Skip to main content

Nanotoxicology: Exposure, Mechanism, and Effects on Human Health

  • Chapter
  • First Online:
New Frontiers in Environmental Toxicology

Abstract

The increasing negative effects of nanomaterials on humans and the environment have led to the increase in a new subtopic in the branch of nanotechnology, known as “nanotoxicology.” The issue of toxicity of nanomaterials has been a relatively new topic of concern with regard to nanotechnology, and this is because of the lack of techniques and experimental conditions in order to evaluate and monitor nanotoxicity. With the increase in concerns related to nanotoxicity, many global organizations have taken up the initiative to spread awareness and to design various strategies to assess the toxic effect of nanomaterials on human health and the environment. Nanoparticles can be produced by a variety of physical, chemical, and biological methodologies. Researchers have also been interested in trying to find out many new and interesting ways to synthesize nanoparticles for varied particle applications. The current chapter describes many such aspects of nanotoxicology including exposure, mechanism, and effects on human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Klefenz, Heinrich. "Nanobiotechnology: from molecules to systems." Engineering in life sciences 4.3 (2004): 211-218.

    Article  CAS  Google Scholar 

  • Takagahara, Toshihide, and Kyozaburo Takeda. "Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials." Physical Review B 46.23 (1992): 15578.

    Article  CAS  Google Scholar 

  • Hahn, Horst. "Gas phase synthesis of nanocrystalline materials." Nanostructured Materials 9.1-8 (1997): 3-12.

    Article  CAS  Google Scholar 

  • Daniel, Marie-Christine, and Didier Astruc. "Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology." Chemical reviews 104.1 (2004): 293-346.

    Article  CAS  Google Scholar 

  • Singh, Saurabh, et al. "Applications of nanotechnology in agricultural and their role in disease management." Res J Nanosci Nanotechnol 5.1 (2015): 1-5.

    Article  Google Scholar 

  • Holzinger, Michael, Alan Le Goff, and Serge Cosnier. "Nanomaterials for biosensing applications: a review." Frontiers in chemistry 2 (2014): 63.

    Google Scholar 

  • Mousavi, S. Zeinab, Shohreh Nafisi, and Howard I. Maibach. "Fullerene nanoparticle in dermatological and cosmetic applications." Nanomedicine: Nanotechnology, Biology and Medicine 13.3 (2017): 1071-1087.

    Article  CAS  Google Scholar 

  • Priyadarsini, Subhashree, Sumit Mukherjee, and Monalisa Mishra. "Nanoparticles used in dentistry; a review." Journal of oral biology and craniofacial research (2017).

    Google Scholar 

  • De Jong, Wim H., and Paul JA Borm. "Drug delivery and nanoparticles: applications and hazards." International journal of nanomedicine 3.2 (2008a): 133.

    Google Scholar 

  • Bahiraei, Mehdi, and Saeed Heshmatian. "Electronics cooling with nanofluids: A critical review." Energy Conversion and Management 172 (2018): 438-456.

    Article  CAS  Google Scholar 

  • Dong, Fan, et al. "Nanomaterials for environmental applications." Journal of Nanomaterials 2014 (2014).

    Google Scholar 

  • Berekaa, Mahmoud M. "Nanotechnology in food industry; advances in food processing, packaging and food safety." Int. J. Curr. Microbiol. App. Sci 4.5 (2015): 345-357.

    Google Scholar 

  • Hwang, Jangsun, et al. "Engineered nanomaterials for their applications in theragnostics." Journal of Industrial and Engineering Chemistry (2018).

    Google Scholar 

  • Lu, Feng, and Didier Astruc. "Nanomaterials for removal of toxic elements from water." Coordination Chemistry Reviews356 (2018): 147-164.

    Google Scholar 

  • BccResearch. Nanotechnology sees big growth in products and applications. Globe Newswire. 2017. https://globenewswire.com/news-release/2017/01/17/906164/0/en/Nanotechnology-Sees-Big-Growth-in-Products-and-Applications-Reports-BCC-Research.html

  • Dickson, D. “Advanced Manufacturing in a highly connected world.” Deloitte Touche Tohmatsu Limited (2015).

    Google Scholar 

  • Inshakova, Elena, and Oleg Inshakov. “World market for nanomaterials: structure and trends.” MATEC Web of Conferences. Vol. 129. EDP Sciences, 2017.

