream-dwelling fungal decomposer communities along a gradient of eutrophication unraveled by 454 pyrosequencing. Fungal Diversity, 70, 127–148.

    Article  Google Scholar 

  • Duarte, S., Cássio, F., Ferreira, V., Canhoto, C., & Pascoal, C. (2016). Seasonal variability may affect microbial decomposers and leaf decomposition more than warming in streams. Microbial Ecology, 72, 263–276.

    Article  CAS  PubMed  Google Scholar 

  • Duarte, S., Cássio, F., Pascoal, C., & Bärlocher, F. (2017). Taxa-area relationship of aquatic fungi on deciduous leaves. PLoS ONE, 12, e0181545.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duarte, S., Pascoal, C., Alves, A., Correia, A., & Cássio, F. (2008). Copper and zinc mixtures induce shifts in microbial communities and reduce leaf litter decomposition in streams. Freshwater Biology, 53, 91–101.

    CAS  Google Scholar 

  • Duarte, S., Pascoal, C., Alves, A., Correia, A., & Cássio, F. (2010). Assessing the dynamic of microbial communities during leaf decomposition in a low-order stream by microscopic and molecular techniques. Microbiological Research, 165, 351–362.

    Article  CAS  PubMed  Google Scholar 

  • Duarte, S., Pascoal, C., Cássio, F., & Bärlocher, F. (2006). Aquatic hyphomycete diversity and identity affect leaf litter decomposition in microcosms. Oecologia, 147, 658–666.

    Article  PubMed  Google Scholar 

  • Duarte, S., Pascoal, C., Garabetian, F., Cássio, F., & Charcosset, J.-Y. (2009). Microbial decomposer communities are mainly structured by trophic status in circumneutral and alkaline streams. Applied and Environmental Microbiology, 75, 6211–6221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte, S., Seena, S., Bärlocher, F., Pascoal, C., & Cássio, F. (2013). A decade’s perspective on the impact of DNA sequencing on aquatic hyphomycete research. Fungal Biology Reviews, 27, 19–24.

    Article  Google Scholar 

  • Ducklow, H. (2008). Microbial services: Challenges for microbial ecologists in a changing world. Aquatic Microbial Ecology, 53, 13–19.

    Article  Google Scholar 

  • Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Leveque, C., Naiman, R. J., Prieur-Richard, A. H., Soto, D., Stiassny, M. L. J., & Sullivan, C. A. (2006). Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews, 81, 163–182.

    Article  PubMed  Google Scholar 

  • Dunck, B., Lima-Fernandes, E., Cássio, F., Cunha, A., Rodrigues, L., & Pascoal, C. (2015). Responses of primary production, leaf litter decomposition and associated communities to stream eutrophication. Environmental Pollution, 202, 32–40.

    Article  CAS  PubMed  Google Scholar 

  • Enríquez, S., Duarte, C. M., & Sand-Jensen, K. (1993). Patterns in decomposition rates among photosynthetic organisms: The importance of detritus C:N: P content. Oecologia, 94, 457–471.

    Article  PubMed  Google Scholar 

  • Feckler, A. & Bundschuh, M. (2020) Decoupled structure and function of leaf-associated microorganisms under anthropogenic pressure: potential hurdles for environmental monitoring. Freshwater Science, 39, 652–664.

    Google Scholar 

  • Feckler, A., Schrimpf, A., Bundschuh, M., Bärlocher, F., Baudy, P., Cornut, J., & Schulz, R. (2017). Quantitative real-time PCR as a promising tool for the detection and quantification of leaf-associated fungal species—A proof-of-concept using Alatospora pulchella. PLoS ONE, 12, e0174634.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernandes, I., Duarte, S., Cássio, F., & Pascoal, C. (2013). Effects of riparian plant diversity loss on aquatic microbial decomposers become more pronounced with increasing time. Microbial Ecology, 66, 763–772.

    Article  PubMed  Google Scholar 

  • Fernandes, I., Pascoal, C., & Cássio, F. (2011). Intraspecific traits change biodiversity effects on ecosystem functioning under metal stress. Oecologia, 166, 1019–1028.

    Article  PubMed  Google Scholar 

  • Fernandes, I., Pascoal, C., Guimarães, H., Pinto, R., Sousa, I., & Cássio, F. (2012). Higher temperature reduces the effects of litter quality on decomposition by aquatic fungi. Freshwater Biology, 57, 2306–2317.

    Article  Google Scholar 

  • Fernandes, I., Pereira, A., Trabulo, J., Pascoal, C., Cássio, F., & Duarte, S. (2015). Microscopy- or DNA-based analyses: Which methodology gives a truer picture of stream-dwelling decomposer fungal diversity? Fungal Ecology, 18, 130–134.

