Skip to main content

Graphene Oxide and Reduced Graphene Oxide as Nanofillers in Membrane Separation

  • Chapter
  • First Online:
Two-Dimensional (2D) Nanomaterials in Separation Science

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

Due to the excellent physiochemical properties of graphene oxide (GO) and its family members, these materials have been extensively used for water purification. This chapter presents and discusses the recent development of GO and reduced graphene oxide (rGO) composites for membrane filtration. At first, we highlight the current synthesis methods of polymer–GO/rGO nanocomposites such as solvent processing, in situ polymerization, and melt processing. Also, some novel preparation methods of nanocomposites are discussed. Then, we compare the recent experimental works on the fabrication and testing of these nanocomposite membranes with classical membranes. Finally, Characterization techniques of nanocomposite membranes including spectral characterization, analysis of the membrane surface roughness, morphological study, and measurement of contact angle, as well as the thermal and mechanical properties of the nanocomposite membranes are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Future Readings

  1. Rahimpour A et al (2011) TiO2 entrapped nano-composite PVDF/SPES membranes: Preparation, characterization, antifouling and antibacterial properties. Desalination 278(1–3):343–353

    Article  CAS  Google Scholar 

  2. Yin J et al (2013) Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling. J Membr Sci 441:73–82

    Article  CAS  Google Scholar 

  3. Zhao Y et al (2012) Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization. J Membr Sci 423:422–428

    Article  CAS  Google Scholar 

  4. Jin L et al (2012) Synthesis of a novel composite nanofiltration membrane incorporated SiO2 nanoparticles for oily wastewater desalination. Polymer 53(23):5295–5303

    Article  CAS  Google Scholar 

  5. Das R, Khayet M (2019) Nanotechnology Based Platforms for Efficient Water Desalination. Desalination 451:1–1

    Article  CAS  Google Scholar 

  6. Kim E-S et al (2012) Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. J Membr Sci 394:37–48

    Article  CAS  Google Scholar 

  7. Das R et al (2015) Covalent functionalization schemes for tailoring solubility of multi-walled carbon nanotubes in water and acetone solvents. Sci Adv Mater 7(12):2726–2737

    Article  CAS  Google Scholar 

  8. Das R (2017) Nanohybrid catalyst based on carbon nanotube. Carbon nanostructures. Springer International Publishing AG. https://doi.org/10.1007/978-3-319-58151-4_2

  9. Wei Y et al (2018) Multilayered graphene oxide membranes for water treatment: a review. Carbon 139:964–981

    Article  CAS  Google Scholar 

  10. Banerjee P et al (2018) Membrane technology, in carbon nanotubes for clean water. Springer, pp 127–150

    Google Scholar 

  11. Das R et al (2017) Recent advances in nanomaterials for water protection and monitoring. Chem Soc Rev 46(22):6946–7020

    Article  CAS  PubMed  Google Scholar 

  12. Nair R et al (2012) Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 335(6067):442–444

    Article  CAS  PubMed  Google Scholar 

  13. Xu Q et al (2015) Graphene and graphene oxide: advanced membranes for gas separation and water purification. Inorg Chem Front 2(5):417–424

    Article  CAS  Google Scholar 

  14. Mohammad A, Asiri AM (2017) Inorganic pollutants in wastewater: methods of analysis, removal and treatment. Mater Res Forum LLC

    Google Scholar 

  15. Abbott’s IE (2007) Graphene: exploring carbon flatland. Phys Today 60(8): 35

    Google Scholar 

  16. Novoselov KS, Geim A (2007) The rise of graphene. Nat. Mater 6(3):183–191

    Article  PubMed  CAS  Google Scholar 

  17. Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8(6):1679–1682

    Article  CAS  PubMed  Google Scholar 

  18. Lyu J et al (2018) Separation and purification using GO and r-GO membranes. RSC Adv 8(41):23130–23151

    Article  CAS  PubMed Central  Google Scholar 

  19. Lerf A et al (1998) Structure of graphite oxide revisited. J Phys Chem B 102(23):4477–4482

    Article  CAS  Google Scholar 

  20. Wang Z et al (2012) Graphene oxide filled nanocomposite with novel electrical and dielectric properties. Adv Mater 24(23):3134–3137

