Skip to main content

Dopamine Homeostasis and Role of VMAT2 in Neurodegeneration

  • Living reference work entry
  • First Online:
Handbook of Neurotoxicity
  • 59 Accesses

Abstract

Dopamine transmission plays important roles in learning and behavior, while abnormal dopaminergic tone is implicated in multiple neurological disorders, including Parkinson’s disease, schizophrenia, and psychoses. As catecholamines are reactive molecules, metabolic turnover of dopamine is tightly regulated by its synthesis, degradation, and compartmentalization. Vesicular monoamine transporter 2 (VMAT2) sequesters dopamine into synaptic vesicles, thereby occupying a unique role by facilitating dopaminergic neurotransmission at the same time preventing the deleterious effects of dopamine presence in the cytosol. This review summarizes recent findings on the regulation of dopamine cellular homeostasis and on the relationship between VMAT2 activity and dopamine-mediated neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AADC:

Aromatic l-amino acid decarboxylase

DA:

Dopamine

DAcyt:

Cytosolic DA

DAT:

DA uptake transporter

DOPAC:

3,4-Dihydroxyphenylacetate

DOPAL:

3,4-Dihydroxyphenylacetaldehyde

LC:

Locus coeruleus

L-DOPA:

L-3,4-dihydroxyphenylalanine, levodopa

MAO:

Monoamine oxidase

METH:

Methamphetamine

MPP+:

1-Methyl-4-phenylpyridinium

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

SNpc:

Substantia nigra pars compacta

SPN:

Spiny projection neurons

TH:

Tyrosine hydroxylase

VGLUT2:

Vesicular glutamate transporter 2

VMAT:

Vesicular monoamine transporter

References

  • Albillos, A., Dernick, G., Hostmann, H., Almers, W., Alvarez de Toledo, G., & Lindau, M. (1997). The exocytotic event in chromaffin cells revealed by patch amperometry. Nature, 389, 509–512.

    Article  CAS  PubMed  Google Scholar 

  • Alter, S. P., Stout, K. A., Lohr, K. M., Taylor, T. N., Shepherd, K. R., Wang, M., Guillot, T. S., & Miller, G. W. (2016). Reduced vesicular monoamine transport disrupts serotonin signaling but does not cause serotonergic degeneration. Experimental Neurology, 275(Pt 1), 17–24. https://doi.org/10.1016/j.expneurol.2015.09.016

    Article  CAS  PubMed  Google Scholar 

  • Blaschko, H. (1952). Amine oxidase and amine metabolism. Pharmacological Reviews, 4(4), 415–458.

    CAS  PubMed  Google Scholar 

  • Burbulla, L. F., Song, P., Mazzulli, J. R., Zampese, E., Wong, Y. C., Jeon, S., Santos, D. P., Blanz, J., Obermaier, C. D., Strojny, C., Savas, J. N., Kiskinis, E., Zhuang, X., Kruger, R., Surmeier, D. J., & Krainc, D. (2017). Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science, 357(6357), 1255–1261. https://doi.org/10.1126/science.aam9080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke, W. J., Li, S. W., Chung, H. D., Ruggiero, D. A., Kristal, B. S., Johnson, E. M., Lampe, P., Kumar, V. B., Franko, M., Williams, E. A., & Zahm, D. S. (2004). Neurotoxicity of MAO metabolites of catecholamine neurotransmitters: Role in neurodegenerative diseases. Neurotoxicology, 25(1–2), 101–115.

    Article  CAS  PubMed  Google Scholar 

  • Carlsson, A., Lindqvist, M., & Magnusson, T. (1957). 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature, 180(4596), 1200.

