Skip to main content

How Toxicants Influence Organic Matter Decomposition in Streams

  • Chapter
  • First Online:
The Ecology of Plant Litter Decomposition in Stream Ecosystems

Abstract

The ecosystem process of organic matter decomposition (OMD) in fresh waters is realised by a complex interaction among different groups of microorganisms (including bacteria and fungi) and detritivorous animals. As a consequence of this multi-level interaction, biotic (e.g., competition, predation) and abiotic (e.g., flow, temperature, toxicants) factors may influence the performance of either (micro)organism group with potential feedback to detritivores, and in turn OMD. In this chapter, we discuss how the abiotic factor toxicants affects OMD. We organised the chapter along a conceptual model that pinpoints groups of organisms and their interactions, which are critical for OMD. We focus on four toxicant classes (i.e., fungicides, antibiotics, insecticides and metals) that specifically affect fungi, bacteria or detritivorous invertebrates or have a broad activity spectrum. We summarize the effects caused by these toxicant classes on relevant groups of organisms, which are often determined by the toxicant mode of action. On this basis, we develop effect pathways leading to alterations in OMD dynamics. Finally, we discuss whether and how these effect pathways may support the interpretation of effect patterns observed under (semi-)field conditions and highlight research gaps we suggest addressing in order to improve understanding and prediction power.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel, T., & Bärlocher, F. (1988). Uptake of cadmium by Gammarus fossarum (Amphipoda) from food and water. Journal of Applied Ecology, 25, 223–231.

    Article  CAS  Google Scholar 

  • Adamovsky, O., Buerger, A. N., Wormington, A. M., Ector, N., Griffitt, R. J., Bisesi, J. H., et al. (2018). The gut microbiome and aquatic toxicology: An emerging concept for environmental health. Environmental Toxicology and Chemistry, 37, 2758–2775.

    Article  CAS  PubMed  Google Scholar 

  • Agatz, A., Ashauer, R., & Brown, C. D. (2014). Imidacloprid perturbs feeding of Gammarus pulex at environmentally relevant concentrations. Environmental Toxicology and Chemistry, 33, 648–653.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, N. H., & Sedell, J. R. (1979). Detritus processing by macroinvertebrates in stream ecosystems. Annual Review of Entomology, 24, 351–377.

    Article  Google Scholar 

  • Arsuffi, T. L., & Suberkropp, K. (1985) Selective feeding by stream caddisfly (Trichoptera) detritivores on leaves with fungal-colonized patches Oikos, 45, 50–58.

    Google Scholar 

  • Arsuffi, T. L., & Suberkropp, K. (1989). Selective feeding by shredders on leaf-colonizing stream fungi: comparison of macroinvertebrate taxa. Oecologia, 79, 30–37.

    Article  CAS  PubMed  Google Scholar 

  • Artigas, J., Majerholc, J., Foulquier, A., Margoum, C., Volat, B., Neyra, M., et al. (2012). Effects of the fungicide tebuconazole on microbial capacities for litter breakdown in streams. Aquatic Toxicology, 122–123, 197–205.

    Article  PubMed  Google Scholar 

  • Artigas, J., Rossi, F., Gerphagnon, M., & Mallet, C. (2017). Sensitivity of laccase activity to the fungicide tebuconazole in decomposing litter. Science of the Total Environment, 584–585, 1084–1092.

    Article  Google Scholar 

  • Arts, G. H. P., Buijse-Bogdan, L. L., Belgers, J. D. M., van Rhenen-Kersten, C. H., van Wijngaarden, R. P. A., Roessink, I., et al. (2006). Ecological impact in ditch mesocosms of simulated spray drift from a crop protection program for potatoes. Integrated Environmental Assessment and Management, 2, 105–125.

    Article  CAS  PubMed  Google Scholar 

  • Ashauer, R. (2016). Post-ozonation in a municipal wastewater treatment plant improves water quality in the receiving stream. Environmental Science Europe, 28, 1. https://doi.org/10.1186/s12302-12015-10068-z.

    Article  CAS  Google Scholar 

  • Auber, A., Roucaute, M., Togola, A., & Caquet, T. (2011). Structural and functional effects of conventional and low pesticide input crop-protection programs on benthic macroinvertebrate communities in outdoor pond mesocosms. Ecotoxicology, 20, 2042–2055.

    Article  CAS  PubMed  Google Scholar 

  • Azevedo, M. M., Carvalho, A., Pascoal, C., Rodrigues, F., & Cassio, F. (2007). Responses of antioxidant defenses to Cu and Zn stress in two aquatic fungi. Science of the Total Environment, 377, 233–243.

    Article  CAS  Google Scholar 

  • Baird, D. J., Brown, S. S., Lagadic, L., Liess, M., Maltby, L., Moreira-Santos, M., et al. (2007). In situ-based effects measures: Determining the ecological relevance of measured responses. Integrated Environmental Assessment and Management, 3, 259–267.

    Article  PubMed  Google Scholar 

  • Bärlocher, F. (1985). The role of fungi in the nutrition of stream invertebrates. Botanical Journal of the Linnean Society, 91, 83–94.

    Article  Google Scholar 

  • Bärlocher, F. (1991). Intraspecific hyphal interactions among aquatic hyphomycetes. Mycologia, 83, 82–88.

    Article  Google Scholar 

  • Bärlocher, F., & Kendrick, B. (1975). Assimilation efficiency of Gammarus pseudolimnaeus (Amphipoda) feeding on mycelium or autumn-shed leaves. Oikos, 26, 55–59.

    Article  Google Scholar 

  • Batista, D., Pascoal, C., & Cassio, E. (2012). Impacts of warming on aquatic decomposers along a gradient of cadmium stress. Environmental Pollution, 169, 35–41.

    Article  CAS  PubMed  Google Scholar 

  • Baudy, P., Zubrod, J. P., Röder, N., Baschien, C., Feckler, A., Schulz, R., et al. (2019). A glance into the black box: Novel species-specific quantitative real-time PCR assays to disentangle aquatic hyphomycete community composition. Fungal Ecology, 42,.

    Article  Google Scholar 

  • Bereswill, R., Golla, B., Streloke, M., & Schulz, R. (2012). Entry and toxicity of organic pesticides and copper in vineyard streams: Erosion rills jeopardise the efficiency of riparian buffer strips. Agriculture, Ecosystems & Environment, 146, 81–92.

    Article  CAS  Google Scholar 

  • Bernhardt, E. S., Rosi-Marshall, E. J., & Gessner, M. O. (2017). Synthetic chemicals as agents of global change. Frontiers in Ecology and the Environment, 15, 84–90.

    Article  Google Scholar 

  • Blanck, H., Wängberg, S.-A., & Morlander, S. (1988). Pollution-induced community tolerance—A new ecotoxicological tool. In J. Cairns & J. R. Pratt (Eds.), Functional testing of aquatic biota for estimating hazards of chemicals (pp. 219–230). Philadelphia, PA, USA: American society for testing and materials.