    Article  Google Scholar 

  • Fernandes, I., Seena, S., Pascoal, C., & Cássio, F. (2014). Elevated temperature may intensify the positive effects of nutrients on microbial decomposition in streams. Freshwater Biology, 59, 2390–2399.

    Article  CAS  Google Scholar 

  • Fernandes, I., Uzun, B., Pascoal, C., & Cássio, F. (2009). Responses of aquatic fungal communities on leaf litter to temperature-change events. International Review of Hydrobiology, 94, 410–418.

    Article  Google Scholar 

  • Ferreira, V. (2020). Impact of climate change on aquatic hyphomycetes. Climate change and microbial ecology: current research and future trends (Ed. J. Marxsen). Norfolk, UK: Caister Academic Press.

    Google Scholar 

  • Ferreira, V., Castagneyrol, B., Koricheva, J., Gulis, V., Chauvet, E., & Graça, M. A. S. (2015). A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams. Biological Reviews, 90, 669–688.

    Article  PubMed  Google Scholar 

  • Ferreira, V., Castela, J., Rosa, P., Tonin, A. M., Boyero, L., & Graça, M. A. S. (2016). Aquatic hyphomycetes, benthic macroinvertebrates and leaf litter decomposition in streams naturally differing in riparian vegetation. Aquatic Ecology, 50, 711–725.

    Article  CAS  Google Scholar 

  • Ferreira, V., & Chauvet, E. (2011a). Future increase in temperature more than decrease in litter quality can affect microbial litter decomposition in streams. Oecologia, 167, 279–291.

    Article  PubMed  Google Scholar 

  • Ferreira, V., & Chauvet, E. (2011b). Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Global Change Biology, 17, 551–564.

    Article  Google Scholar 

  • Ferreira, V., Chauvet, E., & Canhoto, C. (2015). Effects of experimental warming, litter species, and presence of macroinvertebrates on litter decomposition and associated decomposers in a temperate mountain stream. Canadian Journal of Fisheries and Aquatic Sciences, 72, 206–216.

    Article  CAS  Google Scholar 

  • Ferreira, V., Elosegi, A., Gulis, V., Pozo, J., & Graça, M. A. S. (2006). Eucalyptus plantations affect fungal communities associated with leaf-litter decomposition in Iberian streams. Archiv Fur Hydrobiologie, 166, 467–490.

    Article  CAS  Google Scholar 

  • Ferreira, V., Faustino, H., Raposeiro, P. M., & Gonçalves, V. (2017). Replacement of native forests by conifer plantations affects fungal decomposer community structure but not litter decomposition in Atlantic island streams. Forest Ecology and Management, 389, 323–330.

    Article  Google Scholar 

  • Ferreira, V., & Graça, M. A. S. (2006). Do invertebrate activity and current velocity affect fungal assemblage structure in leaves? International Review of Hydrobiology, 91, 1–14.

    Article  CAS  Google Scholar 

  • Ferreira, V., & Graça, M. A. S. (2016). Effects of whole-stream nitrogen enrichment and litter species mixing on litter decomposition and associated fungi. Limnologica, 58, 69–77.

    Article  CAS  Google Scholar 

  • Ferreira, V., Gulis, V., & Graça, M. A. S. (2006). Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia, 149, 718–729.

    Article  PubMed  Google Scholar 

  • Ferreira, V., Gulis, V., Pascoal, C. & Graça, M.A.S. (2014) Stream pollution and fungi. Freshwater Fungi and Fungus-like Organisms. De Gruyter Series: Marine and Freshwater Botany (Eds., G. Jones, K. Hyde & K.-L. Pang, pp. 389–412). Berlin, Germany: De Gruyter.

    Google Scholar 

  • Fontaine, S., & Barot, S. (2005). Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation. Ecology Letters, 8, 1075–1087.

    Article  Google Scholar 

  • Frossard, A., Gerull, L., Mutz, M., & Gessner, M. O. (2013). Litter supply as a driver of microbial activity and community structure on decomposing leaves: A test in experimental streams. Applied and Environmental Microbiology, 79, 4965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frossard, A., Hammes, F., & Gessner, M. O. (2016). Flow cytometric assessment of bacterial abundance in soils, sediments and sludge. Frontiers in Microbiology, 7, 903.

    Article  PubMed  PubMed Central  Google Scholar 

  • Frost, P. C., Benstead, J. P., Cross, W. F., Hillebrand, H., Larson, J. H., Xenopoulos, M. A., & Yoshida, T. (2006). Threshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecology Letters, 9, 774–779.

