Skip to main content

Development of Various Strategies for the Removal of Phenol Pollutant

  • Chapter
  • First Online:
Organic Pollutants

Abstract

Phenol is hydroxybenzene, an organic aromatic compound consisting of the attached hydroxyl group to aromatic hydrocarbon group. Phenol is hazardous to environment that is added mainly through wastes waters of textile, pharmaceuticals industries, and automobile waste. Phenolic compounds in the aquatic system harm flora and fauna of water bodies and they also interfere with biotransformation. Various forms of phenolic compounds influence the ozone layer, cause acid rain, and disturb the atmospheric temperature balance. Phenol is difficult to degrade, and hence, it is retained in air, soil, and water for a long period. Thus, for protection of the ecosystem and human health, it necessary to adapt effective strategies to eliminate the phenolic pollutant. This chapter depicts various physicochemical methods analyzed for degradation of phenol that include partial electrocatalytic degradation, photo-Fenton processes, electro-polymerization, and advanced nano systems. This chapter focuses on the relevant eco-friendly techniques such as adsorption, immobilization, and fuel cell technology using microorganisms employed for phenol removal and various physical, chemical, and biological factors evaluated by optimization studies designed using statistical tools for enhancing phenol degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelkreem, M. (2013). Adsorption of phenol from industrial wastewater using olive mill waste. APCBEE Procedia, 5, 349–357.

    Article  CAS  Google Scholar 

  • Afsharnia, M., Saeidi, M., Zarei, A., Narooie, M. R., & Biglari, H. (2016). Phenol removal from aqueous environment by adsorption onto pomegranate peel carbon. Electronic Physician, 8(11), 3248–3256.

    Article  Google Scholar 

  • Agarry, S. E., Solomon, B. O., & Layokun, S. K. (2008). Optimization of process variables for the microbial degradation of phenol by Pseudomonas aeruginosa using response surface methodology. African Journal of Biotechnology, 7(14), 2409–2416.

    CAS  Google Scholar 

  • Agarry, S. E., Solomon, B. O., & Audu, T. O. K. (2010). Optimization of process variables for the batch degradation of phenol by Pseudomonas fluorescence using response surface methodology. International Journal of Chemical Technology, 2(2), 33–45.

    Article  CAS  Google Scholar 

  • Ahmad, S. A., Shamaan, N. A., Arif, N. M., Koon, G. B., Shukor, M. Y. A., & Syed, M. A. (2012). Enhanced phenol degradation by immobilized Acinetobacter sp. strain AQ5NOL 1. World Journal of Microbiology and Biotechnology, 28, 347–352.

    Article  CAS  Google Scholar 

  • Ahmad, N., Ahmed, I., Iqbal, M., Khalid, N., Mehboob, F., Ahad, K., & Ali, G. M. (2015). Characterization and identification of phenol degrading bacteria isolated from industrial waste. Pakistan Journal of Agricultural Sciences, 52(1), 219–231.

    Google Scholar 

  • Ahn, S., Congeevaram, S., Choung, Y. K., & Park, J. (2008). Enhanced phenol removal by floating fungal populations in a high concentration phenol-fed membrane bioreactor. Desalination, 221, 494–501.

    Article  CAS  Google Scholar 

  • Alva, V. A., & Peyton, B. M. (2003). Phenol and catechol biodegradation by the haloalkaliphile Halomonas campisalis: Influence of pH and salinity. Environmental Science & Technology, 37, 4397–4402.

    Article  CAS  Google Scholar 

  • Al-Zuhair, S., & El-Naas, M. (2011). Immobilization of Pseudomonas putida in PVA gel particles for the biodegradation of phenol at high concentrations. Biochemical Engineering Journal, 56, 46–50.

    Article  CAS  Google Scholar 

  • Amin, M. N., Mustafa, A. I., Khalil, M. I., Rahman, M., & Nahid, I. (2012). Adsorption of phenol onto rice straw biowaste for water purification. Clean Technologies and Environmental Policy, 14, 837–844.

    Article  CAS  Google Scholar 

  • An, G., Ma, W., Sun, Z., Liu, Z., Han, B., Miao, S., Miao, Z., & Ding, K. (2007). Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation. Carbon, 45, 1795–1801.

    Article  CAS  Google Scholar 

  • Anku, W. W., Mamo, M. A., & Govender, P. P. (2017). Phenolic compounds in water: sources, reactivity, toxicity and treatment methods. In Phenolic compounds-natural sources, importance and applications (pp. 419–443). IntechOpen.

    Google Scholar 

  • Annadurai, G., Juang, R. S., & Leea, D. J. (2002). Microbiological degradation of phenol using mixed liquors of Pseudomonas putida and activated sludge. Waste Management, 22, 703–710.

    Article  CAS  Google Scholar 

  • Arutchelvan, V., Kanakasabai, V., Elangovan, R., Nagarajan, S., & Muralikrishnan, V. (2006). Kinetics of high strength phenol degradation using Bacillus brevis. Journal of Hazardous Materials, 129, 216–222.