    Chapter  Google Scholar 

  • Böttger, R., Feibicke, M., Schaller, J., & Dudel, G. (2013). Effects of low-dosed imidacloprid pulses on the functional role of the caged amphipod Gammarus roeseli in stream mesocosms. Ecotoxicology and Environmental Safety, 93, 93–100.

    Article  PubMed  Google Scholar 

  • Boyero, L., Pearson, R. G., Dudgeon, D., Ferreira, V., Graça, M. A. S., Gessner, M. O., Boulton, A. J., Chauvet, E., Yule, C. M., Albarino, R. J., Ramirez, A., Helson, J. E., Callisto, M., Arunachalam, M., Chara, J., Figueroa, R., Mathooko, J. M., Gonçalves, J. F., Moretti, M.S. et al. (2012). Global patterns of stream detritivore distribution: Implications for biodiversity loss in changing climates. Global Ecology and Biogeography, 21, 134–141.

    Google Scholar 

  • Boyero, L., Pearson, R. G., Dudgeon, D., Graça, M. A. S., Gessner, M. O., Albarino, R. J., Ferreira, V., Yule, C. M., Boulton, A. J., Arunachalam, M., Callisto, M., Chauvet, E., Ramirez, A., Chara, J., Moretti, M. S., Gonçalves, J. F., Helson, J. E., Chara-Serna, A. M., Encalada, A. C. et al. (2011). Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology, 92, 1839–1848.

    Google Scholar 

  • Bray, J. P., Nichols, S. J., Keely-Smith, A., Thompson, R., Bhattacharyya, S., Gupta, S., et al. (2019). Stressor dominance and sensitivity-dependent antagonism: Disentangling the freshwater effects of an insecticide among co-occurring agricultural stressors. Journal of Applied Ecology, 56, 2020–2033.

    Article  CAS  Google Scholar 

  • Brett, M. T., Bunn, S. E., Chandra, S., Galloway, A. W. E., Guo, F., Kainz, M. J., et al. (2017). How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems? Freshwater Biology, 62, 833–853.

    Article  CAS  Google Scholar 

  • Brosed, M., Lamothe, S., & Chauvet, E. (2016). Litter breakdown for ecosystem integrity assessment also applies to streams affected by pesticides. Hydrobiologia, 773, 87–102.

    Article  Google Scholar 

  • Bundschuh, R., Bundschuh, M., Otto, M., & Schulz, R. (2019). Food-related exposure to systemic pesticides and pesticides from transgenic plants—Evaluation of aquatic test strategies. Environmental Science Europe, 31, 87.

    Article  Google Scholar 

  • Bundschuh, M., Gergs, R., Schadt, S., & Schulz, R. (2013). Do differences in sensitivity between native and invasive amphipods explain their coexistence in Lake Constance? A case study with lambda-cyhalothrin Chemosphere, 92, 483–489.

    Google Scholar 

  • Bundschuh, M., Hahn, T., Gessner, M. O., & Schulz, R. (2009). Antibiotics as a chemical stressor affecting an aquatic decomposer-detritivore system. Environmental Toxicology and Chemistry, 28, 197–203.

    Article  CAS  PubMed  Google Scholar 

  • Bundschuh, M., Hahn, T., Gessner, M. O., & Schulz, R. (2017). Antibiotic mixture effects on growth of the leaf-shredding stream detritivore Gammarus fossarum. Ecotoxicology, 26, 547–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bundschuh, M., & McKie, B. G. (2016). An ecological and ecotoxicological perspective on fine particulate organic matter in streams. Freshwater Biology, 61, 2063–2074.

    Article  CAS  Google Scholar 

  • Bundschuh, M., Zubrod, J. P., Klemm, P., Elsaesser, D., Stang, C., & Schulz, R. (2013). Effects of peak exposure scenarios on Gammarus fossarum using field relevant pesticide mixtures. Ecotoxicology and Environmental Safety, 95, 137–143.

    Google Scholar 

  • Bundschuh, M., Zubrod, J. P., Kosol, S., Maltby, L., Stang, C., Duester, L., et al. (2011). Fungal composition on leaves explains pollutant-mediated indirect effects on amphipod feeding. Aquatic Toxicology, 104, 32–37.

    Article  CAS  PubMed  Google Scholar 

  • Campos, D., Alves, A., Lemos, M. F. L., Correia, A., Soares, A. M. V. M., & Pestana, J. L. T. (2014). Effects of cadmium and resource quality on freshwater detritus processing chains: A microcosm approach with two insect species. Ecotoxicology, 23, 830–839.

    Article  CAS  PubMed  Google Scholar 

  • Caquet, T., Hanson, M. L., Roucaute, M., Graham, D. W., & Lagadic, L. (2007). Influence of isolation on the recovery of pond mesocosms from the application of an insecticide. II. Benthic macroinvertebrate responses. Environmental Toxicology and Chemistry, 26, 1280–1290.

    Article  CAS  PubMed  Google Scholar 

  • Carlisle, D. M., & Clements, W. H. (2005). Leaf litter breakdown, microbial respiration and shredder production in metal polluted streams. Freshwater Biology, 50, 380–390.

    Article  CAS  Google Scholar 

  • Chapman, P. M., Wang, F., Janssen, C., Persoone, G., & Allen, H. E. (1998). Ecotoxicology of metals in aquatic sediments: Binding and release, bioavailability, risk assessment, and remediation. Canadian Journal of Fisheries and Aquatic Sciences, 55, 2221–2243.

    Article  CAS  Google Scholar 

  • Chara-Serna, A. M., Epele, L. B., Morrissey, C. A., & Richardson, J. S. (2019). Nutrients and sediment modify the impacts of a neonicotinoid insecticide on freshwater community structure and ecosystem functioning. Science of the Total Environment, 692, 1291–1303.

    Article  Google Scholar 

  • Chara-Serna, A. M., & Richardson, J. S. (2018). Chlorpyrifos interacts with other agricultural stressors to alter stream communities in laboratory microcosms. Ecological Applications, 28, 162–176.

    Article  PubMed  Google Scholar 

  • Chonova, T., Keck, F., Labanowski, J., Montuelle, B., Rimet, F., & Bouchez, A. (2016). Separate treatment of hospital and urban wastewaters: A real scale comparison of effluents and their effect on microbial communities. Science of the Total Environment, 542, 965–975.

    Article  CAS  Google Scholar 

  • Cornejo, A., Pérez, J., Alonso, A., Lopez-Rojo, N., Monroy, S., & Boyero, L. (2020). A common fungicide impairs stream ecosystem functioning through effects on aquatic hyphomycetes and detritivorous caddisflies. Journal of Environmental Management, 263.