    Article  PubMed  Google Scholar 

  • Geraldes, P., Pascoal, C., & Cássio, F. (2012). Effects of increased temperature and aquatic fungal diversity on litter decomposition. Fungal Ecology, 5, 734–740.

    Article  Google Scholar 

  • Gessner, M. O., & Chauvet, E. (1993). Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Applied and Environmental Microbiology, 59, 502–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gessner, M. O., & Chauvet, E. (1994). Importance of stream microfungi in controlling breakdown rates of leaf-litter. Ecology, 75, 1807–1817.

    Article  Google Scholar 

  • Gessner, M. O., & Chauvet, E. (1997). Growth and production of aquatic hyphomycetes in decomposing leaf litter. Limnology and Oceanography, 42, 496–505.

    Article  CAS  Google Scholar 

  • Gessner, M. O., & Newell, S. Y. (2002). Biomass, growth rate, and production of filamentous fungi in plant litter. In H. J. Christon (Ed.), Manual of environmental microbiology. (pp. 390–408). ASM Press.

    Google Scholar 

  • Ginzinger, D. G. (2002). Gene quantification using real-time quantitative PCR: An emerging technology hits the mainstream. Experimental Hematology, 30, 503–512.

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves, A. L., Gama, A. M., Ferreira, V., Graça, M. A. S., & Canhoto, C. (2007). The breakdown of blue gum (Eucalyptus globulus Labill.) bark in a portuguese stream. Fundamental and Applied Limnology / Archiv Für Hydrobiologie, 168, 307–315

    Article  Google Scholar 

  • Gonçalves, A. L., Graça, M. A. S., & Canhoto, C. (2013). The effect of temperature on leaf decomposition and diversity of associated aquatic hyphomycetes depends on the substrate. Fungal Ecology, 6, 546–553.

    Article  Google Scholar 

  • Gossiaux, A., Jabiol, J., Poupin, P., Chauvet, E., & Guérold, F. (2019). Seasonal variations overwhelm temperature effects on microbial processes in headwater streams: Insights from a temperate thermal spring. Aquatic Sciences, 81, 30.

    Article  CAS  Google Scholar 

  • Graça, M. A. S., & Abelho, M. (2020). Respiration of litter-associated microbes and invertebrates. In F. Bärlocher, M. O. Gessner, & M. A. S. Graça (Eds.), Methods to study litter decomposition (pp. 301–308). Springer.

    Chapter  Google Scholar 

  • Guenet, B., Danger, M., Abbadie, L., & Lacroix, G. (2010). Priming effect: Bridging the gap between terrestrial and aquatic ecology. Ecology, 91, 2850–2861.

    Article  PubMed  Google Scholar 

  • Gulis, V. (2001). Are there any substrate preferences in aquatic hyphomycetes? Mycological Research, 105, 1088–1093.

    Article  Google Scholar 

  • Gulis, V., Ferreira, V., & Graça, M. A. S. (2006). Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: Implications for stream assessment. Freshwater Biology, 51, 1655–1669.

    Article  CAS  Google Scholar 

  • Gulis, V., Kuehn, K. A., Schoettle, L. N., Leach, D., Benstead, J. P., & Rosemond, A. D. (2017). Changes in nutrient stoichiometry, elemental homeostasis and growth rate of aquatic litter-associated fungi in response to inorganic nutrient supply. The ISME Journal, 11, 2729–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulis, V., Marvanová, L., & Descals, E. (2020). An illustrated key to the common temperate species of aquatic hyphomycetes. In F. Bärlocher, M. O. Gessner, & M. A. S. Graça (Eds.), Methods to study litter decomposition (pp. 223–239). Springer.

    Chapter  Google Scholar 

  • Gulis, V., Su, R. & Kuehn, K.A. (2019). Fungal decomposers in freshwater environments. The structure and function of aquatic microbial communities. Advances in Environmental Microbiology (Ed., C. Hurst, pp. 121–155). Cham: Springer.

    Google Scholar 

  • Gulis, V., & Suberkropp, K. (2003). Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshwater Biology, 48, 123–134.

    Article  Google Scholar 

  • Gulis, V., & Suberkropp, K. (2004). Effects of whole-stream nutrient enrichment on the concentration and abundance of aquatic hyphomycete conidia in transport. Mycologia, 96, 57–65.

    Article  PubMed  Google Scholar 

  • Güsewell, S., & Gessner, M. O. (2009). N : P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Functional Ecology, 23, 211–219.