    Article  CAS  PubMed  Google Scholar 

  21. Pang H et al (2010) An electrically conducting polymer/graphene composite with a very low percolation threshold. Mater Lett 64(20):2226–2229

    Article  CAS  Google Scholar 

  22. Gómez H et al (2011) Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. J Power Sour 196(8):4102–4108

    Article  CAS  Google Scholar 

  23. Guex LG et al (2017) Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale 9(27):9562–9571

    Article  CAS  PubMed  Google Scholar 

  24. Hu M, Mi B (2013) Enabling graphene oxide nanosheets as water separation membranes. Environ Sci Technol 47(8):3715–3723

    Article  CAS  PubMed  Google Scholar 

  25. Mahmoud KA et al (2015) Functional graphene nanosheets: The next generation membranes for water desalination. Desalination 356:208–225

    Article  CAS  Google Scholar 

  26. Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12(7):3602–3608

    Article  CAS  PubMed  Google Scholar 

  27. Hosseini M, Azamat J, Erfan-Niya H (2019) Water desalination through fluorine-functionalized nanoporous graphene oxide membranes. Mater Chem Phys 223:277–286

    Article  CAS  Google Scholar 

  28. Sun P et al (2013) Selective ion penetration of graphene oxide membranes. ACS Nano 7(1):428–437

    Article  CAS  PubMed  Google Scholar 

  29. Cadotte J et al (1980) A new thin-film composite seawater reverse osmosis membrane. Desalination 32:25–31

    Article  Google Scholar 

  30. Das R (2019) Polymeric materials for clean water. Springer

    Google Scholar 

  31. Xu G-R et al (2019) Two-dimensional (2D) nanoporous membranes with sub-nanopores in reverse osmosis desalination: Latest developments and future directions. Desalination 451:18–34

    Article  CAS  Google Scholar 

  32. Ali ME et al (2016) Thin film composite membranes embedded with graphene oxide for water desalination. Desalination 386:67–76

    Article  CAS  Google Scholar 

  33. Jin F et al (2013) High-performance ultrafiltration membranes based on polyethersulfone–graphene oxide composites. Rsc Adv 3(44):21394–21397

    Article  CAS  Google Scholar 

  34. Dreyer DR et al (2010) Graphite oxide. Chem Soc Rev 39:228–240

    Article  CAS  PubMed  Google Scholar 

  35. Choi BG et al (2012) Enhanced transport properties in polymer electrolyte composite membranes with graphene oxide sheets. Carbon 50(15):5395–5402

    Article  CAS  Google Scholar 

  36. Kuilla T et al (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375

    Article  CAS  Google Scholar 

  37. Wu H, Tang B, Wu P (2014) Development of novel SiO2–GO nanohybrid/polysulfone membrane with enhanced performance. J Membr Sci 451:94–102

    Article  CAS  Google Scholar 

  38. Ganesh B, Isloor AM, Ismail AF (2013) Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination 313:199–207

    Article  CAS  Google Scholar 

  39. Zinadini S et al (2014) Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J Membr Sci 453:292–301

    Article  CAS  Google Scholar 

  40. Yin J, Zhu G, Deng B (2016) Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination 379:93–101

    Article  CAS  Google Scholar 

  41. Han Y, Xu Z, Gao C (2013) Ultrathin graphene nanofiltration membrane for water purification. Adv Func Mater 23(29):3693–3700

    Article  CAS  Google Scholar 

  42. Joshi R, et al (2014) Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343(6172):752–754

    Google Scholar 

  43. Xu C et al (2013) Graphene oxide–TiO2 composite filtration membranes and their potential application for water purification. Carbon 62:465–471