    Article  CAS  PubMed  Google Scholar 

  • Caudle, W. M., Richardson, J. R., Wang, M. Z., Taylor, T. N., Guillot, T. S., McCormack, A. L., Colebrooke, R. E., Di Monte, D. A., Emson, P. C., & Miller, G. W. (2007). Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. The Journal of Neuroscience, 27(30), 8138–8148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cebrian, C., Loike, J. D., & Sulzer, D. (2014). Neuronal MHC-I expression and its implications in synaptic function, axonal regeneration and Parkinson’s and other brain diseases. Frontiers in Neuroanatomy, 8, 114. https://doi.org/10.3389/fnana.2014.00114

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, L., Ding, Y., Cagniard, B., Van Laar, A. D., Mortimer, A., Chi, W., Hastings, T. G., Kang, U. J., & Zhuang, X. (2008). Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. The Journal of Neuroscience, 28(2), 425–433.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daubner, S. C., Le, T., & Wang, S. (2011). Tyrosine hydroxylase and regulation of dopamine synthesis. Archives of Biochemistry and Biophysics, 508(1), 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Daveu, C., Servy, C., Dendane, M., Marin, P., & Ducrocq, C. (1997). Oxidation and nitration of catecholamines by nitrogen oxides derived from nitric oxide. Nitric Oxide, 1(3), 234–243.

    Article  CAS  PubMed  Google Scholar 

  • Deitrich, R., & Erwin, V. (1980). Biogenic amine-aldehyde condensation products: Tetrahydroisoquinolines and tryptolines (beta-carbolines). Annual Review of Pharmacology and Toxicology, 20, 55–80.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, R. H. (2007). The neurotransmitter cycle and quantal size. Neuron, 55(6), 835–858.

    Article  CAS  PubMed  Google Scholar 

  • Fahn, S., Oakes, D., Shoulson, I., Kieburtz, K., Rudolph, A., Lang, A., Olanow, C. W., Tanner, C., & Marek, K. (2004). Levodopa and the progression of Parkinson’s disease. The New England Journal of Medicine, 351(24), 2498–2508.

    Article  CAS  PubMed  Google Scholar 

  • Fon, E. A., Pothos, E. N., Sun, B. C., Killeen, N., Sulzer, D., & Edwards, R. H. (1997). Vesicular transport regulates monoamine storage and release but is not essential for amphetamine action. Neuron, 19(6), 1271–1283.

    Article  CAS  PubMed  Google Scholar 

  • Fornstedt, B., & Carlsson, A. (1989). A marked rise in 5-S-cysteinyl-dopamine levels in Guinea-pig striatum following reserpine treatment. Journal of Neural Transmission, 76(2), 155–161.

    Article  CAS  PubMed  Google Scholar 

  • Freyberg, Z., Sonders, M. S., Aguilar, J. I., Hiranita, T., Karam, C. S., Flores, J., Pizzo, A. B., Zhang, Y., Farino, Z. J., Chen, A., Martin, C. A., Kopajtic, T. A., Fei, H., Hu, G., Lin, Y. Y., Mosharov, E. V., McCabe, B. D., Freyberg, R., Wimalasena, K., Hsin, L. W., Sames, D., Krantz, D. E., Katz, J. L., Sulzer, D., & Javitch, J. A. (2016). Mechanisms of amphetamine action illuminated through optical monitoring of dopamine synaptic vesicles in Drosophila brain. Nature Communications, 7, 10652. https://doi.org/10.1038/ncomms10652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuentes, P., Paris, I., Nassif, M., Caviedes, P., & Segura-Aguilar, J. (2007). Inhibition of VMAT-2 and DT-diaphorase induce cell death in a substantia nigra-derived cell line--an experimental cell model for dopamine toxicity studies. Chemical Research in Toxicology, 20(5), 776–783.

    Article  CAS  PubMed  Google Scholar 

  • Fumagalli, F., Gainetdinov, R. R., Wang, Y. M., Valenzano, K. J., Miller, G. W., & Caron, M. G. (1999). Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice. The Journal of Neuroscience, 19(7), 2424–2431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gainetdinov, R. R., Fumagalli, F., Wang, Y. M., Jones, S. R., Levey, A. I., Miller, G. W., & Caron, M. G. (1998). Increased MPTP neurotoxicity in vesicular monoamine transporter 2 heterozygote knockout mice. Journal of Neurochemistry, 70, 1973–1978.