    Article  Google Scholar 

  • Halvorson, H. M., Francoeur, S. N., Findlay, R. H., & Kuehn, K. A. (2019). Algal-mediated priming effects on the ecological stoichiometry of leaf litter decomposition: A meta-analysis. Frontiers in Earth Science, 7, 76.

    Article  Google Scholar 

  • Hayer, M., Schwartz, E., Marks, J. C., Koch, B. J., Morrissey, E. M., Schuettenberg, A. A., & Hungate, B. A. (2016). Identification of growing bacteria during litter decomposition in freshwater through quantitative stable isotope probing. Environmental Microbiology Reports, 8, 975–982.

    Article  CAS  PubMed  Google Scholar 

  • Hieber, M., & Gessner, M. O. (2002). Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology, 83, 1026–1038.

    Article  Google Scholar 

  • Hladyz, S., Gessner, M. O., Giller, P. S., Pozo, J., & Woodward, G. (2009). Resource quality and stoichiometric constraints on stream ecosystem functioning. Freshwater Biology, 54, 957–970.

    Article  CAS  Google Scholar 

  • Hofstetter, V., Buyck, B., Eyssartier, G., Schnee, S., & Gindro, K. (2019). The unbearable lightness of sequenced-based identification. Fungal Diversity, 96, 243–284.

    Article  Google Scholar 

  • Hooper, D. U., Adair, E. C., Cardinale, B. J., Byrnes, J. E. K., Hungate, B. A., Matulich, K. L., Gonzalez, A., Duffy, J. E., Gamfeldt, L., & O’Connor, M. I. (2012). A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486, 105–108.

    Article  CAS  PubMed  Google Scholar 

  • Hungate, B. A., Mau, R. L., Schwartz, E., Caporaso, J. G., Dijkstra, P., van Gestel, N., Koch, B. J., Liu, C. M., McHugh, T. A., Marks, J. C., Morrissey, E. M., & Price, L. B. (2015). Quantitative microbial ecology through stable isotope probing. Applied and Environmental Microbiology, 81, 7570–7581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPCC. (2014). Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (Eds., Core Writing Team, R.K. Pachauri & L.A. Meyer). Geneva, Switzerland: IPCC.

    Google Scholar 

  • Jabiol, J., Lecerf, A., Lamothe, S., Gessner, M. O., & Chauvet, E. (2019). Litter quality modulates effects of dissolved nitrogen on leaf decomposition by stream microbial communities. Microbial Ecology, 77, 959–966.

    Article  CAS  PubMed  Google Scholar 

  • Kanagawa, T. (2003). Bias and artifacts in multitemplate polymerase chain reactions (PCR). Journal of Bioscience and Bioengineering, 96, 317–323.

    Article  CAS  PubMed  Google Scholar 

  • Keiblinger, K. M., Hall, E. K., Wanek, W., Szukics, U., Hämmerle, I., Ellersdorfer, G., Böck, S., Strauss, J., Sterflinger, K., Richter, A., & Zechmeister-Boltenstern, S. (2010). The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency. FEMS Microbiology Ecology, 73, 430–440.

    CAS  PubMed  Google Scholar 

  • Komínková, D., Kuehn, K. A., Büsing, N., Steiner, D., & Gessner, M. O. (2000). Microbial biomass, growth, and respiration associated with submerged litter of Phragmites australis decomposing in a littoral reed stand of a large lake. Aquatic Microbial Ecology, 22, 271–282.

    Article  Google Scholar 

  • Kuehn, K. A., Francoeur, S. N., Findlay, R. H., & Neely, R. K. (2014). Priming in the microbial landscape: Periphytic algal stimulation of litter-associated microbial decomposers. Ecology, 95, 749–762.

    Article  PubMed  Google Scholar 

  • Laitung, B., & Chauvet, E. (2005). Vegetation diversity increases species richness of leaf-decaying fungal communities in woodland streams. Archiv Fur Hydrobiologie, 164, 217–235.

    Article  Google Scholar 

  • Laitung, B., Chauvet, E., Feau, N., Feve, K., Chikhi, L., & Gardes, M. (2004). Genetic diversity in Tetrachaetum elegans, a mitosporic aquatic fungus. Molecular Ecology, 13, 1679–1692.

    Article  CAS  PubMed  Google Scholar 

  • Laitung, B., Pretty, J. L., Chauvet, E., & Dobson, M. (2002). Response of aquatic hyphomycete communities to enhanced stream retention in areas impacted by commercial forestry. Freshwater Biology, 47, 313–323.

