Skip to main content
Log in

Potential use of barcoding to identify aquatic hyphomycetes

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Tetracladium is a common aquatic hyphomycete genus, whose taxonomy has been based on the morphology and development of asexual spores. Ecological surveys have relied almost exclusively on spore morphology. Since selective pressures have resulted in convergent shapes, misidentifications are a concern. To supplement morphological information, we determined COX1, ITS and D1/D2 sequences as potential barcodes on 21 strains belonging to 7 described Tetracladium species and an unidentified strain. Attempts to amplify the IGS region were unsuccessful. The ratio of intraspecific to interspecific variability was optimal with ITS, which also provided the intuitively most acceptable cladogram. Typical conidia and their variability for the seven described species are illustrated. Internal node reliability depended less on total sequence length and more on the mixture of conserved and variable regions used to build cladograms. This finding can be exploited for quickly increasing phylogenetic accuracy without greatly increasing the amount of amplification and sequencing. The results have important implications for identifying freshwater hyphomycetes in the field but further work is required to establish if this method works with plant pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arora DK, Hirsch PR, Kerry BR (1996) PCR-based molecular discrimination of Verticillium chlamydosporium isolates. Mycol Res 100:801–809

    Article  CAS  Google Scholar 

  • Aveskamp MM, De Gruyter J, Crous PW (2008) Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Divers 31:1–18

    Google Scholar 

  • Bärlocher F (ed) (1992a) The ecology of aquatic hyphomycetes. Springer-Verlag, Berlin

    Google Scholar 

  • Bärlocher F (1992b) Stream ecology and its relevance to aquatic mycology. In: Bärlocher F (ed) The ecology of aquatic hyphomycetes. Springer-Verlag, Berlin, pp 16–37

    Google Scholar 

  • Bärlocher F (2005) Freshwater fungal communities. In: Dighton J, Oudemans P, White J (eds) Chapter in: The fungal community, 3rd edn. Taylor & Francis, Boca Raton, pp 39–59

    Google Scholar 

  • Bärlocher F, Charette N, Letourneau A, Nikolcheva LG, Sridhar KR (2009) Sequencing DNA extracted from single conidia of aquatic hyphomycetes. Fungal Ecology, in press

  • Baschien C, Marvanová L, Szewzyk U (2006) Phylogeny of selected aquatic hyphomycetes based on morphological and molecular data. Nova Hedwig 83:311–352

    Article  Google Scholar 

  • Belliveau M, Bärlocher F (2005) Molecular evidence confirms multiple origin of aquatic hyphomycetes. Mycol Res 109:1407–1417

    Article  CAS  PubMed  Google Scholar 

  • Cai L, Hyde KD, Tsui CKM (2006) Genera of freshwater fungi. Fungal Divers Res Ser 18:1–261

    Google Scholar 

  • Cai L et al (2009). Polyphasic approach to Colletotrichum. Fungal Divers 39: xx–xx

  • Campbell J, Shearer C, Marvanová L (2006) Evolutionary relationships among aquatic anamorphs and teleomorphs: Lemonniera, Margaritispora, and Goniopila. Mycol Res 110:1025–1033

    Article  PubMed  Google Scholar 

  • Das M, Royer TV, Leff LG (2008) Fungal communities on decaying leaves in streams: a comparison of two leaf species. Mycol Progr 7:267–275

    Article  Google Scholar 

  • Descals E (1987) Muestreo preliminar de hongos ingoldianos de Cataluña. Rev Ibér Micol 4:17–32

    Google Scholar 

  • Descals E (1997) Ingoldian fungi: some field and laboratory techniques. Boll Soc Hist Nat Balears 40:169–221

    Google Scholar 

  • Descals E, Rodríguez Pérez J (2002) Bases corológicas de Flora Micológica Ibérica. Números 1933–2069. Madrid, pp 200

  • Descals E, Webster J (1983) Four new staurosporous hyphomycetes from mountain streams. Trans Br Mycol Soc 80:67–75

    Article  Google Scholar 

  • Dix NJ, Webster J (1995) Fungal ecology. Chapman & Hall, London

    Google Scholar 

  • Domsch KH, Gams W, Anderson T-H (2007) Compendium of soil fungi, 2nd edn. IHW-Verlag, Eching

    Google Scholar 

  • Druzhinina IS, Kopchinskiy AG, Komoj M, Bissett J, Szakacs G, Kubicek CP (2005) An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42:813–828

    Article  CAS  PubMed  Google Scholar 

  • Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basisiomycetous yeast as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371

    CAS  PubMed  Google Scholar 

  • Geiser DM, Jiménez-Gasco M, Kang S, Makalowska I, Veerarahavan N, Ward T, Zhang N, Kuldau G, O’Donnell K (2004) A DNA sequence database for identifying Fusarium. Eur J Plant Pathol 110:473–479