    Article  CAS  Google Scholar 

  • Auwal, M. A., Hossen, J., & Zaman, M. R. U. (2018). Removal of phenol from aqueous solution using tamarind seed powder as adsorbent. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-ISSN, 12(3), 41–48.

    Google Scholar 

  • Banerjee, A., & Ghoshal, A. K. (2011). Phenol degradation performance by isolated Bacillus cereus immobilized in alginate. International Biodeterioration & Biodegradation, 65, 1052–1060.

    Article  CAS  Google Scholar 

  • Basha, K. M., Rajendran, A., & Thangavelu, V. (2010). Recent advances in the biodegradation of phenol: A review. Asian Journal of Experimental Biological Sciences, 1(2), 219–234.

    CAS  Google Scholar 

  • Bavandi, R., Emtyazjoo, M., Saravi, H. N., Yazdian, F., & Sheikhpour, M. (2019). Study of capability of nanostructured zero-valent iron and graphene oxide for bioremoval of trinitrophenol from wastewater in a bubble column bioreactor. Electronic Journal of Biotechnology, 39, 8–14.

    Article  CAS  Google Scholar 

  • Benosmane, N., Boutemeur, B., Hamdi, S. M., & Hamdi, M. (2018). Removal of phenol from aqueous solution using polymer inclusion membrane based on mixture of CTA and CA. Applied Water Science, 8(17), 1–6. https://doi.org/10.1007/s13201-018-0643-8. Biomed Pharm J, 6(2): 189–196.

    Article  CAS  Google Scholar 

  • Boonnorat, J., Chiemchaisria, C., Chiemchaisria, W., & Yamamoto, K. (2014). Removals of phenolic compounds and phthalic acid esters in landfill leachate by microbial sludge of two-stage membrane bioreactor. Journal of Hazardous Materials, 277, 93–101. https://doi.org/10.1016/j.jhazmat.2014.02.044

    Article  CAS  Google Scholar 

  • Boonyaroj, V., Chiemchaisri, W., & Yamamotoc, K. (2016). Enhanced biodegradation of phenolic compounds in landfill leachate by enriched nitrifying membrane bioreactor sludge. Journal of Hazardous Materials, 323, 311–318. https://doi.org/10.1016/j.jhazmat.2016.06.064

    Article  CAS  Google Scholar 

  • Buitron, G., & Moreno-Andrade, I. (2014). Performance of a single-chamber microbial fuel cell degrading phenol: effect of phenol concentration and external resistance. Applied Biochemistry and Biotechnology, 174(7), 2471–2481.

    Article  CAS  Google Scholar 

  • Cai, W., Li, J., & Zhang, Z. (2007). The characteristics and mechanisms of phenol biodegradation by Fusarium sp. Journal of Hazardous Materials, 148, 38–42.

    Article  CAS  Google Scholar 

  • Chen, K., Lyu, H., Hao, S., Zhang, L. S., & Chen, J. (2015). Separation of phenolic compounds with modified adsorption resin from aqueous phase products of hydrothermal liquefaction of rice straw. Bioresource Technology, 182, 160–168.

    Article  CAS  Google Scholar 

  • Cheng, Y., Lin, H., Chen, Z., Megharaj, M., & Naidu, R. (2012). Biodegradation of crystal violet using Burkholderia vietnamiensis C09V immobilized on PVA–sodium alginate–kaolin gel beads. Ecotoxicology and environmental safety, 83, 108–114.

    Article  CAS  Google Scholar 

  • Chung, T. P., Tseng, H. Y., & Juang, R. S. (2003). Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems. Process Biochemistry, 38, 1497–1507.

    Article  CAS  Google Scholar 

  • Chung, T. P., Wu, P. C., & Juang, R. S. (2004). Process development for degradation of phenol by Pseudomonas putida in hollow-Fiber membrane bioreactors. Biotechnology and Bioengineering, 87(2), 219–227. https://doi.org/10.1002/bit.20133

    Article  CAS  Google Scholar 

  • El-Naas, M. H., Al-Muhtaseb, S. A., & Makhlouf, S. (2009). Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. Journal of Hazardous Materials, 164, 720–725.

    Article  CAS  Google Scholar 

  • El-Naas, M. H., Al-Zuhair, S., & Makhlouf, S. (2010). Batch degradation of phenol in a spouted bed bioreactor system. Journal of Industrial and Engineering Chemistry, 16, 267–272.

    Article  CAS  Google Scholar 

  • El-Sheekh, M. M., Ghareib, M. M., & Abou-EL-Souod, G. W. (2012). Biodegradation of phenolic and polycyclic aromatic compounds by some algae and cyanobacteria. Journal of Bioremediation & Biodegradation, 3, 1–9.