    Article  CAS  PubMed  Google Scholar 

  • Glatt, C. E., Wahner, A. D., White, D. J., Ruiz-Linares, A., & Ritz, B. (2006). Gain-of-function haplotypes in the vesicular monoamine transporter promoter are protective for Parkinson disease in women. Human Molecular Genetics, 15(2), 299–305.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, D. S. (2020). The catecholaldehyde hypothesis: Where MAO fits in. Journal of Neural Transmission (Vienna), 127(2), 169–177. https://doi.org/10.1007/s00702-019-02106-9

    Article  CAS  Google Scholar 

  • Graves, S. M., Xie, Z., Stout, K. A., Zampese, E., Burbulla, L. F., Shih, J. C., Kondapalli, J., Patriarchi, T., Tian, L., Brichta, L., Greengard, P., Krainc, D., Schumacker, P. T., & Surmeier, D. J. (2020). Dopamine metabolism by a monoamine oxidase mitochondrial shuttle activates the electron transport chain. Nature Neuroscience, 23(1), 15–20. https://doi.org/10.1038/s41593-019-0556-3

    Article  CAS  PubMed  Google Scholar 

  • Guillot, T. S., & Miller, G. W. (2009). Protective actions of the vesicular monoamine transporter 2 (VMAT2) in monoaminergic neurons. Molecular Neurobiology, 39(2), 149–170.

    Article  CAS  PubMed  Google Scholar 

  • Guillot, T. S., Richardson, J. R., Wang, M. Z., Li, Y. J., Taylor, T. N., Ciliax, B. J., Zachrisson, O., Mercer, A., & Miller, G. W. (2008). PACAP38 increases vesicular monoamine transporter 2 (VMAT2) expression and attenuates methamphetamine toxicity. Neuropeptides, 42(4), 423–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadjiconstantinou, M., & Neff, N. H. (2008). Enhancing aromatic l-amino acid decarboxylase activity: Implications for L-DOPA treatment in Parkinson’s disease. CNS Neuroscience & Therapeutics, 14(4), 340–351.

    Article  CAS  Google Scholar 

  • Hastings, T. G., & Berman, S. B. (1999). Dopamine-induced toxicity and quinone modification of proteins: Implications for Parkinson’s disease. In C. R. Creveling (Ed.), Role of catechol quinone species in cellular toxicity (pp. 69–89). F.P. Graham Publishing.

    Google Scholar 

  • Hnasko, T. S., Chuhma, N., Zhang, H., Goh, G. Y., Sulzer, D., Palmiter, R. D., Rayport, S., & Edwards, R. H. (2010). Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron, 65(5), 643–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holleran, K. M., Rose, J. H., Fordahl, S. C., Benton, K. C., Rohr, K. E., Gasser, P. J., & Jones, S. R. (2020). Organic cation transporter 3 and the dopamine transporter differentially regulate catecholamine uptake in the basolateral amygdala and nucleus accumbens. The European Journal of Neuroscience. https://doi.org/10.1111/ejn.14927

  • Hornykiewicz, O. (2010). A brief history of levodopa. Journal of Neurology, 257(Suppl 2), S249–S252.

    Article  PubMed  CAS  Google Scholar 

  • Jentsch, T. J., Poet, M., Fuhrmann, J. C., & Zdebik, A. A. (2005). Physiological functions of CLC Cl- channels gleaned from human genetic disease and mouse models. Annual Review of Physiology, 67, 779–807.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, R. G. (1988). Accumulation of biological amines into chromaffin granules: A model for hormone and neurotransmitter transport. Physiological Reviews, 68, 232–307.