    Google Scholar 

  • Market, Vertical Farming. “Global Opportunity Analysis and Industry Forecast, 2017-2023.” (2016a).

    Google Scholar 

  • Nanomaterials Market – Global Trends, Investment Analysis and Future Scope to 2022. Mordor Intelligence, Hydrabad. (2011)

    Google Scholar 

  • Abraham, Thomas. “Nanotechnology and Nano Materials: Types, Current/Emerging Applications and Global Markets” Innovative Research and Products, Inc. (2011)

    Google Scholar 

  • Market, Vertical Farming. “Global Opportunity Analysis and Industry Forecast, 2014-2022.” (2016b).

    Google Scholar 

  • Silver Nanoparticles Market Size by Application, Industry Analysis Report, Regional Outlook, Growth Potential, Price Trends, Competitive Market Share & Forecast, 2016–2024. Global Market Insights Inc. (2017)

    Google Scholar 

  • Nanoclay market – Global Industry analysis, Size, Share, Growth, Trends and Forecast 2015-2023. Transparency Market Research. (2016)

    Google Scholar 

  • Production and Applications of Carbon nanotubes, Carbon nanofibers, Fullerenes, Graphene and Nanodiamonds: A Global Technology Survey and Market Analysis, Innovative Research and Products, Inc, (2011)

    Google Scholar 

  • Shvedova, Anna, Antonio Pietroiusti, and Valerian Kagan. “Nanotoxicology ten years later: lights and shadows.” (2016): 1-2.

    Google Scholar 

  • Civeira, Matheus S., et al. “The properties of the nano-minerals and hazardous elements: potential environmental impacts of Brazilian coal waste fire.” Science of the Total Environment 544 (2016): 892-900.

    Article  CAS  Google Scholar 

  • Leo, Bey Fen, et al. “The stability of silver nanoparticles in a model of pulmonary surfactant.” Environmental science & technology 47.19 (2013): 11232-11240.

    Article  CAS  Google Scholar 

  • Buzea, Cristina, Ivan I. Pacheco, and Kevin Robbie. “Nanomaterials and nanoparticles: sources and toxicity.” Biointerphases 2.4 (2007): MR17-MR71.

    Article  Google Scholar 

  • Mackevica, Aiga, and Steffen Foss Hansen. “Release of nanomaterials from solid nanocomposites and consumer exposure assessment–a forward-looking review.” Nanotoxicology 10.6 (2016): 641-653.

    Article  CAS  Google Scholar 

  • Warheit, David B., and E. Maria Donner. “Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: recognizing hazard and exposure issues.” Food and chemical toxicology 85 (2015): 138-147.

    Article  CAS  Google Scholar 

  • Hagens, Werner I., et al. “What do we (need to) know about the kinetic properties of nanoparticles in the body?.” Regulatory toxicology and pharmacology 49.3 (2007): 217-229.

    Article  CAS  Google Scholar 

  • Shakeel, Muhammad, et al. “Toxicity of nano-titanium dioxide (TiO 2-NP) through various routes of exposure: a review.” Biological trace element research 172.1 (2016): 1-36.

    Article  CAS  Google Scholar 

  • Ryman-Rasmussen, Jessica P., Jim E. Riviere, and Nancy A. Monteiro-Riviere. “Penetration of intact skin by quantum dots with diverse physicochemical properties.” Toxicological sciences 91.1 (2006a): 159-165.

    Article  CAS  Google Scholar 

  • Gopee, Neera V., et al. “Migration of intradermally injected quantum dots to sentinel organs in mice.” Toxicological Sciences 98.1 (2007): 249-257.

    Article  CAS  Google Scholar 

  • Rouse, Jillian G., et al. “Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin.” Nano Letters 7.1 (2007): 155-160.

    Article  CAS  Google Scholar 

  • Haliullin, T. O., et al. “Hygienic evaluation of multilayer carbon nanotubes.” Meditsina truda i promyshlennaia ekologiia 7 (2015): 37-42.

    Google Scholar 

  • Som, Claudia, et al. “Environmental and health effects of nanomaterials in nanotextiles and facade coatings.” Environment international 37.6 (2011): 1131-1142.