    Article  Google Scholar 

  • Ereqat, S. I., Abdelkader, A. A., Nasereddin, A. F., Al-Jawabreh, A. O., Zaid, T. M., Letnik, I., & Abdeen, Z. A. (2017). Isolation and characterization of phenol degrading bacterium strain Bacillus thuringiensis J20 from olive waste in palestine. Journal of Environmental Science and Health, 1–7. https://doi.org/10.1080/10934529.2017.1368300

  • Erhan, E., Yer, E., Akay, G., Keskinler, B., & Keskinler, D. (2004). Phenol degradation in a fixed-bed bioreactor using micro-cellular polymer-immobilized Pseudomonas syringae. Journal of Chemical Technology & Biotechnology, 79, 195–206.

    Article  CAS  Google Scholar 

  • Ersu, C. B., & Ong, S. K. (2008). Treatement of wastewater containing phenol using a tubular ceramic membrane bioreactor. Environmental Technology, 29, 225–234.

    Article  CAS  Google Scholar 

  • Esplugas, S., Gimenez, J., Contreras, S., Pascual, E., & Rodriguez, M. (2002). Comparison of different advanced oxidation processes for phenol degradation. Water Research, 36, 1034–1042.

    Article  CAS  Google Scholar 

  • Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Branda, G. C., Silv, E. G. P. D., Portuga, L. A., Rei, P. S. D., Souza, A. S., & Santos, W. N. L. D. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597, 179–186.

    Article  CAS  Google Scholar 

  • Filipowicz, N., Momotk, M., Boczkaj, G., Pawlikowski, T., Wanarska, M., & Cieslinski, H. (2017). Isolation and characterization of phenol-degrading psychrotolerant yeasts. Water, Air, and Soil Pollution, 228(210), 3391–3398.

    Google Scholar 

  • Friman, H., Schechter, A., Ioffe, Y., Nitzan, Y., & Cahan, R. (2013). Current production in a microbial fuel cell using a pure culture of Cupriavidus basilensis growing in acetate or phenol as a carbon source. Microbial Biotechnology, 6(4), 425–434.

    Article  Google Scholar 

  • Futamata, H., Nagano, Y., Watanabe, K., & Hiraishi, A. (2005). Unique kinetic properties of phenol-degrading Variovorax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture. Applied and Environmental Microbiology, 71(2), 904–911.

    Article  CAS  Google Scholar 

  • Gamboa, E. E., Vicent, T., Fon, X., Cortes, J. M., Canche, B. C., & Gaviria, L. A. (2015). Phenol and color removal in hydrous ethanol vinasse in an air-pulsed bioreactor using Trametes versicolor. Journal of Biochemical Technology, 6(3), 982–986.

    Google Scholar 

  • Gami, A. A., Shukor, M. Y., Khalil, K. A., Dahalan, F. A., Khalid, A., & Ahmad, S. A. (2014). Phenol and its toxicity. Journal of Environmental Microbiology and Toxicology, 2(1), 11–24.

    Article  Google Scholar 

  • Ghanem, K. M., Al-Garni, S. M., & Al-Shehri, A. N. (2009). Statistical optimization of cultural conditions by response surface methodology for phenol degradation by a novel Aspergillus flavus isolate. African Journal of Biotechnology, 8(15), 3576–3583.

    CAS  Google Scholar 

  • Godain, A., Spurr, M. W. A., Boghani, H. C., Premier, G. C., Yu, E. H., & Head, L. M. (2020). Detection of 4-Nitrophenol, a model toxic compound, using multi-stage microbial fuel cells. Frontiers in Environmental Science, 8, 5. https://doi.org/10.3389/fencs.2020.00005

    Article  Google Scholar 

  • Gonzalez, G., Herrera, G., Garcia, M. T., & Pena, M. (2001). Biodegradation of phenolic industrial wastewater in a fluidized bed bioreactor with immobilized cells of Pseudomonas putida. Bioresource Technology, 80, 137–142.

    Article  CAS  Google Scholar 

  • Hararah, M. A., Ibrahim, K. A., Al-Muhtaseb, A. H., Yousef, R. I., Surrah, A. A., & Qatatsheh, A. (2010). Removal of phenol from aqueous solutions by adsorption onto polymeric adsorbents. Journal of Applied Polymer Science, 117, 1908–1913.

    Article  CAS  Google Scholar 

  • Hassan, H., Jin, B., Donner, E., Vasileiadis, S., Saint, C., & Dai, S. (2018). Microbial community and bioelectrochemical activities in MFC for degrading phenol and producing electricity: Microbial consortia could make differences. Chemical Engineering Journal, 332, 647–657.

    Article  CAS  Google Scholar 

  • Huang, Y. H., Huang, Y. J., Tsai, H. C., & Chen, H. T. (2010). Degradation of phenol using low concentration of ferric ions by the photo-Fenton process. Journal of the Taiwan Institute of Chemical Engineers, 41, 699–704.

    Article  CAS  Google Scholar 

  • Ibrahim, A. G., & Al-Ghamdi, L. S. (2019). Bioremediation of phenol by mutated and immobilized Aspergillus and Penicillium species. Notulae Scientia Biologicae, 11(4), 410–416.