    Article  CAS  Google Scholar 

  • Gessner MO, Gulis V, Kuehn KA, Chauvet E, Suberkropp K (2007) Fungal decomposers of plant litter in aquatic ecosystems. In: Kubicek CP, Druzhinina IS, Druzhinina IS (eds) The mycota, vol. IV, environmental and microbial relationships. Springer, Berlin, pp 301–324

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond 270:313–321

    Article  CAS  Google Scholar 

  • Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2(10). doi:10.1371/journal.pbio.0020312

  • Hennebert GL, Sutton BC (1994) Unitary parameters in conidiogenesis. In: Hawksworth DL (ed) Ascomycete systematics. Problems and perspectives in the nineties. NATO ASI series, series A: Life sciences, vol. 269. Plenum, New York, pp 65–76

    Google Scholar 

  • Huang WY, Cai YZ, Surveswaran S, Hyde KD, Corke H, Sun M (2009) Molecular phylogenetic identification of endophytic fungi isolated from three Artemisia species. Fungal Divers 36:69–88

    CAS  Google Scholar 

  • Hyde et al (2009a) Colletotrichum: a catalogue of confusion. Fungal Diversity 39: xx–xx

  • Hyde et al (2009b) Current names in Colletotrichum. Fungal Diversity 39: xx–xx

  • Ingold CT, Ellis EA (1952) On some hyphomycete spores, including those of Tetracladium maxilliformis, from Wheatfen. Trans Br Mycol Soc 35:158–161

    Article  Google Scholar 

  • Jeewon R, Liew ECY, Hyde KD (2002) Phylogenetic relationships of Pestalotiopsis and allied genera inferred from ribosomal DNA sequences and morphological characters. Mol Phylogenet Evol 25:378–392

    Article  CAS  PubMed  Google Scholar 

  • Jeewon R, Liew ECY, Simpson JA, Hodgkiss IJ, Hyde KD (2003) Phylogenetic significance of morphological characters in the taxonomy of Pestalotiopsis species. Mol Phylogenet Evol 27:372–383

    Article  CAS  PubMed  Google Scholar 

  • Kinzig AP, Pacala SW, Tilman D (eds) (2001) The functional consequences of biodiversity. Princeton University Press, Princeton

    Google Scholar 

  • Knudsen B, Knudsen T, Flensborg M, Sandmann H, Heltzen M, Anderson A, Dickenson M, Bardram J, Steffensen PJ, Monsted S, Lauritzen T, Forsberg R, Thanbichler A, Bendtsen JD, Gorlitz L, Rasmussen J, Tordrup D, Vaerum M, Nygaard Ravn M, Hachenberg C (2008) CLC DNA Workbench version 3.6.1. CLC Bio

  • Kõljalg U, Larsson K-H, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Vrålstad T, Ursing BM (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068

    Article  PubMed  Google Scholar 

  • Kurtzman DP (1994) Molecular taxonomy of the yeasts. Yeast 10:1727–1740

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26 S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73:331–371

    Article  CAS  PubMed  Google Scholar 

  • Kvas M, Marasas WFO, Wingfield BD, Wingfield MJ, Steenkamp ET (2009) Diversity and evolution of Fusarium species in the Gibberella fujikuroi complex. Fungal Divers 34:1–21

    Google Scholar 

  • Loreau M, Naeem S, Inchausti P (eds) (2002) Biodiversity and ecosystem functioning. Oxford University Press, Oxford

    Google Scholar 

  • Marvanová L, Bärlocher F (2001) Hyphomycetes from Canadian streams. VI. Rare species in pure cultures. Czech Mycol 53:1–28

    Google Scholar 

  • Matsushima T (1981) Matsushima mycological memoirs no. 2. Matsushima Fungus Collection, Kobe, pp 68

  • Matsushima T (1983). Matsushima mycological memoirs no. 3. Matsushima Fungus Collection, Kobe, pp 89

  • Min XJ, Hickey DA (2007) BARCODING: assessing the effect of varying sequence length on DNA barcoding of fungi. Mol Ecol Notes 7:365–373

    Article  CAS  PubMed  Google Scholar 

  • Nikolcheva LG, Bärlocher F (2002) Phylogeny of Tetracladium based on 18S rDNA. Czech Mycol 53:285–295

    Google Scholar 

  • Nikolcheva LG, Bärlocher F (2004) Taxon-specific fungal primers reveal unexpectedly high diversity during leaf decomposition in a stream. Mycol Progr 3:41–50

    Article  Google Scholar 

  • Nikolcheva LG, Cockshutt AM, Bärlocher F (2003) Diversity of freshwater fungi on decaying leaves—comparing traditional and molecular approaches. Appl Environ Microbiol 69:2548–2554