    Article  Google Scholar 

  • Lecerf, A., Dobson, M., Dang, C. K., & Chauvet, E. (2005). Riparian plant species loss alters trophic dynamics in detritus-based stream ecosystems. Oecologia, 146, 432–442.

    Article  PubMed  Google Scholar 

  • Lecerf, A., Marie, G., Kominoski, J. S., LeRoy, C. J., Bernadet, C., & Swan, C. M. (2011). Incubation time, functional litter diversity, and habitat characteristics predict litter-mixing effects on decomposition. Ecology, 92, 160–169.

    Article  PubMed  Google Scholar 

  • Letourneau, A., Seena, S., Marvanová, L., & Bärlocher, F. (2010). Potential use of barcoding to identify aquatic hyphomycetes. Fungal Diversity, 40, 51–64.

    Article  Google Scholar 

  • Lima-Fernandes, E., Fernandes, I., Geraldes, P., Pereira, A., Cássio, F., & Pascoal, C. (2015). Eutrophication modulates plant-litter diversity effects on litter decomposition in streams. Freshwater Science, 34, 31–41.

    Article  Google Scholar 

  • Loreau, M., & Hector, A. (2001). Partitioning selection and complementarity in biodiversity experiments. Nature, 412, 72–76.

    Article  CAS  PubMed  Google Scholar 

  • Manerkar, M. A., Seena, S., & Bärlocher, F. (2008). Q-RT-PCR for assessing archaea, bacteria, and fungi during leaf decomposition in a stream. Microbial Ecology, 56, 467–473.

    Article  CAS  PubMed  Google Scholar 

  • Manzoni, S., Trofymow, J. A., Jackson, R. B., & Porporato, A. (2010). Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecological Monographs, 80, 89–106.

    Article  Google Scholar 

  • Martínez, A., Larrañaga, A., Pérez, J., Descals, E., Basaguren, A., & Pozo, J. (2013). Effects of pine plantations on structural and functional attributes of forested streams. Forest Ecology and Management, 310, 147–155.

    Article  Google Scholar 

  • McArthur, F. A., Baerlocher, M. O., MacLean, N. A. B., Hiltz, M. D., & Bärlocher, F. (2001). Asking probing questions: Can fluorescent in situ hybridization identify and localise aquatic hyphomycetes on leaf litter? International Review of Hydrobiology, 86, 429–438.

    Article  Google Scholar 

  • Medeiros, A. O., Pascoal, C., & Graça, M. A. S. (2009). Diversity and activity of aquatic fungi under low oxygen conditions. Freshwater Biology, 54, 142–149.

    Article  Google Scholar 

  • Melillo, J. M., Aber, J. D., & Muratore, J. F. (1982). Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63, 621–626.

    Article  CAS  Google Scholar 

  • Mille-Lindblom, C., von Wachenfeldt, E., & Tranvik, L. J. (2004). Ergosterol as a measure of living fungal biomass: Persistence in environmental samples after fungal death. Journal of Microbiological Methods, 59, 253–262.

    Article  CAS  PubMed  Google Scholar 

  • Mooshammer, M., Wanek, W., Zechmeister-Boltenstern, S., & Richter, A. (2014). Stoichiometric imbalances between terrestrial decomposer communities and their resources: Mechanisms and implications of microbial adaptations to their resources. Frontiers in Microbiology, 5, 22–22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mora-Gómez, J., Boix, D., Duarte, S., Cássio, F., Pascoal, C., Elosegi, A., & Romaní, A. M. (2020). Legacy of summer drought on autumnal leaf litter processing in a temporary mediterranean stream. Ecosystems, 23, 989–1003.

    Article  CAS  Google Scholar 

  • Nikolcheva, L. G., & Bärlocher, F. (2002). Phylogeny of Tetracladium based on 18S rDNA. Czech Mycology, 53, 285–295.

    Article  Google Scholar 

  • Nikolcheva, L. G., & Bärlocher, F. (2004). Taxon-specific fungal primers reveal unexpectedly high diversity during leaf decomposition in a stream. Mycological Progress, 3, 41–49.

    Article  Google Scholar 

  • Nikolcheva, L. G., & Bärlocher, F. (2005). Seasonal and substrate preferences of fungi colonizing leaves in streams: Traditional versus molecular evidence. Environmental Microbiology, 7, 270–280.

    Article  CAS  PubMed  Google Scholar 

  • Nikolcheva, L. G., Cockshutt, A. M., & Bärlocher, F. (2003). Determining diversity of freshwater fungi on decaying leaves: Comparison of traditional and molecular approaches. Applied and Environmental Microbiology, 69, 2548–2554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascoal, C., & Cássio, F. (2004). Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Applied and Environmental Microbiology, 70, 5266–5273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascoal, C., & Cássio, F. (2008). Linking fungal diversity to the functioning of freshwater ecosystems. In K. R. Sridhar, F. Bärlocher, & K. D. Hyde (Eds.), Novel techniques and ideas in mycology (pp. 1–15). Fungal Diversity Press.