    Article  CAS  Google Scholar 

  • Chen, Zhen, et al. “Acute toxicological effects of copper nanoparticles in vivo.” Toxicology letters 163.2 (2006): 109-120.

    Article  CAS  Google Scholar 

  • Bergin, Ingrid L., and Frank A. Witzmann. “Nanoparticle toxicity by the gastrointestinal route: evidence and knowledge gaps.” International journal of biomedical nanoscience and nanotechnology 3.1-2 (2013): 163-210.

    Article  CAS  Google Scholar 

  • Pelclova, D., et al. “Markers of oxidative damage of nucleic acids and proteins among workers exposed to TiO2 (nano) particles.” Occup Environ Med (2015): oemed-2015.

    Google Scholar 

  • Witschger, Oliver, and Jean-François Fabriès. Particules ultra-fines et santé au travail: 1-Caractéristiques et effets potentiels sur la santé. Institut national de sécurité, 2005.

    Google Scholar 

  • Keller, Jana, et al. “Time course of lung retention and toxicity of inhaled particles: short-term exposure to nano-Ceria.” Archives of toxicology 88.11 (2014): 2033-2059.

    Article  CAS  Google Scholar 

  • Nurkiewicz, Timothy R., et al. “Systemic microvascular dysfunction and inflammation after pulmonary particulate matter exposure.” Environmental health perspectives 114.3 (2005): 412-419.

    Article  Google Scholar 

  • Simko, M., and Mats-Olof Mattsson. “Interactions between nanosized materials and the brain.” Current medicinal chemistry 21.37 (2014): 4200-4214.

    Article  CAS  Google Scholar 

  • Soto, Karla, K. M. Garza, and L. E. Murr. “Cytotoxic effects of aggregated nanomaterials.” Acta Biomaterialia 3.3 (2007): 351-358.

    Article  CAS  Google Scholar 

  • Völker, Carolin, Matthias Oetken, and Jörg Oehlmann. “The biological effects and possible modes of action of nanosilver.” Reviews of Environmental Contamination and Toxicology Volume 223. Springer, New York, NY, 2013. 81-106.

    Google Scholar 

  • Sly, Peter D., and Karen Schüepp. "Nanoparticles and children's lungs: is there a need for caution?." Paediatric respiratory reviews 13.2 (2012): 71-72.

    Article  Google Scholar 

  • Liu, Zhuang, et al. “Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery.” Nano research 2.2 (2009): 85-120.

    Article  CAS  Google Scholar 

  • Wang, Long, et al. “Nano-cerium-element-doped titanium dioxide induces apoptosis of Bel 7402 human hepatoma cells in the presence of visible light.” World Journal of Gastroenterology: WJG 13.29 (2007): 4011.

    Google Scholar 

  • Dunford, Rosemary, et al. “Chemical oxidation and DNA damage catalyzed by inorganic sunscreen ingredients.” FEBS letters 418.1-2 (1997): 87-90.

    Google Scholar 

  • Hougaard, Karin Sørig, et al. “A perspective on the developmental toxicity of inhaled nanoparticles.” Reproductive Toxicology 56 (2015): 118-140.

    Article  CAS  Google Scholar 

  • Metal & Metal Oxide Nanoparticles Market: Gold Nanoparticles Continue to Shine in Terms of Value Owing to Significant Market Demand: Global Industry Analysis and opportunity assessment, 2016 – 2026. Future Market Insights.(2017)

    Google Scholar 

  • Sharma, Virender K., et al. "Natural inorganic nanoparticles–formation, fate, and toxicity in the environment." Chemical Society Reviews 44.23 (2015): 8410-8423.

    Article  CAS  Google Scholar 

  • Unveiling silver nanoparticles market trends in terms of the application spectrum: F&B sector to emerge as a remunerative growth avenue over 2018 – 2024. Fractovia.(2018)

    Google Scholar 

  • Kim, Soohee, and Doug-Young Ryu. "Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues." Journal of Applied Toxicology 33.2 (2013): 78-89.

    Article  CAS  Google Scholar 

  • Gliga, Anda R., et al. "Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release." Particle and fibre toxicology11.1 (2014): 11.

    Google Scholar 

  • Sung, Jae Hyuck, et al. "Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles." Inhalation toxicology 20.6 (2008): 567-574.