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell K, Cigelnik E, Nirenberg HI (1998) Molecular systematics and phylogeography of the Giberella fujikoroi species complex. Mycologia 90:465–493

    Article  Google Scholar 

  • Pryce TM, Palladino S, Kay ID, Coombs GW (2003) Rapid identificaiton of fungi by sequencing the ITS1 and ITS2 regions using an automated capillary electrophoresis system. Med Mycol 41:369–381

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A (1996) Se-Al: sequence alignment editor. Available at http://evolve.zoo.ox.ac.uk/

  • Ratnasingham S, Hebert PDN (2007) BOLD: the barcode of life data system (www.barcodinglife.org). Mol Ecol Notes 7:355-364

  • Roldán A, Descals E, Honrubia M (1987a) Notes on Tetracladium apiense Sinclair and Eicker. Cryptogam Mycol 8:219–225

    Google Scholar 

  • Roldán A, Descals E, Honrubia M (1987b) Hifomicetos acuáticos en la Serranía de Cuenca. Bol Soc Micol Madr 11:179–184

    Google Scholar 

  • Roldán A, Descals E, Honrubia M (1989) Pure culture studies on Tetracladium. Mycol Res 93:452–465

    Article  Google Scholar 

  • Rossman A (2007) Report of the planning workshop for all fungi DNA barcoding. Inoculum 58(6):1–5

    Google Scholar 

  • Samson RA, Seifert KA, Kuijpers AFA, Houbraken JAMP, Frisvad JC (2004) Phylogenetic analysis of Penicillium subgenus Penicillium using partial β-tubulin sequences. Stud Mycol 49:175–200

    Google Scholar 

  • Santos JM, Phillips AJL (2009) Resolving the complex of Diaporthe (Phomopsis) species occurring on Foeniculum vulgare in Portugal. Fungal Divers 34:111–125

    Google Scholar 

  • Seena S, Wynberg N, Bärlocher F (2008) Fungal diversity during leaf decomposition in a stream assessed through clone libraries. Fungal Divers 30:1–14

    Google Scholar 

  • Seifert KA, Samson RA, deWaard JR, Houbraken J, Levesque CA, Moncalvo JM, Louis-Seize G, Herbert PDN (2007) Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proc Natl Acad Sci 104:3901–3906

    Article  CAS  PubMed  Google Scholar 

  • Sinclair RC, Eicker A (1981) Tetracladium apiense, a new aquatic species from South Africa. Trans Br Mycol Soc 76:515–517

    Article  Google Scholar 

  • Summerbell RC, Lévesque CA, Seifert KA, Bovers M, Fell JW, Diaz MR, Boekhout T, de Hoog GS, Stalpers J, Crous PW (2005) Microcoding: the second step in DNA barcoding. Philos Trans R Soc B 360:1897–1903

    Article  CAS  Google Scholar 

  • Swofford DL (1998) PAUP*. Phylogenetic analysis using parsimony (*and Other Methods). Version 4. Sinauer, Sunderland, Massachusetts

  • Takano Y, Horiguchi T (2005) Acquiring scanning electron microscopal, light microscopal and multiple gene sequence data from a single dinoflagellate cell. J Phycol 42:251–256

    Article  Google Scholar 

  • Tang AMC, Jeewon R, Hyde KD (2009) A re-evaluation of the evolutionary relationships within the Xylariaceae based on ribosomal and protein-coding gene sequences. Fungal Divers 34:127–155

    Google Scholar 

  • Tsui CKM, Hyde KD (2003) Freshwater mycology. Fungal Divers Res Ser 10:1–350

    Google Scholar 

  • Wannathes N, Desjardin DE, Hyde KD, Perry BA, Lumyong S (2009) A monograph of Marasmius (Basidiomycota) from Northern Thailand based on morphological and molecular (ITS sequences) data. Fungal Divers 37:209–306

    Google Scholar 

  • Wulanderi NF, To-Anun C, Hyde KD, Duong LM, de Gruyter J, Meffert JP, Crous PW (2009) Phyllosticta citriasiana sp. nov., the cause of Citrus tan spot of Citrus maxima in Asia. Fungal Divers 34:23–39

    Google Scholar 

  • Zhang Y, Fournier J, Pointing SB, Hyde KD (2008) Are Melanomma pulvis-pyrius and Trematosphaeria pertusa congeneric? Fungal Divers 33:47–60

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by a Discovery grant from the Natural Science and Engineering Research Council of Canada to FB. It is a part of the project MSM00216222416 (LM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bärlocher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Letourneau, A., Seena, S., Marvanová, L. et al. Potential use of barcoding to identify aquatic hyphomycetes. Fungal Diversity 40, 51–64 (2010). https://doi.org/10.1007/s13225-009-0006-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-009-0006-8

Keywords

Navigation