    Google Scholar 

  • Pascoal, C., Cássio, F., Marcotegui, A., Sanz, B., & Gomes, P. (2005). Role of fungi, bacteria, and invertebrates in leaf litter breakdown in a polluted river. Journal of the North American Benthological Society, 24, 784–797.

    Article  Google Scholar 

  • Pascoal, C., Cássio, F., Nikolcheva, L., & Bärlocher, F. (2010). Realized fungal diversity increases functional stability of leaf litter decomposition under zinc stress. Microbial Ecology, 59, 84–93.

    Article  CAS  PubMed  Google Scholar 

  • Pascoal, C., Marvanová, L., & Cássio, F. (2005). Aquatic hyphomycete diversity in streams of Northwest Portugal. Fungal Diversity, 19, 109–128.

    Google Scholar 

  • Peláez, F., Platas, G., Collado, J., & Díez, M. T. (1996). Infraspecific variation in two species of aquatic hyphomycetes assessed by RAPD analysis. Mycological Research, 100, 831–837.

    Article  Google Scholar 

  • Pereira, A., Geraldes, P., Lima-Fernandes, E., Fernandes, I., Cássio, F., & Pascoal, C. (2016). Structural and functional measures of leaf-associated invertebrates and fungi as predictors of stream eutrophication. Ecological Indicators, 69, 648–656.

    Article  CAS  Google Scholar 

  • Pérez, J., Galán, J., Descals, E., & Pozo, J. (2014). Effects of fungal inocula and habitat conditions on alder and eucalyptus leaf litter decomposition in streams of Northern Spain. Microbial Ecology, 67, 245–255.

    Article  PubMed  Google Scholar 

  • Pimentão, A. R., Pascoal, C., Castro, B. B., & Cássio, F. (2020). Fungistatic effect of agrochemical and pharmaceutical fungicides on non-target aquatic decomposers does not translate into decreased fungi- or invertebrate-mediated decomposition. Science of the Total Environment, 712, 135676.

    Article  CAS  Google Scholar 

  • Pope, C. A., Halvorson, H. M., Findlay, R. H., Francoeur, S. N., & Kuehn, K. A. (2020). Light and temperature mediate algal stimulation of heterotrophic activity on decomposing leaf litter. Freshwater Biology, 65, 1210–1222.

    Article  CAS  Google Scholar 

  • Pradhan, A., Seena, S., Pascoal, C., & Cássio, F. (2011). Can metal nanoparticles be a threat to microbial decomposers of plant litter in streams? Microbial Ecology, 62, 58–68.

    Article  CAS  PubMed  Google Scholar 

  • Rajashekhar, M., & Kaveriappa, K. M. (2003). Diversity of aquatic hyphomycetes in the aquatic ecosystems of the Western Ghats of India. Hydrobiologia, 501, 167–177.

    Article  Google Scholar 

  • Raviraja, N. S., Nikolcheva, L. G., & Barlocher, F. (2006). Fungal growth and leaf decomposition are affected by amount and type of inoculum and by external nutrients. Sydowia, 58, 91–104.

    Google Scholar 

  • Rico, A., Dimitrov, M. R., Van Wijngaarden, R. P. A., Satapornvanit, K., Smidt, H., & Van den Brink, P. J. (2014). Effects of the antibiotic enrofloxacin on the ecology of tropical eutrophic freshwater microcosms. Aquatic Toxicology, 147, 92–104.

    Article  CAS  PubMed  Google Scholar 

  • Romaní, A. M., Fischer, H., Mille-Lindblom, C., & Tranvik, L. J. (2006). Interactions of bacteria and fungi on decomposing litter: Differential extracellular enzyme activities. Ecology, 87, 2559–2569.

    Article  PubMed  Google Scholar 

  • Rosemond, A. D., Benstead, J. P., Bumpers, P. M., Gulis, V., Kominoski, J. S., Manning, D. W. P., Suberkropp, K., & Wallace, J. B. (2015). Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science, 347, 1142–1145.

    Article  CAS  PubMed  Google Scholar 

  • Sales, M. A., Gonçalves, J. F., Dahora, J. S., & Medeiros, A. O. (2015). Influence of leaf quality in microbial decomposition in a headwater stream in the Brazilian Cerrado: A 1-year study. Microbial Ecology, 69, 84–94.