    Article  CAS  PubMed  Google Scholar 

  • Jones, S. R., Gainetdinov, R. R., Jaber, M., Giros, B., Wightman, R. M., & Caron, M. G. (1998). Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proceedings of the National Academy of Sciences of the United States of America, 95(7), 4029–4034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kariya, S., Takahashi, N., Hirano, M., & Ueno, S. (2005). Increased vulnerability to L-DOPA toxicity in dopaminergic neurons from VMAT2 heterozygote knockout mice. Journal of Molecular Neuroscience, 27(3), 277–279.

    Article  CAS  PubMed  Google Scholar 

  • Langston, J. W., & Irwin, I. (1986). MPTP: Current concepts and controversies. Clinical Neuropharmacology, 9(6), 485–507.

    Article  CAS  PubMed  Google Scholar 

  • Larsen, K. E., Fon, E. A., Hastings, T. G., Edwards, R. H., & Sulzer, D. (2002). Methamphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis. The Journal of Neuroscience, 22(20), 8951–8960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaVoie, M. J., & Hastings, T. G. (1999). Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: Evidence against a role for extracellular dopamine. The Journal of Neuroscience, 19(4), 1484–1491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawal, H. O., Terrell, A., Lam, H. A., Djapri, C., Jang, J., Hadi, R., Roberts, L., Shahi, V., Chou, M. T., Biedermann, T., Huang, B., Lawless, G. M., Maidment, N. T., & Krantz, D. E. (2014). Drosophila modifier screens to identify novel neuropsychiatric drugs including aminergic agents for the possible treatment of Parkinson’s disease and depression. Molecular Psychiatry, 19(2), 235–242. https://doi.org/10.1038/mp.2012.170

    Article  CAS  PubMed  Google Scholar 

  • Liang, C. L., Nelson, O., Yazdani, U., Pasbakhsh, P., & German, D. C. (2004). Inverse relationship between the contents of neuromelanin pigment and the vesicular monoamine transporter-2: Human midbrain dopamine neurons. The Journal of Comparative Neurology, 473(1), 97–106.

    Article  CAS  PubMed  Google Scholar 

  • Lieberman, O. J., Choi, S. J., Kanter, E., Saverchenko, A., Frier, M. D., Fiore, G. M., Wu, M., Kondapalli, J., Zampese, E., Surmeier, D. J., Sulzer, D., & Mosharov, E. V. (2017). Alpha-synuclein-dependent calcium entry underlies differential sensitivity of cultured SN and VTA dopaminergic neurons to a parkinsonian neurotoxin. eNeuro, 4(6). https://doi.org/10.1523/ENEURO.0167-17.2017

  • Lieberman, O. J., McGuirt, A. F., Mosharov, E. V., Pigulevskiy, I., Hobson, B. D., Choi, S., Frier, M. D., Santini, E., Borgkvist, A., & Sulzer, D. (2018). Dopamine triggers the maturation of striatal spiny projection neuron excitability during a critical period. Neuron, 99(3), 540–554.e544. https://doi.org/10.1016/j.neuron.2018.06.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Peter, D., Roghani, A., Schuldiner, S., Prive, G. G., Eisenberg, D., Brecha, N., & Edwards, R. H. (1992). A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell, 70, 539–551.

    Article  CAS  PubMed  Google Scholar 

  • Lohr, K. M., Bernstein, A. I., Stout, K. A., Dunn, A. R., Lazo, C. R., Alter, S. P., Wang, M., Li, Y., Fan, X., Hess, E. J., Yi, H., Vecchio, L. M., Goldstein, D. S., Guillot, T. S., Salahpour, A., & Miller, G. W. (2014). Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo. Proceedings of the National Academy of Sciences of the United States of America, 111(27), 9977–9982. https://doi.org/10.1073/pnas.1402134111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohr, K. M., & Miller, G. W. (2014). VMAT2 and Parkinson’s disease: Harnessing the dopamine vesicle. Expert Review of Neurotherapeutics, 14(10), 1115–1117. https://doi.org/10.1586/14737175.2014.960399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchitti, S. A., Deitrich, R. A., & Vasiliou, V. (2007). Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: The role of aldehyde dehydrogenase. Pharmacological Reviews, 59(2), 125–150.