    Article  CAS  Google Scholar 

  • Jacob, J. H., & Alsohali, S. (2010). Isolation of two fungal strains capable of phenol biodegradation. Journal of Biological Sciences, 10(2), 162–165.

    Article  CAS  Google Scholar 

  • Jame, S. A., Alam, A. K. M. R., Alam, M. K., & Fakhruddin, A. N. M. (2008). Isolation and identification of phenol and monochlorophenols – degrading bacteria: Pseudomonas and Aeromonas species. Bangladesh Journal of Microbiology, 25(1), 41–44.

    Article  Google Scholar 

  • Jame, S. A., Ralam, A. K. M., Fakhruddin, A. N. M., & Alam, M. K. (2010). Degradation of phenol by mixed culture of locally isolated Pseudomonas species. Journal of Bioremediation & Biodegradation, 1, 102.

    Article  CAS  Google Scholar 

  • Jayachandran, K., Nair, C. I., & Shashidhar, S. (2008). Biodegradation of phenol. African Journal of Biotechnology, 7(25), 4951–4958.

    Google Scholar 

  • Jia, X., Wen, J., Jiang, Y., Liu, X., & Feng, W. (2006). Modeling of batch phenol biodegradation in internal loop airlift bioreactor with gas recirculation by Candida tropicalis. Chemical Engineering Science, 61, 3463–3475.

    Article  CAS  Google Scholar 

  • Jin, M. Y., Liao, Y., Loh, C. H., Tan, C. H., & Wang, R. (2017). Preparation of PDMS-PVDF composite membranes for phenol removal in extractive membrane bioreactor. Industrial and Engineering Chemistry Research, 549, 638–648. https://doi.org/10.1021/acs.iecr.7b00191

    Article  CAS  Google Scholar 

  • Juang, R. S., Kao, H. C., & Tseng, K. J. (2010). Kinetics of phenol removal from saline solutions by solvent extraction coupled with degradation in a two-phase partitioning bioreactor. Separation and Purification Technology, 71, 285–292.

    Article  CAS  Google Scholar 

  • Kafilzadeh, F., & Mokhtari, S. (2013). Isolation and identification of phenol degrading bacteria from mangrove sediments in the Persian Gulf (Asaluyeh) and their growth kinetics assay. Biomedical and Pharmacology Journal, 6(2), 189–196.

    Article  Google Scholar 

  • Karimi, M., & Hassanshahianc, M. (2016). Isolation and characterization of phenol degrading yeasts from wastewater in the coking plant of Zarand, Kerman. Brazilian Journal of Microbiology, 47, 18–24.

    Article  CAS  Google Scholar 

  • Kaur, S., & Rani, A. (2015). Biodegradation of phenolic compounds using free and immobilized fungi. International Journal of Biology, Pharmacy and Allied Science, 4(1), 137–146.

    CAS  Google Scholar 

  • Kavitha, V., & Palanivelu, K. (2004). The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere, 55, 1235–1243.

    Article  CAS  Google Scholar 

  • Khan, N., Khan, M. D., Ansari, M. Y., Ahmad, A., & Khan, M. Z. (2018). Bio-electrodegradation of 2,4,6-trichlorophenol by mixed microbial culture in dual chambered microbial fuel cells. Journal of Bioscience and Bioengineering, 127(3), 353–359.

    Article  Google Scholar 

  • Lee, C. H., Lee, E. S., Lim, Y. K., Park, K. H., Park, H. D., & Lim, D. S. (2017). Enhanced electrochemical oxidation of phenol by boron-doped diamond nanowire electrode. RSC Advances, 7(11), 6229–6235. https://doi.org/10.1039/c6ra26287b

    Article  CAS  Google Scholar 

  • Leven, L., & Schnurer, A. (2005). Effects of temperature on biological degradation of phenols, benzoates and phthalates under methanogenic conditions. International Biodeterioration & Biodegradation, 55, 153–160.

    Article  CAS  Google Scholar 

  • Li, P., Cai, W., Xiao, Y., Wang, Y., & Fan, J. (2017). Electrochemical degradation of phenol wastewater by Sn-SbCe modified granular activated carbon. International Journal of Electrochemical Science, 12, 2777–2790.

    Article  CAS  Google Scholar 

  • Liu, Y. J., Zhanga, A. N., & Wanga, X. C. (2009). Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. XA05 and Sphingomonas sp. FG03. Biochemical Engineering Journal, 44, 187–192.

    Article  CAS  Google Scholar 

  • Liu, Z., Xie, W., Li, D., Peng, Y., Li, Z., & Liu, S. (2016). Biodegradation of phenol by bacteria strain Acinetobacter calcoaceticus PA isolated from phenolic wastewater. International Journal of Environmental Research and Public Health, 13, 300. https://doi.org/10.3390/ijerph13030300

    Article  CAS  Google Scholar 

  • Loh, C. H., Zhang, Y., Goh, S., Wang, R., & Fane, A. G. (2016). Composite hollow fiber membranes with different poly (dimethylsiloxane) intrusions into substrate for phenol removal via extractive membrane bioreactor. Journal of Membrane Science, 500, 236–244.