    Article  CAS  Google Scholar 

  • Gold Nanoparticles Market (End-Users – Healthcare, Electronics, Chemicals, and Other End-Users; Applications – Imaging, Targeted Drug Delivery, Proton Therapy, In-Vitro Assays, Sensors, Probes, Catalysis, and Other Applications) – Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2017 – 2026. Transparency Market Research. (2018)

    Google Scholar 

  • Yao, Mingfei, et al. "Uptake of gold nanoparticles by intestinal epithelial cells: impact of particle size on their absorption, accumulation, and toxicity." Journal of agricultural and food chemistry 63.36 (2015): 8044-8049.

    Article  CAS  Google Scholar 

  • Andón, Fernando Torres, and Bengt Fadeel. "Programmed cell death: molecular mechanisms and implications for safety assessment of nanomaterials." Accounts of chemical research46.3 (2012): 733-742.

    Google Scholar 

  • De Jong, Wim H., et al. "Particle size-dependent organ distribution of gold nanoparticles after intravenous administration." Biomaterials 29.12 (2008b): 1912-1919.

    Article  CAS  Google Scholar 

  • Cho, Wan-Seob, et al. "Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles." Toxicology and applied pharmacology 236.1 (2009): 16-24.

    Article  CAS  Google Scholar 

  • OrbisResearch. Global Magnetic Nanoparticle Market Research Report and Forecast to 2017-2022. Reuters. (2017) https://www.reuters.com/brandfeatures/venture-capital/article?id=12866

  • Singh, Neenu, et al. "Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION)." Nano reviews 1.1 (2010): 5358.

    Google Scholar 

  • Stroh, Albrecht, et al. "Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages." Free Radical Biology and Medicine 36.8 (2004): 976-984.

    Article  CAS  Google Scholar 

  • Jain, Tapan K., et al. "Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats." Molecular pharmaceutics 5.2 (2008): 316-327.

    Article  CAS  Google Scholar 

  • Kumari, Monika, et al. "Repeated oral dose toxicity of iron oxide nanoparticles: biochemical and histopathological alterations in different tissues of rats." Journal of nanoscience and nanotechnology 12.3 (2012): 2149-2159.

    Article  CAS  Google Scholar 

  • StatNano 2016 – Status of Nano-science, Technology and Innovation. Statnano Publication. (2017).

    Google Scholar 

  • Titanium Dioxide Market Analysis By Application, By Region And Segment Forecast, 2018 – 2025. Grand View Research. (2015).

    Google Scholar 

  • Simon-Deckers, A., et al. "In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes." Toxicology253.1-3 (2008): 137-146.

    Google Scholar 

  • Ekstrand-Hammarström, Barbro, et al. "Human primary bronchial epithelial cells respond differently to titanium dioxide nanoparticles than the lung epithelial cell lines A549 and BEAS-2B." Nanotoxicology 6.6 (2012): 623-634.

    Article  CAS  Google Scholar 

  • Ferin, Juraj, G. Oberdorster, and D. P. Penney. "Pulmonary retention of ultrafine and fine particles in rats." Am J Respir Cell Mol Biol 6.5 (1992): 535-542.

    Article  CAS  Google Scholar 

  • European Commission, 2013. Scientific Committee on Consumer Safety. SCCS/1516/13.

    Google Scholar 

  • Nano Zinc Oxide Market by Application – Global Opportunity Analysis and Industry Forecast, 2014 – 2022. Allied Market Research. (2016).

    Google Scholar 

  • George, Saji, et al. "Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping." ACS nano 4.1 (2009): 15-29.

    Article  CAS  Google Scholar 

  • Sayes, Christie M., Kenneth L. Reed, and David B. Warheit. "Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles." Toxicological sciences 97.1 (2007): 163-180.

    Article  CAS  Google Scholar 

  • Monteiro-Riviere, Nancy A., et al. "Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study." Toxicological Sciences 123.1 (2011): 264-280.

    Article  CAS  Google Scholar 

  • European Commission, 2012. Scientific Committee on Consumer Safety. SCCS/1489/12.

    Google Scholar 

  • Roberts, Jeanette C., Mahesh K. Bhalgat, and Richard T. Zera. "Preliminary biological evaluation of polyamidoamine (PAMAM) StarburstTM dendrimers." Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials 30.1 (1996): 53-65.