    Article  CAS  PubMed  Google Scholar 

  • Markov, D., Mosharov, E. V., Setlik, W., Gershon, M. D., & Sulzer, D. (2008). Secretory vesicle rebound hyperacidification and increased quantal size resulting from prolonged methamphetamine exposure. Journal of Neurochemistry, 107(6), 1709–1721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Vicente, M., Talloczy, Z., Kaushik, S., Massey, A. C., Mazzulli, J., Mosharov, E. V., Hodara, R., Fredenburg, R., Wu, D. C., Follenzi, A., Dauer, W., Przedborski, S., Ischiropoulos, H., Lansbury, P. T., Sulzer, D., & Cuervo, A. M. (2008). Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. The Journal of Clinical Investigation, 118(2), 777–788.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masoud, S. T., Vecchio, L. M., Bergeron, Y., Hossain, M. M., Nguyen, L. T., Bermejo, M. K., Kile, B., Sotnikova, T. D., Siesser, W. B., Gainetdinov, R. R., Wightman, R. M., Caron, M. G., Richardson, J. R., Miller, G. W., Ramsey, A. J., Cyr, M., & Salahpour, A. (2015). Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and l-DOPA reversible motor deficits. Neurobiology of Disease, 74, 66–75. https://doi.org/10.1016/j.nbd.2014.10.016

    Article  CAS  PubMed  Google Scholar 

  • Merchant, P., Sulzer, D., & Sames, D. (2015). Synaptic optical imaging platforms: Examining pharmacological modulation of neurotransmitter release at discrete synapses. Neuropharmacology, 98, 90–94. https://doi.org/10.1016/j.neuropharm.2015.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, G. W., Gainetdinov, R. R., Levey, A. I., & Caron, M. G. (1999). Dopamine transporters and neuronal injury. Trends in Pharmacological Sciences, 20(10), 424–429.

    Article  CAS  PubMed  Google Scholar 

  • Monzani, E., Nicolis, S., Dell’Acqua, S., Capucciati, A., Bacchella, C., Zucca, F. A., Mosharov, E. V., Sulzer, D., Zecca, L., & Casella, L. (2019). Dopamine, oxidative stress and protein-quinone modifications in Parkinson’s and other neurodegenerative diseases. Angewandte Chemie (International Ed. in English), 58(20), 6512–6527. https://doi.org/10.1002/anie.201811122

    Article  CAS  Google Scholar 

  • Mooslehner, K. A., Chan, P. M., Xu, W., Liu, L., Smadja, C., Humby, T., Allen, N. D., Wilkinson, L. S., & Emson, P. C. (2001). Mice with very low expression of the vesicular monoamine transporter 2 gene survive into adulthood: Potential mouse model for parkinsonism. Molecular and Cellular Biology, 21(16), 5321–5331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosharov, E. V., Gong, L.-W., Khanna, B., Lindau, M., & Sulzer, D. (2003). Intracellular patch electrochemistry: Regulation of cytosolic catecholamines in chromaffin cells. The Journal of Neuroscience, 23(13), 5835–5845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosharov, E. V., Larsen, K. E., Kanter, E., Phillips, K. A., Wilson, K., Schmitz, Y., Krantz, D. E., Kobayashi, K., Edwards, R. H., & Sulzer, D. (2009). Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron, 62(2), 218–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosharov, E. V., Staal, R. G., Bove, J., Prou, D., Hananiya, A., Markov, D., Poulsen, N., Larsen, K. E., Moore, C. M., Troyer, M. D., Edwards, R. H., Przedborski, S., & Sulzer, D. (2006). Alpha-synuclein overexpression increases cytosolic catecholamine concentration. The Journal of Neuroscience, 26(36), 9304–9311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myohanen, T. T., Schendzielorz, N., & Mannisto, P. T. (2010). Distribution of catechol-O-methyltransferase (COMT) proteins and enzymatic activities in wild-type and soluble COMT deficient mice. Journal of Neurochemistry, 113(6), 1632–1643.