    Article  CAS  Google Scholar 

  44. Bao Q et al (2010) Graphene–polymer nanofiber membrane for ultrafast photonics. Adv Func Mater 20(5):782–791

    Article  CAS  Google Scholar 

  45. Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22(11):3441–3450

    Article  CAS  Google Scholar 

  46. Choi BG et al (2010) Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 4(5):2910–2918

    Article  CAS  PubMed  Google Scholar 

  47. Satti A, Larpent P, Gun’ko Y (2010) Improvement of mechanical properties of graphene oxide/poly (allylamine) composites by chemical crosslinking. Carbon 48(12):3376–3381

    Google Scholar 

  48. Yu X et al (2017) Fabrication technologies and sensing applications of graphene-based composite films: advances and challenges. Biosens Bioelectron 89:72–84

    Article  CAS  PubMed  Google Scholar 

  49. Fan Y (2017) Synthesis of graphene and graphene-based composite membrane

    Google Scholar 

  50. Ng CY et al (2019) Fabrication of graphene-based membrane for separation of hazardous contaminants from wastewater In: Graphene-based nanotechnologies for energy and environment. Elsevier, pp 267–291

    Google Scholar 

  51. Liu Y, Feng J (2017) An attempt towards fabricating reduced graphene oxide composites with traditional polymer processing techniques by adding chemical reduction agents. Compos Sci Technol 140:16–22

    Article  CAS  Google Scholar 

  52. Stankovich S et al (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Google Scholar 

  53. Hussain F et al (2006) Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40(17):1511–1575

    Article  CAS  Google Scholar 

  54. Liang J et al (2009) Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Func Mater 19(14):2297–2302

    Article  CAS  Google Scholar 

  55. Wang W-P, Pan C-Y (2004) Preparation and characterization of polystyrene/graphite composite prepared by cationic grafting polymerization. Polymer 45(12):3987–3995

    Article  CAS  Google Scholar 

  56. Wu SL, Shi TJ, Zhang LY (2016) Latex co‐coagulation approach to fabrication of polyurethane/graphene nanocomposites with improved electrical conductivity, thermal conductivity, and barrier property. J Appl Polym Sci 133(11)

    Google Scholar 

  57. Zhu Y et al (2010) Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4(2):1227–1233

    Article  CAS  PubMed  Google Scholar 

  58. Song P et al (2011) Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer 52(18):4001–4010

    Article  CAS  Google Scholar 

  59. Yan DX et al (2015) Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv Func Mater 25(4):559–566

    Article  CAS  Google Scholar 

  60. Zhang C et al (2012) A novel approach for transferring water-dispersible graphene nanosheets into organic media. J Mater Chem 22(23):11748–11754

    Article  CAS  Google Scholar 

  61. Xu LQ et al (2010) Dopamine-induced reduction and functionalization of graphene oxide nanosheets. Macromolecules 43(20):8336–8339

    Article  CAS  Google Scholar 

  62. Yang H et al (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19(26):4632–4638

    Article  CAS  Google Scholar 

  63. Shan C et al (2009) Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine. Langmuir 25(20):12030–12033

    Article  CAS  PubMed  Google Scholar 

  64. Geng J et al (2010) Preparation of graphene relying on porphyrin exfoliation of graphite. Chem Commun 46(28):5091–5093

    Article  CAS  Google Scholar 

  65. Zu S-Z, Han B-H (2009) Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel. J Phys Chem C 113(31):13651–13657

    Article  CAS  Google Scholar 

  66. Ren L et al (2010) A smart pH responsive graphene/polyacrylamide complex via noncovalent interaction. Nanotechnology 21(33):335701

    Article  PubMed  CAS  Google Scholar 

  67. Choi E-Y et al (2010) Noncovalent functionalization of graphene with end-functional polymers. J Mater Chem 20(10):1907–1912

    Article  CAS  Google Scholar 

  68. Chen W et al (2018) A critical review on the development and performance of polymer/graphene nanocomposites. Sci Eng Compos Mater 25(6):1059–1073