    Article  CAS  Google Scholar 

  • Chen, Hui-Ting, et al. "Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery." Journal of the American Chemical Society 126.32 (2004): 10044-10048.

    Article  CAS  Google Scholar 

  • Jia, Guang, et al. "Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene." Environmental science & technology 39.5 (2005): 1378-1383.

    Article  CAS  Google Scholar 

  • Wang, Haifang, et al. "Biodistribution of carbon single-wall carbon nanotubes in mice." Journal of nanoscience and nanotechnology 4.8 (2004): 1019-1024.

    Article  CAS  Google Scholar 

  • Pantarotto, Davide, et al. "Translocation of bioactive peptides across cell membranes by carbon nanotubes." Chemical communications 1 (2004): 16-17.

    Article  CAS  Google Scholar 

  • Cui, Daxiang, et al. "Effect of single wall carbon nanotubes on human HEK293 cells." Toxicology letters 155.1 (2005): 73-85.

    Article  CAS  Google Scholar 

  • Monteiro-Riviere, Nancy A., et al. "Multi-walled carbon nanotube interactions with human epidermal keratinocytes." Toxicology letters 155.3 (2005): 377-384.

    Article  CAS  Google Scholar 

  • Global Fullerene Market 2015 – 2019. Prnewswire. (2015).

    Google Scholar 

  • Injac, Rade, Matevz Prijatelj, and Borut Strukelj. "Fullerenol nanoparticles: toxicity and antioxidant activity." Oxidative Stress and Nanotechnology. Humana Press, Totowa, NJ, 2013. 75-100.

    Google Scholar 

  • Nelson, Mark A., et al. "Effects of acute and subchronic exposure of topically applied fullerene extracts on the mouse skin." Toxicology and industrial health 9.4 (1993): 623-630.

    Article  CAS  Google Scholar 

  • Satoh, Mitsutoshi, et al. "Effects of acute and short-term repeated application of fullerene C60 on agonist-induced responses in various tissues of guinea pig and rat." General pharmacology 26.7 (1995): 1533-1538.

    Article  CAS  Google Scholar 

  • Torres-Lugo, Madeline, et al. "Physicochemical behavior and cytotoxic effects of p (methacrylic acid–g-ethylene glycol) nanospheres for oral delivery of proteins." Journal of controlled release 80.1-3 (2002): 197-205.

    Article  CAS  Google Scholar 

  • Cahouet, A., et al. "Biodistribution of dual radiolabeled lipidic nanocapsules in the rat using scintigraphy and γ counting." International journal of pharmaceutics 242.1-2 (2002): 367-371.

    Article  CAS  Google Scholar 

  • Liu, Huiyu, et al. "Impact of PEGylation on the biological effects and light heat conversion efficiency of gold nanoshells on silica nanorattles." Biomaterials 34.28 (2013): 6967-6975.

    Article  CAS  Google Scholar 

  • Shiohara, A., et al. "On the cytotoxicity caused by quantum dots Microbiol Immunol 48: 669–675." Find this article online(2004).

    Google Scholar 

  • Kirchner, Christian, et al. "Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles." Nano letters 5.2 (2005): 331-338.

    Article  CAS  Google Scholar 

  • Green, Mark, and Emily Howman. "Semiconductor quantum dots and free radical induced DNA nicking." Chemical communications 1 (2005): 121-123.

    Article  CAS  Google Scholar 

  • Nguyen, Kathy C., et al. "Mitochondrial toxicity of cadmium telluride quantum dot nanoparticles in mammalian hepatocytes." Toxicological sciences 146.1 (2015a): 31-42.

    Article  CAS  Google Scholar 

  • Baalousha, Mohamed, and Jamie R. Lead. "Overview of nanoscience in the environment." Environmental and human health impacts of nanotechnology. Wiley-Blackwell Publishing Ltd, Hoboken, NJ (2009): 1-25.

    Google Scholar 

  • Gidhagen, Lars, et al. "Model simulations of NO x and ultrafine particles close to a Swedish highway." Environmental science & technology 38.24 (2004): 6730-6740.