    CAS  PubMed  Google Scholar 

  • Obeso, J. A., Stamelou, M., Goetz, C. G., Poewe, W., Lang, A. E., Weintraub, D., Burn, D., Halliday, G. M., Bezard, E., Przedborski, S., Lehericy, S., Brooks, D. J., Rothwell, J. C., Hallett, M., DeLong, M. R., Marras, C., Tanner, C. M., Ross, G. W., Langston, J. W., Klein, C., Bonifati, V., Jankovic, J., Lozano, A. M., Deuschl, G., Bergman, H., Tolosa, E., Rodriguez-Violante, M., Fahn, S., Postuma, R. B., Berg, D., Marek, K., Standaert, D. G., Surmeier, D. J., Olanow, C. W., Kordower, J. H., Calabresi, P., Schapira, A. H. V., & Stoessl, A. J. (2017). Past, present, and future of Parkinson’s disease: A special essay on the 200th anniversary of the shaking palsy. Movement Disorders, 32(9), 1264–1310. https://doi.org/10.1002/mds.27115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omiatek, D. M., Bressler, A. J., Cans, A. S., Andrews, A. M., Heien, M. L., & Ewing, A. G. (2013). The real catecholamine content of secretory vesicles in the CNS revealed by electrochemical cytometry. Scientific Reports, 3, 1447. https://doi.org/10.1038/srep01447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paris, I., Lozano, J., Perez-Pastene, C., Munoz, P., & Segura-Aguilar, J. (2009). Molecular and neurochemical mechanisms in PD pathogenesis. Neurotoxicity Research, 16(3), 271–279.

    Article  CAS  PubMed  Google Scholar 

  • Peter, D., Liu, Y., Sternini, C., de Giorgio, R., Brecha, N., & Edwards, R. H. (1995). Differential expression of two vesicular monoamine transporters. The Journal of Neuroscience, 15(9), 6179–6188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Post, M. R., Lieberman, O. J., & Mosharov, E. V. (2018). Can interactions between alpha-Synuclein, dopamine and calcium explain selective neurodegeneration in Parkinson’s disease? Frontiers in Neuroscience, 12, 161. https://doi.org/10.3389/fnins.2018.00161

    Article  PubMed  PubMed Central  Google Scholar 

  • Pothos, E. N., Larsen, K. E., Krantz, D. E., Liu, Y., Haycock, J. W., Setlik, W., Gershon, M. D., Edwards, R. H., & Sulzer, D. (2000). Synaptic vesicle transporter expression regulates vesicle phenotype and quantal size. The Journal of Neuroscience, 20(19), 7297–7306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsey, A. J., & Fitzpatrick, P. F. (2000). Effects of phosphorylation on binding of catecholamines to tyrosine hydroxylase: Specificity and thermodynamics. Biochemistry, 39(4), 773–778.

    Article  CAS  PubMed  Google Scholar 

  • Reveron, M. E., Savelieva, K. V., Tillerson, J. L., McCormack, A. L., Di Monte, D. A., & Miller, G. W. (2002). L-DOPA does not cause neurotoxicity in VMAT2 heterozygote knockout mice. Neurotoxicology, 23(4–5), 611–619.

    Article  CAS  PubMed  Google Scholar 

  • Ricaurte, G. A., Guillery, R. W., Seiden, L. S., Schuster, C. R., & Moore, R. Y. (1982). Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain. Brain Research, 235(1), 93–103.

    Article  CAS  PubMed  Google Scholar 

  • Rice, M. E., Cragg, S. J., & Greenfield, S. A. (1997). Characteristics of electrically evoked somatodendritic dopamine release in substantia nigra and ventral tegmental area in vitro. Journal of Neurophysiology, 77(2), 853–862.