    Article  CAS  Google Scholar 

  69. Zhang L et al (2018) Preparation of polymer/graphene oxide nanocomposites by a two-step strategy composed of in situ polymerization and melt processing. Compos Sci Technol 154:1–7

    Article  CAS  Google Scholar 

  70. Barroso-Bujans F et al (2010) Permanent adsorption of organic solvents in graphite oxide and its effect on the thermal exfoliation. Carbon 48(4):1079–1087

    Article  CAS  Google Scholar 

  71. Yu A et al (2007) Graphite nanoplatelet−epoxy composite thermal interface materials. J Phys Chem C 111(21):7565–7569

    Article  CAS  Google Scholar 

  72. Xiao X, Xie T, Cheng Y-T (2010) Self-healable graphene polymer composites. J Mater Chem 20(17):3508–3514

    Article  CAS  Google Scholar 

  73. Rafiee MA et al (2010) Fracture and fatigue in graphene nanocomposites. Small 6(2):179–183

    Google Scholar 

  74. Liang J et al (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47(3):922–925

    Article  CAS  Google Scholar 

  75. Huang X et al (2012) Graphene-based composites. Chem Soc Rev 41(2):666–686

    Article  CAS  PubMed  Google Scholar 

  76. Zheng W, Lu X, Wong SC (2004) Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J Appl Polym Sci 91(5):2781–2788

    Article  CAS  Google Scholar 

  77. Lee WD, Im SS (2007) Thermomechanical properties and crystallization behavior of layered double hydroxide/poly (ethylene terephthalate) nanocomposites prepared by in-situ polymerization. J Polym Sci Part B: Polym Phys 45(1):28–40

    Article  CAS  Google Scholar 

  78. Hsueh H-B, Chen C-Y (2003) Preparation and properties of LDHs/polyimide nanocomposites. Polymer 44(4):1151–1161

    Article  CAS  Google Scholar 

  79. Verdejo R et al (2011) Graphene filled polymer nanocomposites. J Mater Chem 21(10):3301–3310

    Article  CAS  Google Scholar 

  80. Wang J-Y et al (2011) Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization. J Mater Chem 21(35):13569–13575

    Article  CAS  Google Scholar 

  81. Zhang S et al (2018) Enhanced tensile strength and initial modulus of poly (vinyl alcohol)/graphene oxide composite fibers via blending poly (vinyl alcohol) with poly (vinyl alcohol)-grafted graphene oxide. J Polym Res 25(3):65

    Article  CAS  Google Scholar 

  82. Chen B et al (2008) A critical appraisal of polymer–clay nanocomposites. Chem Soc Rev 37(3):568–594

    Article  PubMed  Google Scholar 

  83. Song SH et al (2010) Physical and thermal properties of acid-graphite/styrene-butadiene-rubber nanocomposites. Korean J Chem Eng 27(4):1296–1300

    Article  CAS  Google Scholar 

  84. Dasari A, Yu Z-Z, Mai Y-W (2009) Electrically conductive and super-tough polyamide-based nanocomposites. Polymer 50(16):4112–4121

    Article  CAS  Google Scholar 

  85. Wakabayashi K et al (2008) Polymer-graphite nanocomposites: effective dispersion and major property enhancement via solid-state shear pulverization. Macromolecules 41(6):1905–1908

    Article  CAS  Google Scholar 

  86. Tewatia A et al (2017) Characterization of melt-blended graphene–poly (ether ether ketone) nanocomposite. Mater Sci Eng B 216:41–49

    Article  CAS  Google Scholar 

  87. You F et al (2014) In situ thermal reduction of graphene oxide in a styrene–ethylene/butylene–styrene triblock copolymer via melt blending. Polym Int 63(1):93–99