    Google Scholar 

  • Costantini, M. L., & Rossi, L. (2010). Species diversity and decomposition in laboratory aquatic systems: The role of species interactions. Freshwater Biology, 55, 2281–2295.

    Article  Google Scholar 

  • Cummins, K. W. (1973). Trophic relations of aquatic insects. Annual Reviews Entomology, 18, 183–206.

    Article  Google Scholar 

  • Cummins, K. W., Wilzbach, M. A., Gates, D. M., Perry, J. B., & Taliaferro, W. B. (1989). Shredders and riparian vegetation. BioScience, 39, 24–30.

    Article  Google Scholar 

  • Cuppen, J. G., Van den Brink, P. J., Camps, E., Uil, K. F., & Brock, T. C. (2000). Impact of the fungicide carbendazim in freshwater microcosms. I. Water quality, breakdown of particulate organic matter and responses of macroinvertebrates. Aquatic Toxicology, 48, 233–250.

    Article  CAS  PubMed  Google Scholar 

  • Daam, M. A., & Van den Brink, P. J. (2010). Implications of differences between temperate and tropical freshwater ecosystems for the ecological risk assessment of pesticides. Ecotoxicology, 19, 24–37.

    Article  CAS  PubMed  Google Scholar 

  • Dabrowski, J. M., & Schulz, R. (2003). Predicted and measured levels of azinphosmethyl in the Lourens River, South Africa: Comparison of runoff and spray drift. Environmental Toxicology and Chemistry, 22, 494–500.

    Article  CAS  PubMed  Google Scholar 

  • Dahl, B., & Blanck, H. (1996). Pollution-induced community tolerance (PICT) in periphyton communities established under tri-n-butyltin (TBT) stress in marine microcosms. Aquatic Toxicology, 34, 305–325.

    Article  CAS  Google Scholar 

  • Daughton, C. G., & Ternes, T. A. (1999). Pharmaceuticals and personal care products in the environment: Agents of subtle change. Environmental Health Perspectives, 107, 907–938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitrov, M. R., Kosol, S., Smidt, H., Buijse, L., Van den Brink, P. J., Van Wijngaarden, R. P., et al. (2014). Assessing effects of the fungicide tebuconazole to heterotrophic microbes in aquatic microcosms. Science of the Total Environment, 490, 1002–1011.

    Article  CAS  Google Scholar 

  • Duarte, S., Pascoal, C., Alves, A., Correia, A., & Cassio, F. (2008). Copper and zinc mixtures induce shifts in microbial communities and reduce leaf litter decomposition in streams. Freshwater Biology, 53, 91–101.

    CAS  Google Scholar 

  • Duarte, S., Pascoal, C., & Cassio, F. (2004). Effects of zinc on leaf decomposition by fungi in streams: studies in microcosms. Microbial Ecology, 48, 366–374.

    Article  CAS  PubMed  Google Scholar 

  • Duarte, S., Pascoal, C., & Cassio, F. (2009). Functional stability of stream-dwelling microbial decomposers exposed to copper and zinc stress. Freshwater Biology, 54, 1683–1691.

    Article  CAS  Google Scholar 

  • Englert, D., Bakanov, N., Zubrod, J. P., Schulz, R., & Bundschuh, M. (2017). Modeling re-mobilization of neonicotinoid residues from tree foliage in streams—A relevant exposure pathway in risk assessment? Environmental Science & Technology, 51, 1785–1794.

    Google Scholar 

  • Englert, D., Zubrod, J. P., Pietz, S., Stefani, S., Krauss, M., Schulz, R., & Bundschuh, M. (2017). Relative importance of dietary uptake and waterborne exposure for a leaf-shredding amphipod exposed to thiacloprid-contaminated leaves. Scientific Reports, 7, 16182. https://doi.org/10.11038/s41598-16017-16452-16189.

  • Englert, D., Zubrod, J. P., Neubauer, C., Schulz, R., & Bundschuh, M. (2018). UV-irradiation and leaching in water reduce the toxicity of imidacloprid-contaminated leaves to the aquatic leaf-shredding amphipod Gammarus fossarum. Environmental Pollution, 236, 119–125.

    Article  CAS  PubMed  Google Scholar 

  • Englert, D., Zubrod, J. P., Schulz, R., & Bundschuh, M. (2013). Effects of municipal wastewater on aquatic ecosystem structure and function in the receiving stream. Science of the Total Environment, 454–455, 401–410.

    Article  Google Scholar 

  • Feckler, A., Goedkoop, W., Konschak, M., Bundschuh, R., Kenngott, K. G. J., Schulz, R., et al. (2018). History matters: Heterotrophic microbial community structure and function adapt to multiple stressors. Global Change Biology, 24, e402–e415.

    Article  PubMed  Google Scholar 

  • Feckler, A., Goedkoop, W., Zubrod, J. P., Schulz, R., & Bundschuh, M. (2016). Exposure pathway-dependent effects of the fungicide epoxiconazole on a decomposer-detritivore system. Science of the Total Environment, 571, 992–1000.

    Article  CAS  Google Scholar 

  • Feckler, A., Schrimpf, A., Bundschuh, M., Bärlocher, F., Baudy, P., Cornut, J., et al. (2017). Quantitative real-time PCR as a promising tool for the detection and quantification of leaf-associated fungal species—A proof of principle using Alatospora pulchella. PLoS ONE, 12,.

    Article  PubMed  PubMed Central  Google Scholar 

  • Feckler, A., Thielsch, A., Schwenk, K., Schulz, R., & Bundschuh, M. (2012). Differences in the sensitivity among cryptic lineages of the Gammarus fossarum complex. Science of the Total Environment, 439, 158–164.

    Article  CAS  Google Scholar 

  • Fernandes, I., Duarte, S., Cassio, F., & Pascoal, C. (2009). Mixtures of zinc and phosphate affect leaf litter decomposition by aquatic fungi in streams. Science of the Total Environment, 407, 4283–4288.

    Article  CAS  Google Scholar 

  • Fernandez, D., Tummala, M., Schreiner, V. C., Duarte, S., Pascoal, C., Winkelmann, C., et al. (2016). Does nutrient enrichment compensate fungicide effects on litter decomposition and decomposer communities in streams? Aquatic Toxicology, 174, 169–178.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez, D., Voss, K., Bundschuh, M., Zubrod, J. P., & Schäfer, R. B. (2015). Effects of fungicides on decomposer communities and leaf decomposition in vineyard streams. Science of the Total Environment, 533, 40–48.

    Article  CAS  Google Scholar 

  • Ferreira, V., Koricheva, J., Duarte, S., Niyogi, D. K., & Guerold, F. (2016). Effects of anthropogenic heavy metal contamination on litter decomposition in streams—A meta-analysis. Environmental Pollution, 210, 261–270.

    Article  CAS  PubMed  Google Scholar 

  • Flemming, C. A., & Trevors, J. T. (1989). Copper toxicity and chemistry in the environment—A review. Water, Air, and Soil Pollution, 44, 143–158.