    Article  CAS  Google Scholar 

  • Clarke, A. G., et al. "A Lagrangian model of the evolution of the particulate size distribution of vehicular emissions." Science of the total environment 334 (2004): 197-206.

    Article  CAS  Google Scholar 

  • Li, Xiao-qin, Daniel W. Elliott, and Wei-xian Zhang. "Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects." Critical reviews in solid state and materials sciences 31.4 (2006): 111-122.

    Article  CAS  Google Scholar 

  • Zharov, Vladimir P., et al. "Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles." Biophysical journal 90.2 (2006): 619-627.

    Article  CAS  Google Scholar 

  • Jafar, Gohargani, and Ghasemi Hamzeh. "Ecotoxicity of nanomaterials in soil." Ann Biol Res 4.1 (2013): 86-92.

    Google Scholar 

  • Jang, Min-Hee, et al. "Effect of material properties on stability of silver nanoparticles in water." Journal of nanoscience and nanotechnology 14.12 (2014): 9665-9669.

    Article  CAS  Google Scholar 

  • Rocha, Thiago Lopes, et al. "Ecotoxicological impact of engineered nanomaterials in bivalve molluscs: an overview." Marine environmental research 111 (2015): 74-88.

    Article  CAS  Google Scholar 

  • Tiede, Karen, et al. "How important is drinking water exposure for the risks of engineered nanoparticles to consumers?." Nanotoxicology 10.1 (2016): 102-110.

    CAS  Google Scholar 

  • Holsapple, Michael P., et al. "Research strategies for safety evaluation of nanomaterials, part II: toxicological and safety evaluation of nanomaterials, current challenges and data needs." Toxicological Sciences 88.1 (2005): 12-17.

    Article  CAS  Google Scholar 

  • Ryman-Rasmussen, Jessica P., Jim E. Riviere, and Nancy A. Monteiro-Riviere. "Penetration of intact skin by quantum dots with diverse physicochemical properties." Toxicological sciences 91.1 (2006b): 159-165.

    Article  CAS  Google Scholar 

  • Tinkle, Sally S., et al. "Skin as a route of exposure and sensitization in chronic beryllium disease." Environmental health perspectives 111.9 (2003): 1202.

    Article  CAS  Google Scholar 

  • Radomski, Anna, et al. "Nanoparticle-induced platelet aggregation and vascular thrombosis." British journal of pharmacology 146.6 (2005): 882-893.

    Article  CAS  Google Scholar 

  • Madl, Amy K., et al. "Nanoparticles, lung injury, and the role of oxidant stress." Annual review of physiology 76 (2014): 447-465.

    Article  CAS  Google Scholar 

  • Barua, Sutapa, and Samir Mitragotri. "Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects." Nano today 9.2 (2014): 223-243.

    Article  CAS  Google Scholar 

  • Nguyen, Kathy C., et al. "Mitochondrial toxicity of cadmium telluride quantum dot nanoparticles in mammalian hepatocytes." Toxicological sciences 146.1 (2015b): 31-42.

    Article  CAS  Google Scholar 

  • Wang, Tiantian, et al. "Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR spectroelectrochemistry." ACS nano 6.2 (2012a): 1251-1259.

    Article  CAS  Google Scholar 

  • Singh, Braj R., et al. "ROS-mediated apoptotic cell death in prostate cancer LNCaP cells induced by biosurfactant stabilized CdS quantum dots." Biomaterials 33.23 (2012): 5753-5767.

    Article  CAS  Google Scholar 

  • Ruenraroengsak, Pakatip, et al. "Respiratory epithelial cytotoxicity and membrane damage (holes) caused by amine-modified nanoparticles." Nanotoxicology 6.1 (2012): 94-108.

    Article  CAS  Google Scholar 

  • Mao, Zhilei, et al. "Titanium dioxide nanoparticles alter cellular morphology via disturbing the microtubule dynamics." Nanoscale 7.18 (2015): 8466-8475.

    Article  CAS  Google Scholar 

  • Walkey, Carl D., et al. "Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake." Journal of the American Chemical Society 134.4 (2012): 2139-2147.

    Article  CAS  Google Scholar 

  • Kostura, Lisa, et al. "Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis." NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo 17.7 (2004): 513-517.