    Article  CAS  PubMed  Google Scholar 

  • Sampaio, A., Cortes, R., & Leão, C. (2004). Yeast and macroinvertebrate communities associated with leaf litter decomposition in a second order stream. International Review of Hydrobiology, 89, 453–466.

    Article  Google Scholar 

  • Sampaio, A., Sampaio, J. P., & Leão, C. (2007). Dynamics of yeast populations recovered from decaying leaves in a nonpolluted stream: A 2-year study on the effects of leaf litter type and decomposition time. FEMS Yeast Research, 7, 595–603.

    Article  CAS  PubMed  Google Scholar 

  • Sardans, J., Rivas-Ubach, A., & Peñuelas, J. (2012). The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: A review and perspectives. Biogeochemistry, 111, 1–39.

    Article  Google Scholar 

  • Schloss, P.D., Girard, R.A., Martin, T., Edwards, J. & Thrash, J.C. (2016) Status of the archaeal and bacterial census: an update. mBio, 7, e00201–00216.

    Google Scholar 

  • Seena, S., Bärlocher, F., Sobral, O., Gessner, M. O., Dudgeon, D., McKie, B. G., Chauvet, E., Boyero, L., Ferreira, V., Frainer, A., Bruder, A., Matthaei, C. D., Fenoglio, S., Sridhar, K. R., Albariño, R. J., Douglas, M. M., Encalada, A. C., Garcia, E., Ghate, S. D., … Graça, M. A. S. (2019). Biodiversity of leaf litter fungi in streams along a latitudinal gradient. Science of the Total Environment, 661, 306–315.

    Article  CAS  Google Scholar 

  • Seena, S., Duarte, S., Pascoal, C., & Cássio, F. (2012). Intraspecific variation of the aquatic fungus Articulospora tetracladia: An ubiquitous perspective. PLoS ONE, 7, e35884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seena, S., Graça, D., Bartels, A., & Cornut, J. (2019). Does nanosized plastic affect aquatic fungal litter decomposition? Fungal Ecology, 39, 388–392.

    Article  Google Scholar 

  • Seena, S., Marvanová, L., Letourneau, A., & Bärlocher, F. (2018). Articulospora – Phylogeny vs morphology. Fungal Biology, 122, 965–976.

    Article  PubMed  Google Scholar 

  • Seena, S., & Monroy, S. (2016). Preliminary insights into the evolutionary relationships of aquatic hyphomycetes and endophytic fungi. Fungal Ecology, 19, 128–134.

    Article  Google Scholar 

  • Seena, S., Pascoal, C., Marvanova, L., & Cassio, F. (2010). DNA barcoding of fungi: A case study using ITS sequences for identifying aquatic hyphomycete species. Fungal Diversity, 44, 77–87.

    Article  Google Scholar 

  • Seena, S., Sobral, O., & Cano, A. (2020). Metabolomic, functional, and ecologic responses of the common freshwater fungus Neonectria lugdunensis to mine drainage stress. Science of the Total Environment, 718, 137359.

    Article  CAS  Google Scholar 

  • Seena, S., Wynberg, N., & Bärlocher, F. (2008). Fungal diversity during leaf decomposition in a stream assessed through clone libraries. Fungal Diversity, 30, 1–14.

    Google Scholar 

  • Sinsabaugh, R. L., & Follstad Shah, J. J. (2011). Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: The growth rate hypothesis in reverse. Biogeochemistry, 102, 31–43.

    Article  CAS  Google Scholar 

  • Sinsabaugh, R. L., Manzoni, S., Moorhead, D. L., & Richter, A. (2013). Carbon use efficiency of microbial communities: Stoichiometry, methodology and modelling. Ecology Letters, 16, 930–939.

    Article  PubMed  Google Scholar 

  • Solé, M., Fetzer, I., Wennrich, R., Sridhar, K. R., Harms, H., & Krauss, G. (2008). Aquatic hyphomycete communities as potential bioindicators for assessing anthropogenic stress. Science of the Total Environment, 389, 557–565.

    Article  CAS  Google Scholar 

  • Sridhar, K. R., & Bärlocher, F. (1994). Viability of aquatic hyphomycete conidia in foam. Canadian Journal of Botany, 72, 106–110.

    Article  Google Scholar 

  • Sridhar, K. R., & Bärlocher, F. (2011). Reproduction of aquatic hyphomycetes at low concentrations of Ca2+, Zn2+, Cu2+, and Cd2+. Environmental Toxicology and Chemistry, 30, 2868–2873.