    Article  CAS  Google Scholar 

  • Funck, J. A., Clivot, H., Felten, V., Rousselle, P., Guerold, F., & Danger, M. (2013). Phosphorus availability modulates the toxic effect of silver on aquatic fungi and leaf litter decomposition. Aquatic Toxicology, 144–145, 199–207.

    Article  PubMed  Google Scholar 

  • García-Palacios, P., McKie, B. G., Handa, I. T., Frainer, A., & Hättenschwiler, S. (2016). The importance of litter traits and decomposers for litter decomposition: A comparison of aquatic and terrestrial ecosystems within and across biomes. Functional Ecology, 30, 819–829.

    Article  Google Scholar 

  • Gardeström, J., Ermold, M., Goedkoop, W., & Mckie, B. G. (2016). Disturbance history influences stressor impacts: Effects of a fungicide and nutrients on microbial diversity and litter decomposition. Freshwater Biology, 61, 2171–2184.

    Article  Google Scholar 

  • Gardham, S., Chariton, A. A., & Hose, G. C. (2015). Direct and indirect effects of copper-contaminated sediments on the functions of model freshwater ecosystems. Ecotoxicology, 24, 61–70.

    Article  CAS  PubMed  Google Scholar 

  • Gessner, M. O., Swan, C. M., Dang, C. K., Mckie, B. G., Bardgett, R. D., Wall, D. H., et al. (2010). Diversity meets decomposition. Trends in Ecology & Evolution, 25, 372–380.

    Article  Google Scholar 

  • Gonçalves, A. L., Lirio, A. V., Pratas, J., & Canhoto, C. (2011). Uranium contaminated water does not affect microbial activity but decreases feeding by the shredder Sericostoma vittatum. Fundamental and Applied Limnology, 179, 17–25.

    Article  CAS  Google Scholar 

  • Gorokhova, E., Rivetti, C., Furuhagen, S., Edlund, A., Ek, K., & Breitholtz, M. (2015). Bacteria-mediated effects of antibiotics on Daphnia nutrition. Environmental Science and Technology, 49, 5779–5787.

    Article  CAS  PubMed  Google Scholar 

  • Graça, M. A. S., Ferreira, V., Canhoto, C., Encalada, A. C., Guerrero-Bolano, F., Wantzen, K. M., et al. (2015). A conceptual model of litter breakdown in low order streams. International Review of Hydrobiology, 100, 1–12.

    Article  CAS  Google Scholar 

  • Graça, M. A. S., Maltby, L., & Calow, P. (1993). Importance of fungi in the diet of Gammarus pulex and Asellus aquaticus I: Feeding strategies. Oecologia, 93, 139–144.

    Article  CAS  PubMed  Google Scholar 

  • Gracia-Lor, E., Sancho, J. V., & Hernández, F. (2011). Multi-class determination of around 50 pharmaceuticals, including 26 antibiotics, in environmental and wastewater samples by ultra-high performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 1218, 2264–2275.

    Article  CAS  PubMed  Google Scholar 

  • Graf, N., Battes, K. P., Cimpean, M., Dittrich, P., Entling, M. H., Link, M., et al. (2019). Do agricultural pesticides in streams influence riparian spiders? Science of the Total Environment, 660, 126–135.

    Article  CAS  Google Scholar 

  • Guenet, B., Danger, M., Abbadie, L., & Lacroix, G. (2010). Priming effect: Bridging the gap between terrestrial and aquatic ecology. Ecology, 91, 2850–2861.

    Article  PubMed  Google Scholar 

  • Guimaraes-Soares, L., Pascoal, C., & Cassio, F. (2007). Effects of heavy metals on the production of thiol compounds by the aquatic fungi Fontanospora fusiramosa and Flagellospora curta. Ecotoxicology and Environmental Safety, 66, 36–43.

    Article  CAS  PubMed  Google Scholar 

  • Gulis, V., & Suberkropp, K. (2003). Interactions between stream fungi and bacteria associated with decomposing leaf litter at different levels of nutrient availability. Aquatic Microbial Ecology, 30, 149–157.

    Article  Google Scholar 

  • Gulis, V. I., & Stephanovich, A. I. (1999). Antibiotic effects of some aquatic hyphomycetes. Mycological Research, 103, 111–115.

    Article  Google Scholar 

  • Hahn, T., & Schulz, R. (2007). Indirect effects of antibiotics in the aquatic environment: A laboratory study on detritivore food selection bahavior. Human and Ecological Risk Assessment, 13, 535–542.

    Article  CAS  Google Scholar 

  • Halstead, N. T., McMahon, T. A., Johnson, S. A., Raffel, T. R., Romansic, J. M., Crumrine, P. W., et al. (2014). Community ecology theory predicts the effects of agrochemical mixtures on aquatic biodiversity and ecosystem properties. Ecology Letters, 17, 932–941.

    Article  PubMed  Google Scholar 

  • Hieber, M., & Gessner, M. O. (2002). Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimation. Ecology, 83, 1026–1038.

    Article  Google Scholar 

  • Hogsden, K. L., & Harding, J. S. (2012). Consequences of acid mine drainage for the structure and function of benthic stream communities: A review. Freshwater Science, 31, 108–120.

    Article  Google Scholar 

  • Hughes, S. R., Kay, P., & Brown, L. E. (2016). Impact of anti-inflammatories, beta-blockers and antibiotics on leaf litter breakdown in freshwaters. Environmental Science and Pollution Research, 23, 3956–3962.

    Article  CAS  PubMed  Google Scholar 

  • Hunt, L., Bonetto, C., Marrochi, N., Scalise, A., Fanelli, S., Liess, M., Lydy, M. J., Chiu, M.-C., & Resh, V. H. (2017) Species at risk (SPEAR) index indicates effects of insecticides on stream invertebrate communities in soy production regions of the Argentine Pampas. Science of the Total Environment, 580, 699–709.

    Google Scholar 

  • Janecko, N., Pokludova, L., Blahova, J., Svobodova, Z., & Literak, I. (2016). Implications of fluoroquinolone contamination for the aquatic environment—A review. Environmental Toxicology and Chemistry, 35, 2647–2656.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins, C. C., & Suberkropp, K. (1995). The influence of water chemistry on the enzymatic degradation of leaves in streams. Freshwater Biology, 33, 245–253.

    Article  CAS  Google Scholar 

  • Kahle, M., Buerge, I. J., Hauser, A., Muller, M. D., & Poiger, T. (2008). Azole fungicides: Occurrence and fate in wastewater and surface waters. Environmental Science and Technology, 42, 7193–7200.