    Article  CAS  Google Scholar 

  • Luke, A. K., & Burton, S. G. (2001). A novel application for Neurospora crassa: Progress from batch culture to a membrane bioreactor for the bioremediation of phenols. Enzyme and Microbial Technology, 29, 348–356.

    Article  CAS  Google Scholar 

  • Mahiudddin, M., Fakhruddin, A. N. M., & Mahin, A. A. (2012). Degradation of phenol via meta cleavage pathway by Pseudomonas fluorescens PU1. International Scholarly Research Notices, 2012, 1–6. https://doi.org/10.5402/2012/741820

    Article  CAS  Google Scholar 

  • Mangukiya, T., Butani, N., Jobanputra, J., & Desai, S. (2015). Microbial degradation of phenol. International Journal of Advance Research in Science and Engineering, 4(1), 1588–1593.

    Google Scholar 

  • Marrot, B., Martinez, A. B., Moulin, P., & Roche, N. (2006). Biodegradation of high phenol concentration by activated sludge in an immersed membrane bioreactor. Biochemical Engineering Journal, 30, 174–183. https://doi.org/10.1016/j.bej.2006.03.006

  • Martins, S. C. S., Martins, C. M., Fiuza, L. M. C. G., & Santaella, S. T. (2013). Immobilization of microbial cells: A promising tool for treatment of toxic pollutants in industrial wastewater. African Journal of Biotechnology, 12(28), 4412–4418.

    Article  CAS  Google Scholar 

  • Medel, A., Bustos, E., Esquivel, K., Godınez, L. A., & Meas, Y. (2012). Electrochemical incineration of phenolic compounds from the hydrocarbon industry using boron-doped diamond electrodes. International Journal of Photoenergy, 2012, 1–6. https://doi.org/10.1155/2012/681875

    Article  Google Scholar 

  • Mei, R., Zhou, M., Xu, L., Zhang, Y., & Su, X. (2019). Characterization of a pH-tolerant strain Cobetia sp. SASS1 and its phenol degradation performance under salinity condition. Frontiers in Microbiology, 10, 2034.

    Article  Google Scholar 

  • Michalowicz, J., & Duda, W. (2007). Phenols – Sources and toxicity. Polish Journal of Environmental Studies, 16(3), 347–362.

    CAS  Google Scholar 

  • Mohanty, S. S., & Jena, H. M. (2017). Biodegradation of phenol by free and immobilized cells of a novel Pseudomonas sp. NBM11. Brazilian Journal of Chemical Engineering, 34(1), 75–84.

    Article  CAS  Google Scholar 

  • Moreno, L., Nemati, M., & Predicala, B. (2017). Biodegradation of phenol in batch and continuous flow microbial fuel cells with rod and granular graphite electrodes. Environmental Technology, 39(2), 144–156.

    Article  Google Scholar 

  • Nair, C. I., Jayachandran, K., & Shashidhar, S. (2008). Biodegradation of phenol. African Journal of Biotechnology, 7(25), 4951–4958.

    CAS  Google Scholar 

  • Namane, A., Ali, O., Cabana, H., & Hellal, A. (2012). Evaluation of biological treatments for the adsorption of phenol from polluted waters. Adsorption Science and Technology, 30(6), 521–532.

    Article  CAS  Google Scholar 

  • Nawawi, N. M., Ahmad, S. A., Shukor, M. Y., Syed, M. A., Khalil, K. A., Rahman, N. A. A., Dahalan, F. A., & Ibrahim, A. L. (2016). Statistical optimization for improvement of phenol degradation by Rhodococcus sp. NAM 81. Journal of Environmental Biology, 37, 443–451.

    CAS  Google Scholar 

  • Orijel, C. G., Leal, E. R., Mena, J. G., & Varaldo, H. M. P. (2005). 2,4,6-Trichlorophenol and phenol removal in methanogenic and partially-aerated methanogenic conditions in a fluidized bed bioreactor. Journal of Chemical Technology and Biotechnology, 80, 1180–1187.

    Article  Google Scholar 

  • Parihar, R., & Dubey, S. K. (2016). Identification and characterization of potential phenol degrading bacterial strains isolated from municipal sewage, Bilaspur, Chhattisgarh. International Journal of Applied Sciences and Biotechnology, 4(3), 288–293.

    Article  CAS  Google Scholar 

  • Pismentel, M. A. S., Oturan, N., Dezotti, M., & Oturan, M. A. (2008). Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathod. Applied Catalysis B: Environmental, 83(1), 140–149.

    Article  Google Scholar 

  • Polymenakou, P. N., & Stephanou, E. G. (2015). Effect of temperature and additional carbon sources on phenol degradation by an indigenous soil Pseudomonad. Biodegradation, 16, 403–413.

    Article  Google Scholar 

  • Prabu, D., & Narendrakumar, G. (2015). Optimization of process parameters using response surface methodology for removal of phenol by Nano zero valent Iron impregnated cashew nut Shell. International Journal of Pharmacy and Pharmaceutical Sciences, 7(4), 156–161.