    Article  CAS  Google Scholar 

  88. Pickering SU (2001) Cxcvi.—emulsions. J Chem Soc Trans 91(1907):2001–2021

    Google Scholar 

  89. Böker A et al (2007) Self-assembly of nanoparticles at interfaces. Soft Matter 3(10):1231–1248

    Article  PubMed  CAS  Google Scholar 

  90. Wang D, Duan H, Möhwald H (2005) The water/oil interface: the emerging horizon for self-assembly of nanoparticles. Soft Matter 1(6):412–416

    Article  CAS  PubMed  Google Scholar 

  91. San Miguel A et al (2010) Smart colloidosomes with a dissolution trigger. Soft Matter 6(14):3163–3166

    Article  CAS  Google Scholar 

  92. Dinsmore A et al (2002) Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298(5595):1006–1009

    Article  CAS  PubMed  Google Scholar 

  93. Gudarzi MM, Sharif F (2011) Self assembly of graphene oxide at the liquid–liquid interface: a new route to the fabrication of graphene based composites. Soft Matter 7(7):3432–3440

    Article  CAS  Google Scholar 

  94. Read E et al (2004) Effect of varying the oil phase on the behavior of pH-responsive latex-based emulsifiers: demulsification versus transitional phase inversion. Langmuir 20(18):7422–7429

    Article  CAS  PubMed  Google Scholar 

  95. Xie P et al (2013) Pickering emulsion polymerization of graphene oxide-stabilized styrene. Colloid Polym Sci 291(7):1631–1639

    Article  CAS  Google Scholar 

  96. Kumar A, Nanda D (2019) Methods and fabrication techniques of superhydrophobic surfaces. In: Superhydrophobic polymer coatings. Elsevier. pp 43–75

    Google Scholar 

  97. Senez V, Thomy V, Dufour R (2014) Nanotechnologies for synthetic super non‐wetting surfaces. nanotechnologies for synthetic super non‐wetting surfaces, pp 1–12

    Google Scholar 

  98. Yilbas BS, Al-Sharafi A, Ali H (2019) Self-cleaning of surfaces and water droplet mobility. Elsevier

    Google Scholar 

  99. Lue SJ et al (2015) Novel bilayer well-aligned Nafion/graphene oxide composite membranes prepared using spin coating method for direct liquid fuel cells. J Membr Sci 493:212–223

    Article  CAS  Google Scholar 

  100. Zhao C et al (2013) Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes. J Environ Chem Eng 1(3):349–354

    Article  CAS  Google Scholar 

  101. Fryczkowska B et al (2020) The influence of graphene addition on the properties of composite rGO/PAN membranes and their potential application for water disinfection. Membranes 10(4):58

    Article  CAS  PubMed Central  Google Scholar 

  102. Wang N et al (2012) Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation. Chem Eng J 213:318–329

    Article  CAS  Google Scholar 

  103. Jamil N et al (2019) Mixed matrix membranes incorporated with reduced graphene oxide (rGO) and zeolitic imidazole framework-8 (ZIF-8) nanofillers for gas separation. J Solid State Chem 270:419–427

    Article  CAS  Google Scholar 

  104. Wan C, Chen B (2012) Reinforcement and interphase of polymer/graphene oxide nanocomposites. J Mater Chem 22(8):3637–3646

    Article  CAS  Google Scholar 

  105. Pal A et al (2015) Reinforcement of nanostructured reduced graphene oxide: a facile approach to develop high-performance nanocomposite ultrafiltration membranes minimizing the trade-off between flux and selectivity. RSC Adv 5(58):46801–46816

    Article  CAS  Google Scholar 

  106. Strankowski M et al (2016) Polyurethane nanocomposites containing reduced graphene oxide, FTIR, Raman, and XRD studies. J Spectrosc

    Google Scholar 

  107. Jiang Y et al (2019) Graphene oxides as nanofillers in polysulfone ultrafiltration membranes: shape matters. J Membr Sci 581:453–461

    Article  CAS  Google Scholar 

  108. Bano S et al (2015) Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties. J Mater Chem A 3(5):2065–2071

    Article  CAS  Google Scholar 

  109. Wan C, Frydrych M, Chen B (2011) Strong and bioactive gelatin–graphene oxide nanocomposites. Soft Matter 7(13):6159–6166