    Article  CAS  PubMed  Google Scholar 

  • Kayler, Z. E., Premke, K., Gessler, A., Gessner, M. O., Griebler, C., Hilt, S., Klemedtsson, L., Kuzyakov, Y., Reichstein, M., Siemens, J., Totsche, K. U., Tranvik, L., Wagner, A., Weitere, M., & Grossart, H. P. (2019). Integrating aquatic and terrestrial perspectives to improve insights Into organic matter cycling at the landscape scale. Frontiers in Earth Science, 7.

    Google Scholar 

  • Konschak, M., Zubrod, J. P., Baudy, P., Englert, D., Herrmann, B., Schulz, R., et al. (2019). Waterborne and diet-related effects of inorganic and organic fungicides on the insect leaf shredder Chaetopteryx villosa (Trichoptera). Aquatic Toxicology, 206, 33–42.

    Article  CAS  PubMed  Google Scholar 

  • Konschak, M., Zubrod, J. P., Baudy, P., Fink, P., Kenngott, K. G. J., Lüderwald, S., et al. (2020). The importance of diet-related effects of the antibiotic ciprofloxacin on the leaf-shredding invertebrate Gammarus fossarum (Crustacea; Amphipoda). Aquatic Toxicology, 222,.

    Article  CAS  PubMed  Google Scholar 

  • Kreutzweiser, D., Good, K., Chartrand, D., Scarr, T., & Thompson, D. (2007). Non-target effects on aquatic decomposer organisms of imidacloprid as a systemic insecticide to control emerald ash borer in riparian trees. Ecotoxicology and Environmental Safety, 68, 315–325.

    Article  CAS  PubMed  Google Scholar 

  • Kreutzweiser, D. P., Good, K. P., Chartrand, D. T., Scarr, T. A., & Thompson, D. G. (2008). Toxicity of the systemic insecticide, imidacloprid, to forest stream insects and microbial communities. Bulletin of Environmental Contamination and Toxicolgy, 80, 211–214.

    Article  CAS  Google Scholar 

  • Kreutzweiser, D., Thompson, D., Grimalt, S., Chartrand, D., Good, K., & Scarr, T. (2011). Environmental safety to decomposer invertebrates of azadirachtin (neem) as a systemic insecticide in trees to control emerald ash borer. Ecotoxicology and Environmental Safety, 74, 1734–1741.

    Article  CAS  PubMed  Google Scholar 

  • Lima Fernandes, E., Bundschuh, M., Bakanov, N., Englert, D., SChulz, R., & Schäfer, R. B. (2019). Effects of a systemic pesticide along an aquatic tri-trophic food chain. Bulletin of Environmental Contamination and Toxicology, 103, 507–514.

    Google Scholar 

  • Lin, R., Buijse, L., Dimitrov, M., Dohmen, P., Kosol, S., Maltby, L., et al. (2012). Effects of the fungicide metiram in outdoor freshwater microcosms: Responses of invertebrates, primary producers and microbes. Ecotoxicology, 21, 1550–1569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malaj, E., von der Ohe, P. C., Grothe, M., Kühne, R., Mondy, C. P., Usseglio-Polatera, P., et al. (2014). Organic chemicals jeopardise freshwater ecosystems health on the continental scale. Proceedings of the National Academy of Sciences of the United States of America, 111, 9549–9554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maltby, L. (1999). Studying stress: The importance of organism-level responses. Ecological Applications, 9, 431–440.

    Article  Google Scholar 

  • Maltby, L., Clayton, S. A., Wood, R. M., & McLoughlin, N. (2002). Evaluation of the Gammarus pulex in situ feeding assay as a biomonitor of water quality: Robustness, responsiveness and relevance. Environmental Toxicology and Chemistry, 21, 361–368.

    Article  CAS  PubMed  Google Scholar 

  • Maul, J. D., Schuler, L. J., Belden, J. B., Whiles, M. R., & Lydy, M. J. (2006). Effects of the antibiotic ciprofloxacin on stream microbial communities and detritivorous macroinvertebrates. Environmental Toxicology and Chemistry, 25, 1598–1606.

    Article  CAS  PubMed  Google Scholar 

  • Maul, J. D., Trimble, A. J., & Lydy, M. J. (2008). Partitioning and matrix-specific toxicity of bifenthrin among sediments and leaf-sourced organic matter. Environmental Toxicology and Chemistry, 27, 945–952.

    Article  CAS  PubMed  Google Scholar 

  • Medeiros, A., Duarte, S., Pascoal, C., Cassio, F., & Graça, M. (2010). Effects of Zn, Fe and Mn on leaf litter breakdown by aquatic fungi: A microcosm study. International Review of Hydrobiology, 95, 12–26.

    Article  CAS  Google Scholar 

  • Mille-Lindblom, C., & Tranvik, L. J. (2003). Antagonism between bacteria and fungi on decomposing aquatic plant litter. Microbial Ecology, 45, 173–182.

    Article  CAS  PubMed  Google Scholar 

  • Moreirinha, C., Duarte, S., Pascoal, C., & Cassio, F. (2011). Effects of cadmium and phenanthrene mixtures on aquatic fungi and microbially mediated leaf litter decomposition. Archives of Environmental Contamination and Toxicology, 61, 211–219.

    Article  CAS  PubMed  Google Scholar 

  • Morrissey, C. A., Mineau, P., Devries, J. H., Sanchez-Bayo, F., Liess, M., Cavallaro, M. C., et al. (2015). Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environment International, 74, 291–303.

    Article  CAS  PubMed  Google Scholar 

  • Munze, R., Orlinskiy, P., Gunold, R., Paschke, A., Kaske, O., Beketov, M. A., et al. (2015). Pesticide impact on aquatic invertebrates identified with Chemcatcher(R) passive samplers and the SPEAR(pesticides) index. Science of the Total Environment, 537, 69–80.

    Article  Google Scholar 

  • Newton, K., Zubrod, J. P., Englert, D., Lüderwald, S., Schell, T., Baudy, P., et al. (2018). The evil within? Systemic fungicide application in trees enhances litter quality for an aquatic decomposer-detritivore system. Environmental Pollution, 241, 549–556.

    Article  CAS  PubMed  Google Scholar 

  • Niyogi, D. K., Lewis, W. M., & McKnight, D. M. (2001). Litter breakdown in mountain streams affected by mine drainage: Biotic mediation of abiotic controls. Ecological Applications, 11, 506–516.

    Article  Google Scholar 

  • Oguma, A. Y., & Klerks, P. L. (2015). Evidence for mild sediment Pb contamination affecting leaf-litter decomposition in a lake. Ecotoxicology, 24, 1322–1329.

    Article  CAS  PubMed  Google Scholar 

  • Pascoal, C., Cassio, F., Nikolcheva, L., & Barlocher, F. (2010). Realized fungal diversity increases functional stability of leaf litter decomposition under zinc stress. Microbial Ecology, 59, 84–93.