    Article  Google Scholar 

  • Kedziorek, Dorota A., et al. "Gene expression profiling reveals early cellular responses to intracellular magnetic labeling with superparamagnetic iron oxide nanoparticles." Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 63.4 (2010): 1031-1043.

    Article  CAS  Google Scholar 

  • Puppi, Juliana, et al. "Use of a clinically approved iron oxide MRI contrast agent to label human hepatocytes." Cell transplantation 20.6 (2011): 963-975.

    Article  Google Scholar 

  • Wang, Linlin, Chen Hu, and Longquan Shao. "The antimicrobial activity of nanoparticles: present situation and prospects for the future." International journal of nanomedicine12 (2017): 1227.

    Google Scholar 

  • Choi, Soo-Jin, Jae-Min Oh, and Jin-Ho Choy. "Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells." Journal of Inorganic Biochemistry 103.3 (2009): 463-471.

    Article  CAS  Google Scholar 

  • Park, Eun-Jung, and Kwangsik Park. "Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro." Toxicology letters 184.1 (2009): 18-25.

    Article  CAS  Google Scholar 

  • Aggarwal, Parag, et al. "Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy." Advanced drug delivery reviews61.6 (2009): 428-437.

    Google Scholar 

  • Pan, Yu, et al. "Size-dependent cytotoxicity of gold nanoparticles." Small 3.11 (2007): 1941-1949.

    Article  CAS  Google Scholar 

  • Champion, Julie A., and Samir Mitragotri. "Role of target geometry in phagocytosis." Proceedings of the National Academy of Sciences 103.13 (2006): 4930-4934.

    Article  CAS  Google Scholar 

  • Lee, Mi-Kyung, Soo-Jeong Lim, and Chong-Kook Kim. "Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles." Biomaterials 28.12 (2007): 2137-2146.

    Article  CAS  Google Scholar 

  • Zhao, Xinxin, et al. "Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent." Archives of toxicology 87.6 (2013): 1037-1052.

    Article  CAS  Google Scholar 

  • Huang, Xinglu, et al. "The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo." ACS nano 5.7 (2011): 5390-5399.

    Article  CAS  Google Scholar 

  • Goodman, Catherine M., et al. "Toxicity of gold nanoparticles functionalized with cationic and anionic side chains." Bioconjugate chemistry 15.4 (2004): 897-900.

    Article  CAS  Google Scholar 

  • Heiden, Tisha C. King, et al. "Developmental toxicity of low generation PAMAM dendrimers in zebrafish." Toxicology and applied pharmacology 225.1 (2007): 70-79.

    Article  CAS  Google Scholar 

  • Kohli, A. K., and H. O. Alpar. "Potential use of nanoparticles for transcutaneous vaccine delivery: effect of particle size and charge." International journal of pharmaceutics 275.1-2 (2004): 13-17.

    Article  CAS  Google Scholar 

  • Griffitt, Robert J., et al. "Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms." Environmental Toxicology and Chemistry 27.9 (2008): 1972-1978.

    Article  CAS  Google Scholar 

  • Risom, Lotte, Peter Møller, and Steffen Loft. "Oxidative stress-induced DNA damage by particulate air pollution." Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 592.1 (2005): 119-137.

    Article  CAS  Google Scholar 

  • Salvador-Morales, Carolina, et al. "Binding of pulmonary surfactant proteins to carbon nanotubes; potential for damage to lung immune defense mechanisms." Carbon 45.3 (2007): 607-617.

    Article  CAS  Google Scholar 

  • Slowing, Igor I., et al. "Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells." Small 5.1 (2009): 57-62.

    Article  CAS  Google Scholar 

  • Brunner, Tobias J., et al. "In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility." Environmental science & technology 40.14 (2006): 4374-4381.

    Article  CAS  Google Scholar 

  • Ferrari, Mauro. "Nanogeometry: beyond drug delivery." Nature Nanotechnology 3.3 (2008): 131.

    Article  CAS  Google Scholar 

  • Murdock, Richard C., et al. "Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique." Toxicological sciences 101.2 (2008): 239-253.

    Article  CAS  Google Scholar 

  • Powers, Kevin W., et al. "Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation." Toxicological Sciences 90.2 (2006): 296-303.

    Article  CAS  Google Scholar 

  • Sapsford, Kim E., et al. "Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques." Analytical chemistry 83.12 (2011): 4453-4488.