    CAS  Google Scholar 

  • Pradeep, N. V., Anupama, S., Navya, K., Shalini, H. N., Idris, M., & Hampannavar, U. S. (2015). Biological removal of phenol from wastewaters: A mini review. Applied Water Science, 5, 105–112.

    Article  CAS  Google Scholar 

  • Prasse, C., Ford, B., Nomurac, D. K., & Sedlaka, D. L. (2018). Unexpected transformation of dissolved phenols to toxic dicarbonyls by hydroxyl radicals and UV light. PNAS, 115(10), 2311–2316.

    Article  CAS  Google Scholar 

  • Praveen, P., Nguyen, D. T. T., & Loh, K. C. (2015). Biodegradation of phenol from saline wastewater using forward osmotic hollow Fiber membrane bioreactor coupled chemostat. Biochemical Engineering Journal, 94, 125–133. https://doi.org/10.1016/j.bej.2014.11.014

    Article  CAS  Google Scholar 

  • Priyadharshini, S. D., & Bakthavatsalam, A. K. (2016). Optimization of phenol degradation by the microalga Chlorella pyrenoidosa using Plackett–Burman design and response surface methodology. Bioresource Technology, 207, 150–156.

    Article  Google Scholar 

  • Prpich, G. P., & Daugulis, A. J. (2004). Polymer development for enhanced delivery of phenol in a solid-liquid two-phase partitioning bioreactor. Biotechnology Progress, 20, 1725–1732.

    Article  CAS  Google Scholar 

  • Quan, X., Shi, H., Zhang, Y., Wang, J., & Qian, Y. (2004). Biodegradation of 2, 4-dichlorophenol and phenol in an airlift inner-loop bioreactor immobilized with Achromobacter sp. Separation and Purification Technology, 34, 97–103.

    Article  CAS  Google Scholar 

  • Rafiei, B., Naeimpoor, F., & Mohammadi, T. (2014). Bio-film and bio-entrapped hybrid membrane bioreactors in wastewater treatment: Comparison of membrane fouling and removal efficiency. Desalination, 337, 16–22.

    Article  CAS  Google Scholar 

  • Ren, L. F., Chen, R., Zhang, X., Shao, J., & He, Y. (2017). Phenol biodegradation and microbial community dynamics in extractive membrane bioreactor (EMBR) for phenol-laden saline wastewater. Bioresource Technology, 244, 1121–1128.

    Article  CAS  Google Scholar 

  • Rezvani, F., Azargoshasb, H., Jamialahmadi, O., Najafabadi, S. H., Mousavi, S. M., & Shojaosadati, S. A. (2015). Experimental study and CFD simulation of phenol removal by immobilization of soybean seed coat in a packed-bed bioreactor. Biochemical Engineering Journal, 101, 32–43. https://doi.org/10.1016/j.bej.2015.04.019

    Article  CAS  Google Scholar 

  • Ruan, B., Wu, P., Chena, M., Laia, X., Chena, L., Yua, L., Gonga, B., Kanga, C., Dang, Z., Shia, Z., & Liu, Z. (2018). Immobilization of Sphingomonas sp. GY2B in polyvinyl alcohol–alginate – kaolin beads for efficient degradation of phenol against unfavorable environmental factors. Ecotoxicology and Environmental Safety, 162, 103–111.

    Article  CAS  Google Scholar 

  • Sachan, P., Madan, S., & Hussain, A. (2019). Isolation and screening of phenol‑degrading bacteria from pulp and paper mill effluent. Applied Water Science, 9(100). https://doi.org/10.1007/s13201-019-0994-9

  • Safont, B., Vitas, A. I., & Penas, F. J. (2012). Isolation and characterization of phenol degrading bacteria immobilized onto cyclodextrin-hydrogel particles within a draft tube spouted bed bioreactor. Biochemical Engineering Journal, 64, 69–75.

    Article  CAS  Google Scholar 

  • Sahariah, B. P., & Chakraborty, S. (2011). Kinetic analysis of phenol, thiocyanate and ammonia-nitrogen removals in an anaerobic–anoxic–aerobic moving bed bioreactor system. Journal of Hazardous Materials, 190, 260–267.

    Article  CAS  Google Scholar 

  • Sahua, O., Raoa, D. G., Gabbiyea, N., Engidayehua, A., & Teshale, F. (2017). Sorption of phenol from synthetic aqueous solution by activated saw dust: Optimizing parameters with response surface methodology. Biochemistry and Biophysics Reports, 12, 46–53.

    Article  Google Scholar 

  • Saputra, E., Muhammad, S., Suna, H., Anga, H. M., Tadea, M. O., & Wang, S. (2013). Manganese oxides at different oxidation states for heterogeneous activation of peroxymonosulfate for phenol degradation in aqueous solutions. Applied Catalysis B: Environmental, 142–143, 729–735.