    Article  CAS  PubMed  Google Scholar 

  • Pawlowski, J., Kelly-Quinn, M., Altermatt, F., Apotheloz-Perret-Gentil, L., Beja, P., Boggero, A., Borja, A., Bouchez, A., Cordier, T., Domaizon, I., Feio, M. J., Filipe, A. F., Fornaroli, R., Graf, W., Herder, J., van der Hoorn, B., Iwan Jones, J., Sagova-Mareckova, M. et al. (2018). The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems. Science of the Total Environment, 637638, 1295–1310.

    Google Scholar 

  • Peschke, K., Capowiez, Y., Kohler, H. R., Wurm, K., & Triebskorn, R. (2019). Impact of a wastewater treatment plant upgrade on amphipods and other macroinvertebrates: Individual and community responses. Frontiers in Environmental Science, 7.

    Google Scholar 

  • Pestana, J. L., Re, A., Nogueira, A. J., & Soares, A. M. (2007). Effects of Cadmium and Zinc on the feeding behaviour of two freshwater crustaceans: Atyaephyra desmarestii (Decapoda) and Echinogammarus meridionalis (Amphipoda). Chemosphere, 68, 1556–1562.

    Article  CAS  PubMed  Google Scholar 

  • Pestana, J. L. T., Alexander, A. C., Culp, J. M., Baird, D. J., Cessna, A. J., & Soares, A. M. V. M. (2009). Structural and functional responses of benthic invertebrates to imidacloprid in outdoor stream mesocosms. Environmental Pollution, 157, 2328–2334.

    Article  CAS  PubMed  Google Scholar 

  • Rainbow, P. S. (1993). The significance of trace metal concentrations in marine invertebrates. In R. Dallinger & P. S. Rainbow (Eds.), Ecotoxicology of metals in invertebrates (pp. 3–23). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Rasmussen, J. J., Friberg, N., & Larsen, S. E. (2008). Impact of lambda-cyhalothrin on a macroinvertebrate assemblage in outdoor experimental channels: Implications for ecosystem functioning. Aquatic Toxicology, 90, 228–234.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen, J. J., Monberg, R.J., Baattrup-Pedersen, A., Cedergreen, N., Wiberg-Larsen, P., Strobel, B., & Kronvang, B. (2012). Effects of a triazole fungicide and a pyrethroid insecticide on the decomposition of leaves in the presence or absence of macroinvertebrate shredders. Aquatic Toxicology, 118, 54–61.

    Google Scholar 

  • Rasmussen, J. J., Wiberg-Larsen, P., Baattrup-Pedersen, A., Monberg, R. J., & Kronvang, B. (2012). Impacts of pesticides and natural stressors on leaf litter decomposition in agricultural streams. Science of the Total Environment, 416, 148–155.

    Google Scholar 

  • Reilly, T. J., Smalling, K. L., Orlando, J. L., & Kuivila, K. M. (2012). Occurrence of boscalid and other selected fungicides in surface water and groundwater in three targeted use areas in the United States. Chemosphere, 89, 228–234.

    Article  CAS  PubMed  Google Scholar 

  • Rico, A., Dimitrov, M. R., Van Wijngaarden, R. P. A., Satapornvanit, K., Smidt, H., & Van den Brink, P. J. (2014). Effects of the antibiotic enrofloxacin on the ecology of tropical eutrophic freshwater microcosms. Aquatic Toxicology, 147, 92–104.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues, A. C. M., Bordalo, M.D., Golovko, O., Koba, O., Barata, C., Soares, A. M. V. M., & Pestana, J. L. T. (2018). Combined effects of insecticide exposure and predation risk on freshwater detritivores. Ecotoxicology, 27, 794–802.

    Google Scholar 

  • Rodrigues, A. C. M., Gravato, C., Quintaneiro, C., Bordalo, M. D., Barata, C., Soares, A. M. V. M., et al. (2017). Energetic costs and biochemical biomarkers associated with esfenvalerate exposure in Sericostoma vittatum. Chemosphere, 189, 445–453.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues, A. C. M., Machado, A. L., Bordalo, M. D., Saro, L., Simao, F. C. P., Rocha, R. J. M., Golovko, O., Zlabek, V., Barata, C., Soares, A. M. V. M., & Pestana, J. L. T. (2018). Invasive species mediate insecticide effects on community and ecosystem functioning. Environmental Science & Technology, 52, 4889–4900.

    Google Scholar 

  • Rong, Q., Sridhar, K. R., & Bärlocher, F. (1995). Food selection in three leaf-shredding stream invertebrates. Hydrobiologia, 316, 173–181.

    Article  CAS  Google Scholar 

  • Rosenfeldt, R. R., Seitz, F., Zubrod, J. P., Feckler, A., Merkel, T., Lüderwald, S., et al. (2015). Does the presence of titanium dioxide nanoparticles reduce copper toxicity? A factorial approach with the benthic amphipod Gammarus fossarum. Aquatic Toxicology, 165, 154–159.

    Article  CAS  PubMed  Google Scholar 

  • Rosi-Marshall, E. J., Kincaid, D. W., Bechtold, H. A., Royer, T. V., Rojas, M., & Kelly, J. J. (2013). Pharmaceuticals suppress algal growth and microbial respiration and alter bacterial communities in stream biofilms. Ecological Applications, 23, 583–593.

    Article  PubMed  Google Scholar 

  • Rosi-Marshall, E. J., & Royer, T. V. (2012). Pharmaceutical compounds and ecosystem function: An emerging research challenge for aquatic ecologists. Ecosystems, 15, 867–880.

    Article  CAS  Google Scholar 

  • Rossi, F., Mallet, C., Portelli, C., Donnadieu, F., Bonnemoy, F., & Artigas, J. (2019). Stimulation or inhibition: Leaf microbial decomposition in streams subjected to complex chemical contamination. Science of the Total Environment, 648, 1371–1383.

    Article  CAS  Google Scholar 

  • Rossi, F., Pesce, S., Mallet, C., Margoum, C., Chaumot, A., Masson, M., et al. (2018). Interactive effects of pesticides and nutrients on microbial communities responsible of litter decomposition in streams. Frontiers in Microbiology, 9, 2437.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roussel, H., Chauvet, E., & Bonzom, J. M. (2008). Alteration of leaf decomposition in copper-contaminated freshwater mesocosms. Environmental Toxicology and Chemistry, 27, 637–644.

    Article  CAS  PubMed  Google Scholar 

  • Schäfer, R. B. (2019). Responses of freshwater macroinvertebrates to pesticides: Insights from field studies. Current Opinion in Environmental Science & Health, 11, 1–7.

    Article  Google Scholar 

  • Schäfer, R. B., Bundschuh, M., Rouch, D. A., Szöcs, E., von der Ohe, P. C., Pettigrove, V., Schulz, R., Nugegoda, D., & Kefford, B. (2012). Effects of pesticide toxicity, salinity and other environmental variables on selected ecosystem functions in streams and the relevance for ecosystem services. Science of the Total Environment, 415, 69–78.