    Article  CAS  PubMed  Google Scholar 

  • Sridhar, K. R., Duarte, S., Cássio, F., & Pascoal, C. (2009). The role of early fungal colonizers in leaf-litter decomposition in Portuguese streams impacted by agricultural runoff. International Review of Hydrobiology, 94, 399–409.

    Article  CAS  Google Scholar 

  • Stegen, J. C., Lin, X., Konopka, A. E., & Fredrickson, J. K. (2012). Stochastic and deterministic assembly processes in subsurface microbial communities. The ISME Journal, 6, 1653–1664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stelzer, R. S., Heffernan, J., & Likens, G. E. (2003). The influence of dissolved nutrients and particulate organic matter quality on microbial respiration and biomass in a forest stream. Freshwater Biology, 48, 1925–1937.

    Article  CAS  Google Scholar 

  • Sterner, R. W., & Elser, J. J. (2002). Stochiometry and Homeostasis. In R. W. Sterner & J. J. Elser (Eds.), Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. (pp. 2–43). Princeton University Press.

    Google Scholar 

  • Suberkropp, K. (1984). Effect of temperature on seasonal occurrence of aquatic hyphomycetes. Transactions of the British Mycological Society, 82, 53–62.

    Article  Google Scholar 

  • Suberkropp, K. (1991). Relationships between growth and sporulation of aquatic hyphomycetes on decomposing leaf litter. Mycological Research, 95, 843–850.

    Article  Google Scholar 

  • Suberkropp, K., Gessner, M. O., & Kuehn, K. A. (2020). Fungal growth rates and production. In F. Bärlocher, M. O. Gessner, & M. A. S. Graça (Eds.), Methods to study litter decomposition. (pp. 257–264). Springer.

    Chapter  Google Scholar 

  • Suberkropp, K., Godshalk, G. L., & Klug, M. J. (1976). Changes in the chemical composition of leaves during processing in a woodland stream. Ecology, 57, 720–727.

    Article  CAS  Google Scholar 

  • Suberkropp, K., & Klug, M. J. (1976). Fungi and bacteria associated with leaves during processing in a woodland stream. Ecology, 57, 707–719.

    Article  Google Scholar 

  • Tlili, A., Berard, A., Blanck, H., Bouchez, A., Cássio, F., Eriksson, K. M., Morin, S., Montuelle, B., Navarro, E., Pascoal, C., Pesce, S., Schmitt-Jansen, M., & Behra, R. (2016). Pollution-induced community tolerance (PICT): Towards an ecologically relevant risk assessment of chemicals in aquatic systems. Freshwater Biology, 61, 2141–2151.

    Article  CAS  Google Scholar 

  • Tlili, A., Jabiol, J., Behra, R., Gil-Allué, C., & Gessner, M. O. (2017). Chronic exposure effects of silver nanoparticles on stream microbial decomposer communities and ecosystem functions. Environmental Science & Technology, 51, 2447–2455.

    Article  CAS  Google Scholar 

  • Treton, C., Chauvet, E., & Charcosset, J.-Y. (2004). Competitive interaction between two aquatic hyphomycete species and increase in leaf litter breakdown. Microbial Ecology, 48, 439–446.

    Article  CAS  PubMed  Google Scholar 

  • Vellend, B. M. (2010). Conceptual synthesis in community ecology. The Quarterly Review of Biology, 85, 183–206.

    Article  PubMed  Google Scholar 

  • Woodward, G., Gessner, M. O., Giller, P. S., Gulis, V., Hladyz, S., Lecerf, A., Malmqvist, B., McKie, B. G., Tiegs, S. D., Cariss, H., Dobson, M., Elosegi, A., Ferreira, V., Graça, M. A. S., Fleituch, T., Lacoursière, J. O., Nistorescu, M., Pozo, J., Risnoveanu, G., … Chauvet, E. (2012). Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science, 336, 1438–1440.

    Article  CAS  PubMed  Google Scholar 

  • Wurzbacher, C., Grimmett, I. J. & Bärlocher, F. (2015) Metabarcoding-based fungal diversity on coarse and fine particulate organic matter in a first-order stream in Nova Scotia, Canada. F1000Research, 4, 1378–1378.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia Pascoal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pascoal, C., Fernandes, I., Seena, S., Danger, M., Ferreira, V., Cássio, F. (2021). Linking Microbial Decomposer Diversity to Plant Litter Decomposition and Associated Processes in Streams. In: Swan, C.M., Boyero, L., Canhoto, C. (eds) The Ecology of Plant Litter Decomposition in Stream Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-72854-0_9

Download citation

Publish with us

Policies and ethics