    Article  Google Scholar 

  • Sarac, N., Ugur, A., Simsek, O., Aytar, P., Topas, Y., Buruk, Y., Cabuk, A., & Burnak, N. (2017). Phenol tolerance and biodegradation optimization of Serratia Marcescens Nso9-1 using Plackett-Burman and box-Behnken design. Environmental Engineering and Management Journal, 16(11), 2637–2645.

    Article  CAS  Google Scholar 

  • Sarker, N., & Fakhruddin, A. N. M. (2017). Removal of phenol from aqueous solution using rice straw as adsorbent. Applied Water Science, 7, 1459–1465.

    Article  CAS  Google Scholar 

  • Scully, C., Collins, G., & Flaherty, V. O. (2006). Anaerobic biological treatment of phenol at 9.5–15°C in an expanded granular sludge bed (EGSB)-based bioreactor. Water Research, 40, 3737–3744.

    Article  CAS  Google Scholar 

  • Sevillano, X., Isasi, J. R., & Penas, F. J. (2007). Feasibility study of degradation of phenol in a fluidized bed bioreactor with a cyclodextrin polymer as biofilm carrier. Biodegradation, 19, 589–597.

    Article  Google Scholar 

  • Sheeja, R. Y., & Murugesan, T. (2002). Studies on biodegradation of phenol using response surface methodology. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 77(11), 1219–1230.

    Article  CAS  Google Scholar 

  • Shen, Y., Lei, L., Zhang, X., Zhou, M., & Zhang, Y. (2008). Effect of various gases and chemical catalysts on phenol degradation pathways by pulsed electrical discharges. Journal of Hazardous Materials, 150, 713–722.

    Article  CAS  Google Scholar 

  • Shetty, K. V., Kalifathulla, I., & Srinikethan, G. (2007). Performance of pulsed plate bioreactor for biodegradation of phenol. Journal of Hazardous Materials, 140, 346–352.

    Article  CAS  Google Scholar 

  • Singh, A., Kumar, V., & Srivastava, J. N. (2013). Assessment of bioremediation of oil and phenol contents in refinery waste water via bacterial consortium. Journal of Petroleum & Environmental Biotechnology, 4, 3.

    Article  Google Scholar 

  • Song, T. S., Wu, X. Y., & Zhou, C. C. (2014). Effect of different acclimation methods on the performance of microbial fuel cells using phenol as substrate. Bioprocess and Biosystems Engineering, 37, 133–138.

    Article  CAS  Google Scholar 

  • Sridevi, V., Lakshmi, M. V. V. C., Swamy, A. V. N., & Rao, M. N. (2011). Implementation of response surface methodology for phenol degradation using Pseudomonas putida (NCIM 2102). Journal of Bioremediation & Biodegradation, 2, 121. https://doi.org/10.4172/2155-6199.1000121

    Article  CAS  Google Scholar 

  • Stoilova, I., Krastanov, A., Stanchev, V., Daniel, D., Gerginova, M., & Alexieva, Z. (2006). Biodegradation of high amounts of phenol, catechol, 2,4-dichlorophenol and 2,6-dimethoxyphenol by Aspergillus awamori cells. Enzyme and Microbial Technology, 39, 1036–1041.

    Article  CAS  Google Scholar 

  • Su, X., Wang, Y., Xue, B., Hashmi, M. Z., Lin, H., Chen, J., Wang, Z., Mei, R., & Sun, F. (2019). Impact of resuscitation promoting factor (Rpf) in membrane bioreactor treating high-saline phenolic wastewater: Performance robustness and Rpf-responsive bacterial populations. Chemical Engineering Journal, 357, 715–723. https://doi.org/10.1016/j.cej.2018.09.197

    Article  CAS  Google Scholar 

  • Subashchandrabose, S. R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2013). Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environment International, 51, 59–72.

    Article  CAS  Google Scholar 

  • Suhaila, Y. N., Ramanan, R. N., Rosfarizan, M., Latif, I. A., & Ariff, A. B. (2012). Optimization of parameters for improvement of phenol degradation by Rhodococcus UKMP-5M using response surface methodology. Annals of Microbiology, 63, 513–521.

    Article  Google Scholar 

  • Supriya, C. H., & Neehar, D. (2014). Biodegradation of phenol by Aspergillus Niger. Journal of Pharmacy, 4(7), 11–17.

    Google Scholar 

  • Tahar, N. B., & Savall, A. (2009). Electrochemical removal of phenol in alkaline solution. Contribution of the anodic polymerization on different electrode materials. Electrochimica Acta, 54, 4809–4816.

    Article  Google Scholar 

  • Tian, M., Dub, D., Zhoua, W., Zenga, X., & Chenga, G. (2017). Phenol degradation and genotypic analysis of dioxygenase genes in bacteria isolated from sediments. Brazilian Journal of Microbiology, 48, 305–313.

    Article  CAS  Google Scholar 

  • Tomei, M. C., Ritaa, S., Angelucci, D. M., Annesin, M. C., & Daugulisc, A. J. (2011). Treatment of substituted phenol mixtures in single phase and two-phase solid–liquid partitioning bioreactors. Journal of Hazardous Materials, 191, 190–195.