    Article  CAS  Google Scholar 

  110. Österholm A et al (2012) Electrochemical incorporation of graphene oxide into conducting polymer films. Electrochim Acta 83:463–470

    Article  CAS  Google Scholar 

  111. Strankowski M et al (2016) Thermal and mechanical properties of microporous polyurethanes modified with reduced graphene oxide. Int J Polym Sci

    Google Scholar 

  112. Chen SQ, Wang Y (2010) Microwave-assisted synthesis of a Co 3 O 4–graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. J Mater Chem 20(43):9735–9739

    Article  CAS  Google Scholar 

  113. Dreyer DR et al (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240

    Article  CAS  PubMed  Google Scholar 

  114. Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48(8):2127–2150

    Article  CAS  Google Scholar 

  115. Yoo BM et al (2014) Graphene and graphene oxide and their uses in barrier polymers. J Appl Polym Sci 131(1)

    Google Scholar 

  116. Smith AT et al (2019) Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater Sci 1(1):31–47

    Article  Google Scholar 

  117. Roh IJ, Greenberg AR, Khare VP (2006) Synthesis and characterization of interfacially polymerized polyamide thin films. Desalination 191(1–3):279–290

    Article  CAS  Google Scholar 

  118. Kovtyukhova NI et al (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11(3):771–778

    Article  CAS  Google Scholar 

  119. Kausar A (2019) Applications of polymer/graphene nanocomposite membranes: a review. Mater Res Innov 23(5):276–287

    Article  CAS  Google Scholar 

  120. Hummers Jr WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Google Scholar 

  121. Dimiev AM, Alemany LB, Tour JM (2013) Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano 7(1):576–588

    Google Scholar 

  122. Perreault F, Tousley ME, Elimelech M (2014) Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environ Sci Technol Lett 1(1):71–76

    Article  CAS  Google Scholar 

  123. Wang Z et al (2012) Novel GO-blended PVDF ultrafiltration membranes. Desalination 299:50–54

    Article  CAS  Google Scholar 

  124. Jeong B-H et al (2007) Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J Membr Sci 294(1–2):1–7

    Article  CAS  Google Scholar 

  125. Jadav GL, Singh PS (2009) Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties. J Membr Sci 328(1–2):257–267

    Article  CAS  Google Scholar 

  126. Yin J et al (2012) Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification. J Membr Sci 423:238–246

    Article  CAS  Google Scholar 

  127. Zhao H et al (2014) Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes. J Membr Sci 450:249–256

    Article  CAS  Google Scholar 

  128. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145

    Article  CAS  PubMed  Google Scholar 

  129. Koinuma M et al (2012) Photochemical engineering of graphene oxide nanosheets. J Phys Chem C 116(37):19822–19827

    Article  CAS  Google Scholar 

  130. Moghaddasi A (2019) Polymer-Matrix nanocomposite membranes for water treatment

    Google Scholar 

  131. de Lannoy C-F, Soyer E, Wiesner MR (2013) Optimizing carbon nanotube-reinforced polysulfone ultrafiltration membranes through carboxylic acid functionalization. J Membr Sci 447:395–402

    Article  CAS  Google Scholar 

  132. Jing Q et al (2015) Chemical functionalization of graphene oxide for improving mechanical and thermal properties of polyurethane composites. Mater Des 85:808–814

    Article  CAS  Google Scholar 

  133. Geim, A.K., Graphene: status and prospects. Science 324(5934):1530–1534

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Erfan-Niya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pakdel, S., Majidi, S., Azamat, J., Erfan-Niya, H. (2021). Graphene Oxide and Reduced Graphene Oxide as Nanofillers in Membrane Separation. In: Das, R. (eds) Two-Dimensional (2D) Nanomaterials in Separation Science. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-72457-3_5

Download citation

Publish with us

Policies and ethics