    Google Scholar 

  • Schäfer, R. B., Caquet, T., Siimes, K., Mueller, J., Lagadic, L., & Liess, M. (2007). Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe. Science of the Total Environment, 382, 272–285.

    Article  Google Scholar 

  • Schäfer, R. B., Kuhn, B., Malaj, E., Konig, A., & Gergs, R. (2016). Contribution of organic toxicants to multiple stress in river ecosystems. Freshwater Biology, 61, 2116–2128.

    Article  Google Scholar 

  • Schäfer, R. B., von der Ohe, P. C., Rasmussen, J., Kefford, B. J., Beketov, M. A., Schulz, R., & Liess, M. (2012). Thresholds for the effects of pesticides on invertebrate communities and leaf breakdown in stream ecosystems. Environmental Science & Technology, 46, 5134–5142.

    Google Scholar 

  • Schindler, D. W. (1998). Replication versus realism: The need for ecosystem-scale experiments. Ecosystems, 1, 323–334.

    Article  Google Scholar 

  • Schneider, T., Gerrits, B., Gassmann, R., Schmid, E., Gessner, M. O., Richter, A., et al. (2010). Proteome analysis of fungal and bacterial involvement in leaf litter decomposition. Proteomics, 10, 1819–1830.

    Article  CAS  PubMed  Google Scholar 

  • Schreiner, V. C., Feckler, A., Fernandez, D., Frisch, K., Munoz, K., Szöcs, E., et al. (2018). Similar recovery time of microbial functions from fungicide stress across biogeographical regions. Scientific Reports, 8, 17021.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schultheis, A. S., Sanchez, M., & Hendricks, A. C. (1997). Structural and functional responses of stream insects to copper pollution. Hydrobiologia, 346, 85–93.

    Article  CAS  Google Scholar 

  • Schulz, R. (2004). Field studies on exposure, effects, and risk mitigation of aquatic nonpoint-source insecticide pollution: A review. Journal of Environmental Quality, 33, 419–448.

    CAS  PubMed  Google Scholar 

  • Schulz, R., Bundschuh, M., Gergs, R., Brühl, C. A., Diehl, D., Entling, M., et al. (2015). Review on environmental alterations propagating from aquatic to terrestrial ecosystems. Science of the Total Environment, 538, 246–261.

    Article  CAS  Google Scholar 

  • Schwarzenbach, R. P., Escher, B. I., Fenner, K., Hofstetter, T. B., Johnson, C. A., von Gunten, U., et al. (2006). The challenge of micropollutants in aquatic systems. Science, 313, 1072–1077.

    Article  CAS  PubMed  Google Scholar 

  • Silver, S. (2003). Bacterial silver resistance: Molecular biology and uses and misuses of silver compounds. FEMS Microbiology Reviews, 27, 341–353.

    Article  CAS  PubMed  Google Scholar 

  • Sridhar, K. R., Krauss, G., Bärlocher, F., Raviraja, N. S., Wennrich, R., Baumbach, R., et al. (2001). Decomposition of alder leaves in two heavy metalpolluted streams in central Germany. Aquatic Microbial Ecology, 26, 73–80.

    Article  Google Scholar 

  • Stehle, S., Elsaesser, D., Gregoire, C., Imfeld, G., Niehaus, E., Passeport, E., et al. (2011). Pesticide risk mitigation by vegetated treatment systems: A meta-analysis. Journal of Environmental Quality, 40, 1068–1080.

    Article  CAS  PubMed  Google Scholar 

  • Stehle, S., Knäbel, A., & Schulz, R. (2013). Probabilistic risk assessment of insecticide concentrations in agricultural surface waters: A critical appraisal. Environmental Monitoring and Assessment, 185, 6295–6310.

    Article  CAS  PubMed  Google Scholar 

  • Stehle, S., & Schulz, R. (2015a). Agricultural insecticides threaten surface waters at the global scale. Proceedings of the National Academy of Sciences of the United States of America, 112, 5750–5755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stehle, S., & Schulz, R. (2015b). Pesticide authorization in the EU—Environment unprotected? Environmental Science and Pollution Research, 22, 19632–19647.

    Article  CAS  PubMed  Google Scholar 

  • Stenersen, J. (2004). Chemical pesticides—Mode of action and toxicology. Boca Raton, Florida, USA: CRC Press LLC.

    Book  Google Scholar 

  • Strange, R. N., & Scott, P. R. (2005). Plant disease: A threat to global food security. Annual review of Phytopathology, 43, 83–116.

    Article  CAS  PubMed  Google Scholar 

  • Suberkropp, K. (1992). Interactions with invertebrates. In F. Bärlocher (Ed.), The ecology of aquatic hyphomycetes (pp. 118–134). Berlin, Germany: Springer Verlag.

    Chapter  Google Scholar 

  • Suberkropp, K., Gulis, V., Rosemond, A. D., & Benstead, J. P. (2010). Ecosystem and physiological scales of microbial responses to nutrients in a detritus-based stream: Results of a 5-year continuous enrichment. Limnology and Oceanography, 55, 149–160.

    Article  Google Scholar 

  • Talk, A., Kublik, S., Ulzsa, M., Engel, M., Berghahn, R., Welzl, G., et al. (2016). Effects of multiple but low pesticide loads on aquatic fungal communities colonizing leaf litter. Journal of Environmental Sciences, 46, 116–125.

    Article  CAS  Google Scholar 

  • Tang, J.-X., & Siegfried, B. D. (1995). Comparative uptake of a pyrethroid and organophosphate insecticide by selected aquatic insects. Bulletin of Environmental Contamination and Toxicolgy, 55, 130–135.

    Article  CAS  Google Scholar 

  • Taylor, B. R., & Chauvet, E. E. (2014). Relative influence of shredders and fungi on leaf litter decomposition along a river altitudinal gradient. Hydrobiologia, 721, 239–250.

    Article  CAS  Google Scholar 

  • Tiegs, S. D., Costello, D. M., Isken, M. W., Woodward, G., McIntyre, P.B., Gessner, M. O., Chauvet, E., Griffiths, N. A., Flecker, A. S., Acuna, V., Albarino, R., Allen, D. C., Alonso, C., Andino, P., Arango, C., Aroviita, J., Barbosa, M. V. M., Barmuta, L. A., Baxter, C.V. et al. (2019). Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances, 5, eaav0486.

    Google Scholar 

  • van Wijngaarden, R. P. A., Arts, G. H. P., Belgers, J. D. M., Boonstra, H., Roessink, I., Schroer, A. F. W., et al. (2010). The species sensitivity distribution approach compared to a microcosm study: A case study with the fungicide fluazinam. Ecotoxicology and Environmental Safety, 73, 109–122.