    Article  CAS  Google Scholar 

  • Mosmann, Tim. "Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays." Journal of immunological methods 65.1-2 (1983): 55-63.

    Article  CAS  Google Scholar 

  • Darzynkiewicz, Zbigniew, et al. "Features of apoptotic cells measured by flow cytometry." Cytometry 13.8 (1992): 795-808.

    Article  CAS  Google Scholar 

  • Jones, Kenneth H., and James A. Senft. "An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide." Journal of Histochemistry & Cytochemistry 33.1 (1985): 77-79.

    Article  CAS  Google Scholar 

  • Strober, Warren. "Trypan blue exclusion test of cell viability." Current protocols in immunology 21.1 (1997): A-3B.

    Google Scholar 

  • Chan, Francis Ka-Ming, Kenta Moriwaki, and María José De Rosa. "Detection of necrosis by release of lactate dehydrogenase activity." Immune Homeostasis. Humana Press, Totowa, NJ, 2013. 65-70.

    Google Scholar 

  • Enari, Masato, et al. "A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD." Nature 391.6662 (1998): 43.

    Google Scholar 

  • Worman, Howard J., et al. "A lamin B receptor in the nuclear envelope." Proceedings of the National Academy of Sciences85.22 (1988): 8531-8534.

    Google Scholar 

  • Charriaut-Marlangue, C., and Y. Ben-Ari. "A cautionary note on the use of the TUNEL stain to determine apoptosis." Neuroreport 7.1 (1995): 61-64.

    Article  CAS  Google Scholar 

  • Ahmed, S. Ansar, Robert M. Gogal Jr, and Jane E. Walsh. "A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H] thymidine incorporation assay." Journal of immunological methods 170.2 (1994): 211-224.

    Article  CAS  Google Scholar 

  • Murugadas, Anbazhagan, et al. "Hydra as a model organism to decipher the toxic effects of copper oxide nanorod: Eco-toxicogenomics approach." Scientific reports 6 (2016): 29663.

    Google Scholar 

  • Harparkash, K. A. U. R., and Barry Halliwell. "Measurement of oxidized and methylated DNA bases by HPLC with electrochemical detection." Biochemical Journal318.1 (1996): 21-23.

    Google Scholar 

  • Barcia, Juan José. "The Giemsa stain: its history and applications." International journal of surgical pathology 15.3 (2007): 292-296.

    Article  Google Scholar 

  • Özel, Rıfat Emrah, et al. "Effect of cerium oxide nanoparticles on intestinal serotonin in zebrafish." RSC advances 3.35 (2013): 15298-15309.

    Article  CAS  Google Scholar 

  • Xiong, Daowen, et al. "Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage." Science of the Total environment 409.8 (2011): 1444-1452.

    Article  CAS  Google Scholar 

  • Wang, Yixian, et al. "Nanoelectrodes for determination of reactive oxygen and nitrogen species inside murine macrophages." Proceedings of the National Academy of Sciences 109.29 (2012b): 11534-11539.

    Article  CAS  Google Scholar 

  • Giaever, Ivar, and Charles R. Keese. "Micromotion of mammalian cells measured electrically." Proceedings of the National Academy of Sciences 88.17 (1991): 7896-7900.

    Article  CAS  Google Scholar 

  • Hondroulis, Evangelia, et al. "Impedance based nanotoxicity assessment of graphene nanomaterials at the cellular and tissue level." Analytical Letters 45.2-3 (2012): 272-282.

    Article  CAS  Google Scholar 

  • Oomen, Agnes G., et al. "Concern-driven integrated approaches to nanomaterial testing and assessment–report of the NanoSafety Cluster Working Group 10." Nanotoxicology8.3 (2014): 334-348.

    Google Scholar 

  • Adholeya A, Das R. K, Dubey M. K, Kochar M, Singh R, Regulations of Nanoproducts in Agriculture. 2017 (downloaded on 29th August 2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikha Wadhwa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

John, A.T., Wadhwa, S., Mathur, A. (2022). Nanotoxicology: Exposure, Mechanism, and Effects on Human Health. In: Jindal, T. (eds) New Frontiers in Environmental Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-72173-2_5

Download citation

Publish with us

Policies and ethics