    Article  CAS  Google Scholar 

  • Ullah, Z., & Zeshan, S. (2020). Effect of substrate type and concentration on the performance of a double chamber microbial fuel cell. Water Science and Technology, 81(7), 1336–1334.

    Article  Google Scholar 

  • Viero, A. F., Melo, T. M., Torres, A. P. R., Ferreira, N. R., Santanna, G. L., Borges, C. P., & Santiago, V. M. J. (2008). The effects of long-term feeding of high organic loading in a submerged membrane bioreactor treating oil refinery wastewater. Journal of Membrane Science, 319, 223–230.

    Article  CAS  Google Scholar 

  • Vinod, A. V., & Reddy, G. V. (2005). Simulation of biodegradation process of phenolic wastewater at higher concentrations in a fluidized-bed bioreactor. Biochemical Engineering Journal, 24, 1–10.

    Article  Google Scholar 

  • Wang, T., Zhao, H., Wang, H., Liu, B., & Li, C. (2016). Research on degra dation product and reaction kinetics of membrane electro-bioreactor (MEBR) with catalytic electrodes for high concentration phenol wastewater treatment. Chemosphere, 155, 94–99. https://doi.org/10.1016/j.chemosphere.2016.03.140

  • Wu, Z., & Zhou, M. (2001). Partial degradation of phenol by advanced electrochemical oxidation process. Environmental Science & Technology, 35, 2698–2703.

    Article  CAS  Google Scholar 

  • Xu, W., Jin, B., Zhou, S., Su, Y., & Zhang, Y. (2020). Triclosan removal in microbial fuel cell: The contribution of adsorption and bioelectricity generation. Energies, 13, 761. https://doi.org/10.3390/en13030761

    Article  CAS  Google Scholar 

  • Yehia, F. Z., Eshaq, G. H., Abdelrahman, R., & Amr, M. H. (2014). Sonocatalytic degradation of phenol catalyzed by nano-sized zero valent Cu and Ni. Desalination and Water Treatment, 57(5), 1–9.

    Google Scholar 

  • Ying, W., Ye, T., Bin, H., Bing, Z. H., Na, B. J., & Li, C. B. (2006). Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12. Journal of Environmental Sciences, 19, 222–225.

    Google Scholar 

  • Yuan, B., Liggio, J., Wentzell, J., Li, S. M., Stark, H., Roberts, J. M., Gilman, J., Lerner, B., Warneke, C., Li, R., Leithead, A., Osthoff, H. D., Wild, R., Brown, S. S., & de Gouw, J. A. (2016). Secondary formation of nitrated phenols: Insights from observations during the Uintah Basin winter ozone study. Atmospheric Chemistry and Physics, 16, 2139–2153.

    Article  CAS  Google Scholar 

  • Zhang, D., Li, Z., Zhang, C., Zhou, X., Xiao, Z., Awata, T., & Katayama, A. (2017). Phenol-degrading anode biofilm with high coulombic efficiency in graphite electrodes microbial fuel cell. Journal of Bioscience and Bioengineering, 123(3), 364–369.

    Article  CAS  Google Scholar 

  • Zhang, Y., Liu, M., Zhou, M., Yang, H., Liang, L., & Gu, T. (2019). Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: Synergistic effects, mechanisms and challenges. Renewable and Sustainable Energy Reviews, 103, 13–29.

    Article  CAS  Google Scholar 

  • Zhao, L., Wu, Q., & Ma, A. (2018). Biodegradation of phenolic contaminants: Current status and perspectives. In IOP conference series: Earth and environmental science (Vol. 111, p. 012024). IOP Publishing. https://doi.org/10.1088/1755-1315/111/1/012024

    Chapter  Google Scholar 

  • Zhou, L., Yana, X., Yana, Y., Lia, T., Anb, J., Liao, C., Lib, N., & Wang, X. (2020). Electrode potential regulates phenol degradation pathways in oxygen diffused microbial electrochemical system. Chemical Engineering Journal, 381, 122663. https://doi.org/10.1016/j.cej.2019.122663

    Article  CAS  Google Scholar 

  • Zhu, J. H., Lin, J. P., Zhang, B., Yan, X. L., & Peng, Z. G. (2006). Simultaneous removal of phenol and nitrate in an anaerobic bioreactor. Journal of Environmental Engineering, 132, 1073–1077.

    Article  CAS  Google Scholar 

  • Zuhair, S. A., & El-Naas, M. (2011). Immobilization of Pseudomonas putida in PVA gel particles for the biodegradation of phenol at high concentrations. Biochemical Engineering Journal, 56, 46–50.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Radha Thirumalaiarasu, S., Mahalakshmi, G.K. (2022). Development of Various Strategies for the Removal of Phenol Pollutant. In: Vasanthy, M., Sivasankar, V., Sunitha, T.G. (eds) Organic Pollutants. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-72441-2_7

Download citation

Publish with us

Policies and ethics