    Article  PubMed  Google Scholar 

  • van Wijngaarden, R. P. A., Belgers, D. J. M., Zafar, M. I., Matser, A. M., Boerwinkel, M. C., & Arts, G. H. P. (2014). Chronic aquatic effect assessment for the fungicide azoxystrobin. Environmental Toxicology and Chemistry, 33, 2775–2785.

    Article  PubMed  Google Scholar 

  • Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137.

    Article  Google Scholar 

  • Villanueva, V. D., Albarino, R., & Canhoto, C. (2012). Positive effect of shredders on microbial biomass and decomposition in stream microcosms. Freshwater Biology, 57, 2504–2513.

    Article  CAS  Google Scholar 

  • Walker, B. H. (1992). Biodiversity and ecological redundancy. Conservation Biology, 6, 18–23.

    Article  Google Scholar 

  • Wang, Z. Y., Walker, G. W., Muir, D. C. G., & Nagatani-Yoshida, K. (2020). Toward a global understanding of chemical pollution: A first comprehensive analysis of national and regional chemical inventories. Environmental Science and Technology, 54, 2575–2584.

    Article  CAS  PubMed  Google Scholar 

  • Wieczorek, M. V., Bakanov, N., Bilancia, D., Szöcs, E., Stehle, S., Bundschuh, M., et al. (2018). Structural and functional effects of a short-term pyrethroid pulse exposure on invertebrates in outdoor stream mesocosms. Science of the Total Environment, 610–611, 810–819.

    Article  Google Scholar 

  • Wilson, E. R., Smalling, K. L., Reilly, T. J., Gray, E., Bond, L., Steele, L., et al. (2014). Assessing the potential effects of fungicides on nontarget gut fungi (Trichomycetes) and their associated larval black fly hosts. Journal of the American Water Resources Association, 50, 420–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfram, J., Stehle, S., Bub, S., Petschick, L. L., & Schulz, R. (2018). Meta-analysis of insecticides in United States surface waters: Status and future implications. Environmental Science and Technology, 52, 14452–14460.

    Article  CAS  PubMed  Google Scholar 

  • Wolfram, J., Stehle, S., Bub, S., Petschick, L. L., & Schulz, R. (2019). Insecticide risk in United States surface waters: drivers and spatiotemporal modeling. Environmental Science and Technology, 53, 12071–12080.

    Article  CAS  PubMed  Google Scholar 

  • Yuen, T. K., Hyde, K. D., & Hodgkiss, I. J. (1999). Interspecific interactions among tropical and subtropical freshwater fungi. Microbial Ecology, 37, 257–262.

    Article  CAS  PubMed  Google Scholar 

  • Zubrod, J. P., Baudy, P., Schulz, R., & Bundschuh, M. (2014). Effects of current-use fungicides and their mixtures on the feeding and survival of the key shredder Gammarus fossarum. Aquatic Toxicology, 150, 133–143.

    Article  CAS  PubMed  Google Scholar 

  • Zubrod, J. P., Bundschuh, M., Arts, G., Brühl, C. A., Imfeld, G., Knäbel, A., Payraudeau, S., Rasmussen, J., Rohr, J., Scharmüller, A., Smalling, K., Stehle, S., Schulz, R. & Schäfer, R. (2019) Fungicide—An overlooked pesticide class? Environmental Science & Technology, 53, 3347–3365.

    Google Scholar 

  • Zubrod, J. P., Bundschuh, M., Feckler, A., Englert, D., & Schulz, R. (2011). Ecotoxicological impact of the fungicide tebuconazole on an aquatic decomposer-detritivore system. Environmental Toxicology and Chemistry, 30, 2718–2724.

    Article  CAS  PubMed  Google Scholar 

  • Zubrod, J. P., Bundschuh, M., & Schulz, R. (2010). Effects of subchronic fungicide exposure on the energy processing of Gammarus fossarum (Crustacea; Amphipoda). Ecotoxicology and Environmental Safety, 73, 1674–1680.

    Article  CAS  PubMed  Google Scholar 

  • Zubrod, J. P., Bundschuh, R., Englert, D., Rohrberg, M., Wieczorek, M. V., Bakanov, N., Schulz, R., & Bundschuh, M. (2017). Transient effects following peak exposures towards pesticides—An explanation for the unresponsiveness of in situ measured functional variables Environmental Pollution, 231, 1393–1397.

    Google Scholar 

  • Zubrod, J. P., Englert, D., Feckler, A., Koksharova, N., Konschak, M., Bundschuh, R., Schnetzer, N., Englert, K., Schulz, R. & Bundschuh, M. (2015). Does the current fungicide risk assessment provide sufficient protection for key drivers in aquatic ecosystem functioning? Environmental Science & Technology, 49, 1173–1181.

    Google Scholar 

  • Zubrod, J. P., Englert, D., Feckler, A., Rosenfeldt, R. R., Pasternack, H., Hollert, H., Seiler, T.-B., Schulz, R., & Bundschuh, M. (2019). Is Hyalella azteca a suitable model leaf-shredding benthic crustacean for testing the toxicity of sediment-associated metals in Europe? Bulletin of Environmental Contamination and Toxicolgy, 102, 303–309.

    Google Scholar 

  • Zubrod, J. P., Englert, D., Lüderwald, S., Poganiuch, S., Schulz, R., & Bundschuh, M. (2017) History matters: Pre-exposure to wastewater enhances pesticide toxicity in invertebrates. Environmental Science & Technology, 51, 9280–9287.

    Google Scholar 

  • Zubrod, J. P., Englert, D., Rosenfeldt, R. R., Wolfram, J., Lüderwald, S., Wallace, D., Schnetzer, N., Schulz, R., & Bundschuh, M. (2015). The relative importance of diet-related and waterborne effects of copper for a leaf-shredding invertebrate. Environmental Pollution, 205, 16–22.

    Google Scholar 

  • Zubrod, J. P., Englert, D., Wolfram, J., Wallace, D., Schnetzer, N., Baudy, P., Konschak, M., Schulz, R., & Bundschuh, M. (2015) Waterborne toxicity and diet-related effects of fungicides in the key leaf shredder Gammarus fossarum (Crustacea; Amphipoda) Aquatic Toxicology, 169, 105–112.

    Google Scholar 

  • Zubrod, J. P., Feckler, A., Englert, D., Koksharova, N., Schulz, R., & Bundschuh, M. (2015). Inorganic fungicides as routinely applied in organic and conventional agriculture can increase palatability but reduce microbial decomposition of leaf litter. Journal of Applied Ecology, 52, 310–322.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirco Bundschuh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bundschuh, M., Feckler, A., Schäfer, R.B., Schulz, R., Zubrod, J.P. (2021). How Toxicants Influence Organic Matter Decomposition in Streams. In: Swan, C.M., Boyero, L., Canhoto, C. (eds) The Ecology of Plant Litter Decomposition in Stream Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-72854-0_17

Download citation

Publish with us

Policies and ethics