    Article  CAS  PubMed  Google Scholar 

  • Rochet, J. C., Outeiro, T. F., Conway, K. A., Ding, T. T., Volles, M. J., Lashuel, H. A., Bieganski, R. M., Lindquist, S. L., & Lansbury, P. T. (2004). Interactions among alpha-synuclein, dopamine, and biomembranes: Some clues for understanding neurodegeneration in Parkinson’s disease. Journal of Molecular Neuroscience, 23(1–2), 23–34.

    Article  CAS  PubMed  Google Scholar 

  • Sang, T. K., Chang, H. Y., Lawless, G. M., Ratnaparkhi, A., Mee, L., Ackerson, L. C., Maidment, N. T., Krantz, D. E., & Jackson, G. R. (2007). A Drosophila model of mutant human parkin-induced toxicity demonstrates selective loss of dopaminergic neurons and dependence on cellular dopamine. The Journal of Neuroscience, 27(5), 981–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satou, T., Anderson, A. J., Itoh, T., Tamai, Y., Hayashi, Y., & Hashimoto, S. (2001). Repetitive administration of tetrabenazine induces irreversible changes in locomotion and morphology of the substantia nigra in rats. Experimental and Toxicologic Pathology, 53(4), 303–308.

    Article  CAS  PubMed  Google Scholar 

  • Sonnenschein, S. F., Gomes, F. V., & Grace, A. A. (2020). Dysregulation of midbrain dopamine system and the pathophysiology of schizophrenia. Frontiers in Psychiatry, 11, 613. https://doi.org/10.3389/fpsyt.2020.00613

    Article  PubMed  PubMed Central  Google Scholar 

  • Specht, C. G., & Schoepfer, R. (2001). Deletion of the alpha-synuclein locus in a subpopulation of C57BL/6J inbred mice. BMC Neuroscience, 2(11), 11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer, J. P., Whiteman, M., Jenner, P., & Halliwell, B. (2002). 5-s-Cysteinyl-conjugates of catecholamines induce cell damage, extensive DNA base modification and increases in caspase-3 activity in neurons. Journal of Neurochemistry, 81(1), 122–129.

    Article  CAS  PubMed  Google Scholar 

  • Stobrawa, S. M., Breiderhoff, T., Takamori, S., Engel, D., Schweizer, M., Zdebik, A. A., Bosl, M. R., Ruether, K., Jahn, H., Draguhn, A., Jahn, R., & Jentsch, T. J. (2001). Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron, 29(1), 185–196.

    Article  CAS  PubMed  Google Scholar 

  • Sulzer, D. (2001). Alpha-synuclein and cytosolic dopamine: Stabilizing a bad situation. Nature Medicine, 7(12), 1280–1282.

    Article  CAS  PubMed  Google Scholar 

  • Sulzer, D. (2011). How addictive drugs disrupt presynaptic dopamine neurotransmission. Neuron, 69(4), 628–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulzer, D., Bogulavsky, J., Larsen, K. E., Behr, G., Karatekin, E., Kleinman, M. H., Turro, N., Krantz, D., Edwards, R. H., Greene, L. A., & Zecca, L. (2000). Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 11869–11874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulzer, D., & Zecca, L. (2000). Intraneuronal dopamine-quinone synthesis: A review. Neurotoxicity Research, 1(3), 181–195.

    Article  CAS  PubMed  Google Scholar 

  • Surmeier, D. J., Guzman, J. N., Sanchez-Padilla, J., & Goldberg, J. A. (2010). What causes the death of dopaminergic neurons in Parkinson’s disease? Progress in Brain Research, 183, 59–77.

    Article  CAS  PubMed  Google Scholar 

  • Szoko, E., Tabi, T., Riederer, P., Vecsei, L., & Magyar, K. (2018). Pharmacological aspects of the neuroprotective effects of irreversible MAO-B inhibitors, selegiline and rasagiline, in Parkinson’s disease. Journal of Neural Transmission (Vienna), 125(11), 1735–1749. https://doi.org/10.1007/s00702-018-1853-9

    Article  CAS  Google Scholar 

  • Takahashi, N., Miner, L. L., Sora, I., Ujike, H., Revay, R. S., Kostic, V., Jackson-Lewis, V., Przedborski, S., & Uhl, G. R. (1997). VMAT2 knockout mice: Heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proceedings of the National Academy of Sciences of the United States of America, 94, 9938–9943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor, T. N., Alter, S. P., Wang, M., Goldstein, D. S., & Miller, G. W. (2014). Reduced vesicular storage of catecholamines causes progressive degeneration in the locus ceruleus. Neuropharmacology, 76(Pt A), 97–105. https://doi.org/10.1016/j.neuropharm.2013.08.033

    Article  CAS  PubMed  Google Scholar 

  • Taylor, T. N., Caudle, W. M., & Miller, G. W. (2011). VMAT2-deficient mice display nigral and extranigral pathology and motor and nonmotor symptoms of Parkinson’s disease. Parkinson’s Disease, 2011, 124165.

    PubMed  PubMed Central  Google Scholar 

  • Taylor, T. N., Caudle, W. M., Shepherd, K. R., Noorian, A., Jackson, C. R., Iuvone, P. M., Weinshenker, D., Greene, J. G., & Miller, G. W. (2009). Nonmotor symptoms of Parkinson’s disease revealed in an animal model with reduced monoamine storage capacity. The Journal of Neuroscience, 29(25), 8103–8113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhl, G. R. (1998). Hypothesis: The role of dopaminergic transporters in selective vulnerability of cells in Parkinson’s disease. Annals of Neurology, 43(5), 555–560.

    Article  CAS  PubMed  Google Scholar 

  • Vergo, S., Johansen, J. L., Leist, M., & Lotharius, J. (2007). Vesicular monoamine transporter 2 regulates the sensitivity of rat dopaminergic neurons to disturbed cytosolic dopamine levels. Brain Research, 1185, 18–32.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, G. C., Lucot, J. B., Schuster, C. R., & Seiden, L. S. (1983). Alpha-methyltyrosine attenuates and reserpine increases methamphetamine-induced neuronal changes. Brain Research, 270(2), 285–288.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y. M., Gainetdinov, R. R., Fumagalli, F., Xu, F., Jones, S. R., Bock, C. B., Miller, G. W., Wightman, R. M., & Caron, M. G. (1997). Knockout of the vesicular monoamine transporter 2 gene results in neonatal death and supersensitivity to cocaine and amphetamine. Neuron, 19(6), 1285–1296.

    Article  CAS  PubMed  Google Scholar 

  • Westlund, K. N., Denney, R. M., Kochersperger, L. M., Rose, R. M., & Abell, C. W. (1985). Distinct monoamine oxidase A and B populations in primate brain. Science, 230(4722), 181–183.

    Article  CAS  PubMed  Google Scholar 

  • Wightman, R. M., Jankowski, J. A., Kennedy, R. T., Kawagoe, K. T., Schroeder, T. J., Leszczyszyn, D. J., Near, J. A., Diliberto, E. J., Jr., & Viveros, O. H. (1991). Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proceedings of the National Academy of Sciences of the United States of America, 88(23), 10754–10758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zecca, L., Fariello, R., Riederer, P., Sulzer, D., Gatti, A., & Tampellini, D. (2002). The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson’s disease. FEBS Letters, 510(3), 216–220.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, F., & Dryhurst, G. (1994). Effects of l-cysteine on the oxidation chemistry of dopamine: New reaction pathways of potential relevance to idiopathic Parkinson’s disease. Journal of Medicinal Chemistry, 37(8), 1084–1098.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The project was supported by the JPB Foundation and R01 DA07418 and R01 MH108186.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene V. Mosharov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mosharov, E.V. (2021). Dopamine Homeostasis and Role of VMAT2 in Neurodegeneration. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-030-71519-9_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71519-9_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71519-9

  • Online ISBN: 978-3-030-71519-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics