Skip to main content
Log in

Intraneuronal dopamine-quinone synthesis: A review

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Dopamine-quinone is synthesized by oxidation of the catechol ring of dopamine. If this occurs within the neuronal cytosol, the quinone may react with cytosolic components, particularly cysteine residues. In contrast, if quinone is produced within neuronal lysosomes it may provide the fundamental building block for neuromelanin. Since the population of neurons that die in Parkinson’s disease are those that display obvious intralysosomal neuromelanin and since cytosolic dopamine-dependent oxyradical formation may underlie methamphetamine toxicity and other specific forms of neurodegeneration in dopaminergic neurons, it is important to elucidate the pathways leading to dopamine-quinone. Here we review pathways by which intracellular catechols may be oxidized to quinones, either enzymatically or via reduction of ferric iron or other metals. These metabolites can be adduced by cysteine, could underlie aberrant metabolism and ubiquitination pathways, may induce Lewy body formation, and mediate the synthesis of hydroxyl radical and oxyradical species. Finally, we suggest that by accumulating excess cytosolic catecholamine, neuromelanin synthesis may safely sequester quinones that would otherwise be produced in neuronal cytosol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

BDNF:

brain-derived neurotrophic factor

CNS:

central nervous system

DA:

dopamine

DAT:

dopamine transporter (plasma membrane)

DHBT:

dihydrobenzothiazine

DLBD:

diffuse Lewy body disease

DOPAC:

dihydroxyphenylacetic acid

GDNF:

glial-derived neurotrophic factor

HPETE:

arachidonic acid hydroperoxide

LBs:

Lewy bodies

L-NAC:

L-n-acetylcysteine

L-DOPA:

L-3,4-dihydroxyphenylalanine

mRNA:

messenger RNA

METH:

methamphetamine

MPTP:

l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine

NE:

norepinephrine

NM:

neuromelanin

PD:

Parkinson’s Disease

PKC:

protein kinase C

RT-PCR:

reverse transcription polymerase chain reaction

SN:

substantia nigra

SNC:

substantia nigra pars compacta

SOD:

superoxide dismutase

TH:

tyrosine hydroxylase

VMAT1:

peripheral vesicular monoamine transporter

VMAT2:

central vesicular monoamine transporter

VTA:

ventral tegmental area

6-OHDA:

6-hydroxydopamine

Reference

  • Baba, M., Nakajo, S., Tu, P., Tomita, T., Nakaya, K., Lee, V., Trojanowski, J. and Iwatsubo, T. (1998). Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies.Am. J. Pathol. 152, 879–884.

    PubMed  CAS  Google Scholar 

  • Bancher, C., Lassmann, H., Budka, H., Jellinger, K., Grundke-Iqbal, I., Iqbal, Kv Wiche, G., Seitelberger, F. and Wisniewski, H.M. (1989). An antigenic profile of Lewy bodies: immunocytochemical indication for protein phosphorylation and ubiquitination.J. Neuropathol. Exp. Neurol. 48, 81–93.

    PubMed  CAS  Google Scholar 

  • Barden, H. (1970). Relationship of golgi thiaminepyrosphosphatase and lysosomal acid phosphatase to neuromelanin and lipofusin in crebral neurons of the aging rhesus monkey.J. Neuropathol. Exp. Neurol. 29, 225–240.

    PubMed  CAS  Google Scholar 

  • Baumeister, W. and Lupas, A. (1997). The proteasome.Curr. Opinion Struct. Biol. 7, 273–278.

    CAS  Google Scholar 

  • Ben-Shachar, D., Zuk, R. and Glinka, Y. (1995). Dopamine neurotoxicity: inhibition of mitochondrial respiration.J. Neurochem. 64, 718–723.

    PubMed  CAS  Google Scholar 

  • Bertrand, E., Lechowicz, W., Szpak, G.M. and Dymecki, J. (1997). Qualitative and quantitative analysis of locus coeruleus neurons in Parkinson’s disease.Folia Neuropathologica 35, 80–86.

    PubMed  CAS  Google Scholar 

  • Blarzino, C., Mosca, L., Foppoli, C., Coccia, R., De Marco, C. and Rosei, M.A. (1999). Lipoxygenase/H202-catalyzed oxidation of dihdroxyindoles: synthesis of melanin pigments and study of their antioxidant properties.Free Radio. Biol. Med. 26, 446–453.

    CAS  Google Scholar 

  • Brion, J.P. and Couck, A.M. (1995). Cortical and brainstem-type Lewy bodies are immunoreactive for the cyclin-dependent kinase 5.Am. J. Pathol. 147, 1465–1476.

    PubMed  CAS  Google Scholar 

  • Bruns, D. and Jahn, R. (1995). Real-time measurement of transmitter release from single synaptic vesicles.Nature 377, 62–65.

    PubMed  CAS  Google Scholar 

  • Cadet, J.L., Sheng, P., Ali, S., Rothman, R., Carlson, E. and Epstein, C. (1994). Attenuation of methamphetamineinduced neurotoxicity in copper/zinc superoxide dismutase transgenic mice.J. Neurochem. 62, 380–383.

    PubMed  CAS  Google Scholar 

  • Carstam, R., Brinck, C, Hindemith-Augustsson, A., Rorsman, H. and Rosengren, E. (1991). The neuromelanin of the human substantia nigra.Biochim. Biophys. Acta 1097, 152–160.

    PubMed  CAS  Google Scholar 

  • Castellani, R., Smith, M.A., Richey, PL. and Perry, G. (1996). Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease.Brain Res. 737, 195–200.

    PubMed  CAS  Google Scholar 

  • Ciolkowski, EX., Maness, K.M., Cahill, PS., Wightman, R.M., Evans, D.H., Fosset, B. and Amatore, C. (1994). Disproportionation during electrooxidation of catecholamines at carbon-fiber microelectrodes.Anal. Chem. 66, 3611–3617.

    CAS  Google Scholar 

  • Conconi, M. and Friguet, B. (1997). Proteasome inactivation upon aging and on oxidation effect of HSP 90.Molec. Biol. Reports 24, 45–50.

    CAS  Google Scholar 

  • Crippa, R., Wang, Q.J., Eisner, M., Moss, S.C, Zecca, L., Zschack, P. and Gog, T. (1996). Structure of human neuromelanin by X-Ray diffraction: comparison with synthetics.Pigment Cell. Res. 5, 72.

    Google Scholar 

  • Cubells, J.F., Rayport, S., Rajendran, G. and Sulzer, D. (1994). Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress.J. Neurosci. 14, 2260–2271.

    PubMed  CAS  Google Scholar 

  • D’Amato, R.J., Alexander, G.M., Schwartzman, R.J., Kitt, C.A., Price, D.L. and Snyder, S.H. (1987). Neuromelanin: a role in MPTP-induced neurotoxicity.Life Sci. 40, 705–712.

    PubMed  CAS  Google Scholar 

  • D’Amato, R.J., Lipman, Z.P and Snyder, S.H. (1986). Selectivity of the parkinsonian neurotoxin MPTP: toxic metabolite MPP+ binds to neuromelanin.Science 231, 987–989.

    PubMed  CAS  Google Scholar 

  • D’lschia, M., Costantini, C. and Prota, G. (1996). Lipofuscin like pigments by autoxidation of polyunsaturated fatty acids in the presence of amine neurotransmitters: the role of malondialdehyde.Biochim. Biophys. Acta 1290, 319–326.

    Google Scholar 

  • D’lschia, M. and Prota, G. (1997). Biosynthesis, structure, and function of neuromelanin and its relation to Parkinson’s Disease: a critical update.Pigment Cell. Res. 10, 370–376.

    Google Scholar 

  • Daveu, C, Servy, C, Dendane, M., Marin, P. and Ducrocq, C. (1997). Oxidation and nitration of catecholamines by nitrogen oxides derived from nitric oxide.Nitric Oxide 1, 234–243.

    PubMed  CAS  Google Scholar 

  • Duffy, RE. and Tennyson, V.M. (1965). Phase and electron microscopic observations of Lewy bodies and melanin granules in the substantia nigra and locus coeruleus in Parkinson’s disease.J. Neuropathol. Exp. Neurol. 24, 398–414.

    Google Scholar 

  • El-Ayaan, U., Herlinger, E., Jameson, R.F. and Linert, W. (1997). Anaerobic oxidation of dopamine by iron(III).J. Chem. Soc, Dalton Trans. 1997, 2813–2818.

    Google Scholar 

  • El-Ayaan, U., Jameson, R.F. and Linert, W. (1998). A kinetic study of the reaction between noradrenaline and iron(III): an example of parallel inner- and outer-sphere electron transfer.J. Chem. Soc, Dalton Trans. 1998, 1315–1319.

    Google Scholar 

  • Fahn, S. and Cohen, G. (1992). The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it.Ann. Neurol. 32, 804–812.

    PubMed  CAS  Google Scholar 

  • Fergusson, J., Landon, M., Lowe, J., Dawson, S.P., Layfield, R., Hanger, D.P. and Mayer, R.J. (1996). Pathological lesions of Alzheimer’s disease and dementia with Lewy bodies brains exhibit immunoreactivity to an ATPase that is a regulatory subunit of the 26S proteasome.Neurosci. Lett. 219, 167–170.

    PubMed  CAS  Google Scholar 

  • Figueiredo-Pereira, M.E., Yakushin, S. and Cohen, G. (1997). Accumulation of ubiquitinated proteins in mouse neuronal cells induced by oxidative stress.Molec. Biol. Reports 24, 35–38.

    CAS  Google Scholar 

  • Foley, J.M. and Baxter, D. (1958). On the nature of pigment granules in the cell of the locus coeruleus and substantia nigra.J. Neuropathol. Exp. Neurol. 7, 586–598.

    Google Scholar 

  • Foppoli, C, Coccia, R., Cini, C. and Rosei, M.A. (1997). Catecholamines oxidation by xanthine oxidase.Biochim. Biophys. Acta 1334, 200–206.

    PubMed  CAS  Google Scholar 

  • Fornstedt, B., Brun, A., Rosengren, E. and Carlsson, A. (1989). The apparent autoxidation rate of catechols in dopaminerich regions of human brains increases with degree of depigmentaion of substantia nigra.J. Neural. Trans. 1, 299–295.

    Google Scholar 

  • Fukuda, T., Tanaka, J., Watabe, K., Numoto, R.T. and Minamitani, M. (1993). Immunohistochemistry of neuronal inclusions in the cerebral cortex and brain-stem in Lewy body disease.Acta Pathologica Japonica 43, 545–551.

    PubMed  CAS  Google Scholar 

  • Fumagalli, E, Gainetdinov, R.R., Wang, Y.-M., Valenzano, K.J., Miller, G.W. and Caron, M.G. (1999). Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice.J. Neurosci. 19, 2424–2431.

    PubMed  CAS  Google Scholar 

  • Gai, W.P., Blumbergs, PC. and Blessing, W.W. (1996). Microtubule associated protein 5 is a component of Lewy bodies and Lewy neurites in the brainstem and forebrain regions affected in Parkinson’s disease.Acta Neuropathologica 91, 78–81.

    PubMed  CAS  Google Scholar 

  • Galvin, J.E., Lee, V.M., Baba, M., Mann, D.M., Dickson, D.W., Yamaguchi, H., Schmidt, M.L., Iwatsubo, T. and Trojanowski, J.Q. (1997). Monoclonal antibodies to purified cortical Lewy bodies recognize the mid size neurofilament subunit.Ann. Neurol. 42, 595–603.

    PubMed  CAS  Google Scholar 

  • Goldberg, A.L., Akopian, T.N., Kisselev, A.F, Lee, D.H. and Rohrwild, M. (1997). New insights into the mechanisms and importance of the proteasome in intracellular protein degradation.Biol. Chem. 378, 131–140.

    PubMed  CAS  Google Scholar 

  • Goldman, J.E., Yen, S.H., Chiu, EC. and Peress, N.S. (1983). Lewy bodies of Parkinson’s disease contain neurofilament antigens.Science 221, 1082–1084.

    PubMed  CAS  Google Scholar 

  • Gou, J.P. and Leterrier, J.F. (1995). Possible involvement of ubiquitination in neurofilament degradation.Biochem. Biophys. Res. Commun. 217, 529–538.

    PubMed  CAS  Google Scholar 

  • Graham, D.G. (1978). Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones.Molec. Pharmacol. 14, 633–643.

    CAS  Google Scholar 

  • Graham, D.G. (1984). Catecholamine toxicity: a proposal for the molecular pathogenesis of manganese neurotoxicity and Parkinson’s disease.Neurotoxicol. 5, 83–96.

    CAS  Google Scholar 

  • Gregori, L., Fuchs, C, Figueiredo-Pereira, M.E., Van Nostrand, W.E. and Goldgaber, D. (1995). Amyloid beta protein inhibits ubiquitin dependent protein degradation in vitro.J. Biol. Chem. 270, 19702–19708.

    PubMed  CAS  Google Scholar 

  • Grune, T, Reinheckel, T. and Davies, K.J. (1997). Degradation of oxidized proteins in mammalian cells.FASEB J. 11, 526–534.

    PubMed  CAS  Google Scholar 

  • Haavik, J. (1997). L-DOPA is a substrate for tyrosine hydroxylase.J. Neurochem. 69, 1720–1728.

    PubMed  CAS  Google Scholar 

  • Hastings, T.G. (1995). Enzymatic oxidation of dopamine: the role of prostoglandin H synthase.J. Neurochem. 64, 919–924.

    PubMed  CAS  Google Scholar 

  • Hastings, T.G. and Zigmond, M.J. (1994). Identification of catechol-protein conjugates in neostriatal slices incubated with [3H]dopamine: impact of ascorbic acid and glutathione.J. Neurochem. 63, 1126–1132.

    PubMed  CAS  Google Scholar 

  • Hayashida, K., Oyanagi, S., Mizutani, Y. and Yokochi, M. (1993). An early cytoplasmic change before Lewy body maturation: an ultrastructural study of the substantia nigra from an autopsy case of juvenile parkinsonism.Acta Neuropathologica 85, 445–448.

    PubMed  CAS  Google Scholar 

  • Hirsch, E.C., Mouatt, A., Faucheux, B., Bonnet, A.-M., Javoy-Agid, F, Graybiel, A.M. and Agid, Y. (1992). Dopamine, tremor, and Parkinson’s disease.Lancet 340, 125–126.

    PubMed  CAS  Google Scholar 

  • Holtzman, E. (1992). Membrane trafficking in neurons.Curr. Opin. Neurobiol. 2, 607–612.

    PubMed  CAS  Google Scholar 

  • Irizarry, M.C., Growdon, W., Gomez-Isla, T, Newell, K., George, J.M., Clayton, D.F and Hyman, B.T. (1998). Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson’s disease and cortical Lewy body disease contain alpha-synuclein immunoreactivity.J. Neuropathol. Exp. Neurol. 57, 334–337.

    PubMed  CAS  Google Scholar 

  • It, K., Ito, H., Tanaka, K. and Hirano, A. (1997). Immunocytochemical co-localization of the proteasome in ubiquitinated structures in neurodegenerative diseases and the elderly.J. Neuropathol. Exp. Neurol. 56, 125–131.

    Google Scholar 

  • Ito, S., Kato, T. and Fujita, K. (1988). Covalent binding of catechols to proteins through the sulphydryl group.Biochem. Pharmacol. 37, 1707–1710.

    PubMed  CAS  Google Scholar 

  • Jenner, P. and Olanow, C.W. (1996). Oxidative stress and the pathogenesis of Parkinson’s disease.Neurology 47(6 Suppl. 3), S161-S170.

    PubMed  CAS  Google Scholar 

  • Johnson, R.G. (1988). Accumulation of biological amines into chromaffin granules: a model for hormone and neurotransmitter transport.Physiol. Rev. 68, 232–307.

    PubMed  CAS  Google Scholar 

  • Kato, S., Oda, M., Hayashi, H., Shimizu, T, Hayashi, M., Kawata, A. and Tanabe, H., (1995). Decrease of medullary catecholaminergic neurons in multiple system atrophy and Parkinson’s disease and their preservation in amyotrophic lateral sclerosis.J. Neurol. Sci. 132, 216–221.

    PubMed  CAS  Google Scholar 

  • Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y, Minoshima, S., Yokochi, M., Mizuno, Y. and Simizu, N. (1998). Mutations in theparkin gene cause autosomal recessive juvenile parkinsonism.Nature 392, 605–608.

    PubMed  CAS  Google Scholar 

  • Klegeris, A., Korkina, L.G. and Greenfield, S.A. (1995). Autoxidation of dopamine: a comparison of luminescent and spectrophotometric detection in basic solutions.Free Radic. Biol. Med. 18, 215–222.

    PubMed  CAS  Google Scholar 

  • Korytowski, W., Sarna, T., Kalyanaraman, B. and Sealy, R.C. (1987). Tyrosinase-catalyzed oxidation of dopa and related catechol(amine)s: a kinetic electron spin resonance investigation using spin-stabilization and spin label oximetry.Biochim. Biophys. Acta 924, 383–392.

    PubMed  CAS  Google Scholar 

  • Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., Przuntek, H., Epplen, J.T., Schols, L. and Riess, O. (1998). Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease.Nature Genetics 18, 106–108.

    PubMed  CAS  Google Scholar 

  • Larsen, C.N., Price, J.S. and Wilkinson, K.D. (1996). Substrate binding and catalysis by ubiquitin C-terminal hydrolases: identification of two active site residues.Biochem. 35, 6735–6744.

    CAS  Google Scholar 

  • La Voie, M.J. and Hastings, T.G. (1999). Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine.J. Neurosci. 19, 1484–1491.

    Google Scholar 

  • Li, H. and Dryhurst, G. (1997). Irreversible inhibition of mitochondrial complex I by 7-(2-aminoethyD-3,4-dihydro-5-hydroxy-2H-l,4-benzothiazine-3-carboxylic acid (DHBT-1): a putative nigral endotoxin of relevance to Parkinson’s disease.J. Neurochem. 69, 1530–1541.

    PubMed  CAS  Google Scholar 

  • Lindquist, N.G., Larsson, B.S. and Lyden-Sokolowski, A. (1988). Autoradiography of [14C]paraquat or [14C]diquat in frogs and mice: accumulation in neuromelanin.Neurosci. Lett. 93, 1–6.

    PubMed  CAS  Google Scholar 

  • Liu, Y, Schweitzer, E.S., Nirenberg, M.J., Pickel, V.M., Evans, C.J. and Edwards, R.H. (1994). Preferential localization of a vesicular monoamine transporter to dense core vesicles in PC12 cells.J. Cell Biol. 127, 1419–1433.

    PubMed  CAS  Google Scholar 

  • Lloyd, R.V. (1995). Mechanism of the manganese-catalyzed autoxidation of dopamine.Chem. Res. Toxicol. 8, 111–116.

    PubMed  CAS  Google Scholar 

  • Lowe, J., Mayer, R.J. and Landon, M. (1993). Ubiquitin in neurodegenerative diseases.Brain Pathol. 3, 55–65.

    PubMed  CAS  Google Scholar 

  • Lowe, J., McDermott, H., Landon, M., Mayer, R.J. and Wilkinson, K.D. (1990). Ubiquitin carboxyl terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases.J. Pathol. 161, 153–160.

    PubMed  CAS  Google Scholar 

  • Marinho, C.R. and Manso, C.F. (1993). [O2 generation during neuromelanin synthesis. The action of manganese] in Portuguese.Acta Medica Portuguesa 6, 547–554.

    PubMed  CAS  Google Scholar 

  • Masaki, T., Ishiura, S., Sugita, H. and Kwak, S. (1994). Multicatalytic proteinase is associated with characteristic oval structures in cortical Lewy bodies: an immunocytochemical study with light and electron microscopy.J. Neurol. Sci. 122, 127–134.

    PubMed  CAS  Google Scholar 

  • Mather, K., Watts, F.Z., Carroll, M., Whitehead, P., Swash, M., Cairn, N. and Burke, J. (1993). Antibody to an abnormal protein in amyotrophic lateral sclerosis identifies Lewy body like inclusions in ALS and Lewy bodies in Parkinson’s disease.Neurosci. Lett. 160, 13–16.

    PubMed  CAS  Google Scholar 

  • Mattammal, M.B., Strong, R., Lakshmi, V.M., Chung, H.D. and Stephenson, A.H. (1995). Prostaglandin H synthetasemediated metabolism of dopamine: implication for Parkinson’s Disease.J. Neurochem. 64, 1645–1654.

    PubMed  CAS  Google Scholar 

  • Mayer, R.J., Tipler, C, Arnold, J., Laszlo, L., Al-Khedhairy, A., Lowe, J. and Landon, M. (1996). Endosome lysosomes, ubiquitin and neurodegeneration.Adv. Exp. Med. Biol. 389, 261–269.

    PubMed  CAS  Google Scholar 

  • McRitchie, D.A., Cartwright, H.R. and Halliday, G.M. (1997). Specific A10 dopaminergic nuclei in the midbrain degenerate in Parkinson’s disease.Exp. Neurol. 144, 202–213.

    PubMed  CAS  Google Scholar 

  • Mena, M.A., Khan, U., Togasaki, D.M., Sulzer, D., Epstein, C.J. and Przedborski, S. (1997). Effects of wild-type and mutated copper/zinc superoxide dismutase on neuronal survival and L-DOPA-induced toxicity in postnatal midbrain culture.J. Neurochem. 69, 21–33.

    PubMed  CAS  Google Scholar 

  • Merad-Boudia, M., Nicole, A., Santiard-Baron, D., Saille, C. and Ceballos-Picot, I. (1998). Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells: relevance to Parkinson’s disease.Biochem. Pharmacol. 56, 645–655.

    PubMed  CAS  Google Scholar 

  • Michel, P.P. and Hefti, F. (1990). Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in culture.J. Neurosci. Res. 26, 428–435.

    PubMed  CAS  Google Scholar 

  • Miller, J.W., Selhub, J. and Joseph, J.A. (1996). Oxidative damage caused by free radicals produced during catecholamine autoxidation: protective effects of O-methylation and melatonin.Free Radic. Biol. Med. 21, 241–249.

    PubMed  CAS  Google Scholar 

  • Montine, T.J., Farris, D.B. and Graham, D.G. (1995). Covalent crosslinking of neurofilament proteins by oxidized catechols as a potential mechanism of Lewy body formation.J. Neuropathol. Exp. Neurol. 54, 311–319.

    PubMed  CAS  Google Scholar 

  • Mosca, L., Blarzino, C, Coccia, R., Foppoli, C. and Rosei, M.A. (1998). Melanins from tetrahydroisoquinolines: spectroscopic characteristics, scavenging activity and redox transfer properties.Free Radic. Biol. Med. 24, 161–167.

    PubMed  CAS  Google Scholar 

  • Mosca, L., Foppoli, C, Coccia, R. and Rosei, M.A. (1996). Pheomelanin production by the lipoxygenase-catalyzed oxidation of 5-S-cysteinyldopa and 5-S-cysteinyldopa-mine.Pigment Cell. Res. 9, 117–125.

    PubMed  CAS  Google Scholar 

  • Mouatt-Prigent, A., Karlsson, J.O., Agid, Y. and Hirsch, E.C. (1996). Increased M calpain expression in the mesencephalon of patients with Parkinson’s disease but not in other neurodegenerative disorders involving the mesencephalon: a role in nerve cell death?Neurosci. 73, 979–987.

    CAS  Google Scholar 

  • Murphy Jr., G.M., Forno, L.S., Higgins, L., Scardina, J.M., Eng, L.F. and Cordell, B. (1994). Development of a monoclonal antibody specific for the COOH terminal of beta amyloid 1 42 and its immunohistochemical reactivity in Alzheimer’s disease and related disorders.Am. J. Pathol. 144, 1082–1088.

    PubMed  CAS  Google Scholar 

  • Nakamura, S., Kawamoto, Y, Nakano, S., Akiguchi, I. and Kimura, J. (1997). p35nck5a and cyclin-dependent kinase 5 colocalize in Lewy bodies of brains Parkinson’s disease.Acta Neuropathologica 94, 153–157.

    PubMed  CAS  Google Scholar 

  • Nakashima, S. and Ikuta, F. (1984). Tyrosine hydroxylase protein in Lewy bodies of parkinsonian and senile brains.J. Neurol. Sci. 66, 91–96.

    PubMed  CAS  Google Scholar 

  • Napolitano, A., Crescenzi, O., Pezzella, A. and Prota, G. (1995). Generation of the neurotoxin 6-hydroxydopamine by peroxidase /H2O2 oxidation of dopamine.J. Med. Chem. 38, 917–922.

    PubMed  CAS  Google Scholar 

  • Nappi, A.J. and Vass, E. (1998). Hydroxyl radical formation via iron-mediated Fenton chemistry is inhibited by methylated catechols.Biochim. Biophys. Acta 1425, 159–167.

    PubMed  CAS  Google Scholar 

  • Nishimura, M., Tomimoto, H., Suenaga, T., Nakamura, S., Namba, Y, Ikeda, K., Akiguchi, I. and Kumura, J. (1994). Synaptophysin and chromogranin A immunoreactivities of Lewy bodies in Parkinson’s disease brains.Brain Res. 634, 339–344.

    PubMed  CAS  Google Scholar 

  • Nishiyama, K., Murayama, S., Shimizu, J., Ohya, Y, Kwak, S., Asayama, K. and Kanazawa, I. (1995). Cu/Zn superoxide dismutase like immunoreactivity is present in Lewy bodies from Parkinson disease: a light and electron microscopic immunocytochemical study.Acta Neuropathologica 89, 471–474.

    PubMed  CAS  Google Scholar 

  • Palumbo, A., d’lschia, M., Misuraca, G., De Martino, L. and Prota, G. (1995). Iron- and peroxide-dependent conjugation of dopamine with cysteine: oxidative routes to the novel brain metabolite 5-S-cysteinyldopamine.Biochim. Biophys. Acta 1245, 255–261.

    PubMed  Google Scholar 

  • Pearse, A.G.E. (1985).Histochemistry: Theoretical and Applied, 4th edn., Vol. 2 (Edinburgh: Churchill Livingstone).

    Google Scholar 

  • Pezzella, A., d’Ischia, M., Napolitano, A., Misuraca, G. and Prota, G. (1997). Iron-mediated generation of the neurotoxin 6-hydroxydopamine quinone by reaction of fatty acid hydroperoxides with dopamine: a possible contributory mechanism for neuronal degeneration in Parkinson’s disease.J. Med. Chem. 40, 2211–2216.

    PubMed  CAS  Google Scholar 

  • Pollanen, M.S., Bergeron, C. and Weyer, L. (1993). Deposition of detergent resistant neurofilaments into Lewy body fibrils.Brain Res. 603, 121–124.

    PubMed  CAS  Google Scholar 

  • Polymeropoulos, M.H., Lavedan, C, Leroy, E., Ide, S.E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E.S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W.G., Lazzarini, A.M., Duvoisin, R.C., Di Iorio, G., Golbe, L.I. and Nussbaum, R.L. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease.Science 276.

  • Pothos, E.N., Davila, V. and Sulzer, D. (1998). Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size.J. Neurosci. 18, 4106–4118.

    PubMed  CAS  Google Scholar 

  • Przedborski, S., Kostic, V, Jackson-Lewis, V., Naini, A.B., Simonetti, S., Fahn, S., Carlson, E., Epstein, C.J. and Cadet, J.L. (1992). Transgenic mice with increased Cu/Znsuperoxide dismutase activity are resistant to N-methyl-4-phenyl-l,2,3,6-tetrahydropyridine-induced neurotoxicity.J. Neurosci. 12, 1658–1667.

    PubMed  CAS  Google Scholar 

  • Ratan, R.R., Lee, P.J. and Baraban, J.M. (1996). Serum deprivation inhibits glutathione depletion-induced death in embryonic cortical neurons: evidence against oxidative stress as a final common mediator of neuronal apoptosis.Neurochem. Int. 29, 153–157.

    PubMed  CAS  Google Scholar 

  • Rosei, M.A., Blarzino, C, Coccia, R., Foppoli, C, Mosca, L. and Cini, C. (1998a). Production of melanin pigments by cytochrome c/H2O2 system.Int. J. Biochem. Cell Biol. 30, 457–463.

    PubMed  CAS  Google Scholar 

  • Rosei, M.A., Foppoli, C, Wang, X.T., Coccia, R. and Mateescu, M.A. (1998b). Production of melanins by ceruloplasmin.Pigment Cell Res. 11, 98–102.

    PubMed  CAS  Google Scholar 

  • Rosei, M.A., Blarzino, C, Foppoli, C, Mosca, L. and Coccia, R. (1994). Lipoxygenase-catalyzed oxidation of catecholamines.Biochem. Biophys. Res. Commun. 200, 344–350.

    PubMed  CAS  Google Scholar 

  • Rosenberg, P.A. (1988). Catecholamine toxicity in cerebral cortex in dissociated cell culture.J. Neurosci. 8, 2887–2894.

    PubMed  CAS  Google Scholar 

  • Rosengren, E.E., Linder-Eliasson, and Carlsoon, A. (1985). Detection of 5-S-cysteinyldopamine in human brain.J. Neural. Trans. 63, 247–253.

    CAS  Google Scholar 

  • Sanchez-Ferrer, A., Rodriguez-Lopez, J.N., Garcia-Canovas, F. and Garcia-Carmona, F (1995). Tyrosinase: a review of its mechanism.Biochem. Biophys. Acta 1247, 1–11.

    PubMed  Google Scholar 

  • Seiden, L.S., Sabol, K.E. and Ricaurte, G.A. (1993). Amphetamine: Effects on catecholamine systems and behavior.Ann. Rev. Pharmacol. Toxicol. 32, 639–677.

    Google Scholar 

  • Shen, X.M. and Dryhurst, G. (1998). Iron- and manganesecatalyzed autoxidation of dopamine in the presence of L-cysteine: possible insights into iron- and manganesemediated dopaminergic neurotoxicity.Chem. Res. Toxicol. 11, 824–837.

    PubMed  CAS  Google Scholar 

  • Shen, X.M., Zhang, F. and Dryhurst, G. (1997). Oxidation of dopamine in the presence of cysteine: characterization of new toxic products.Chem. Res. Toxicol. 10, 147–155.

    PubMed  CAS  Google Scholar 

  • Shimohama, S., Perry, G., Richey, P., Takenawa, T, Whitehouse, P.J., Miyoshi, K., Suenaga, T., Matsumoto, S., Nishimura, M. and Kimura, J. (1993). Abnormal accumulation of phospholipase C delta in filamentous inclusions of human neurodegenerative diseases.Neurosci. Lett. 162, 183–186.

    PubMed  CAS  Google Scholar 

  • Simantov, R., Blinder, E., Ratovitski, T., Tauber, M., Gabbay, M. and Porat, S. (1996). Dopamine-induced apoptosis in human neuronal cells: inhibition by nucleic acids antisense to the dopamine transporter.Neurosci. 74, 39–50.

    CAS  Google Scholar 

  • Smythies, J. (1996). On the function of neuromelanin.Peoc. R Soc. Lond. B 263, 487–489.

    CAS  Google Scholar 

  • Spillantini, M.G., Schmidt, M.L., Lee, V.M.Y., Trojanowski, J.Q., Jakes, R. and Goedert, M. (1997). Alpha-synuclein in Lewy bodies.Nature 388, 839–840.

    PubMed  CAS  Google Scholar 

  • Spina, M.B., Squinto, S.P., Miller, J., Lindsay, R.M. and Hyman, C. (1992). Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: involvement of the glutathione system.J. Neurochem. 59, 99–106.

    PubMed  CAS  Google Scholar 

  • Stokes, A.H., Brown, B.G., Lee, C.K., Doolitle, D.J. and Vrana, K.E. (1996). Tyrosinase enhances the covalent modificiation of DNA by dopamine.Mol. Brain Res. 42, 167–170.

    PubMed  CAS  Google Scholar 

  • Stokes, A.H., Hastings, T.G. and Vrana, K.E. (1999). Cytotoxic and genotoxic potential of dopamine.J. Neurosci. Res. 55, 659–665.

    PubMed  CAS  Google Scholar 

  • Sulzer, D., Chen, T.K., Lau, Y.Y., Kristensen, H., Rayport, S. and Ewing, A. (1995). Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport.J. Neurosci. 15, 4102–4108.

    PubMed  CAS  Google Scholar 

  • Sulzer, D. and Rayport, S. (1990). Amphetamine and other psychostimulants reduce pH gradients in midbrain dopaminergic neurons and chromaffin granules: a mechanism of action.Neuron. 5, 797–808.

    PubMed  CAS  Google Scholar 

  • Takeda, A., Mallory, M., Sundsmo, M., Honer, W., Hansen, L. and Masliah, E. (1998). Abnormal accumulation of NACP/ alpha-synuclein in neurodegenerative disorders.Am. J. Pathol. 152, 367–372.

    PubMed  CAS  Google Scholar 

  • Tief, K., Schmidt, A. and Beerman, F. (1998). New evidence for presence of tyrosinase in substantia nigra, forebrain, and midbrain.Molec. Brain Res. 53, 307–310.

    PubMed  CAS  Google Scholar 

  • van Leeuwen, F.W., de Kleijn, D.P., van den Hurk, H.H., Neubauer, A., Sonnemans, M.A., Sluijs, J.A., Koycu, S., Ramdjielal, R.D.J., Salehi, A., Martens, G.J.M., Grosveld, EG., Peter, J., Burbach, H. and Hoi, E.M. (1998). Frameshift mutants of beta amyloid precursor protein and ubiquitin-B in Alzheimer’s and Down patients.Science 279, 242–247.

    PubMed  Google Scholar 

  • Velez-Pardo, C, Del Rio, M.J., Ebinger, G. and Vauquelin, G. (1998). Monoamine and iron-related toxicity: from ‘serotonin-binding proteins’ to lipid peroxidation and apoptosis in PC12 cells.Gen. Pharmacol. 31, 19–24.

    PubMed  CAS  Google Scholar 

  • Velez-Pardo, C, Jimenez Del Rio, M., Verschueren, H., Ebinger, G. and Vauquelin, G. (1997). Dopamine and iron induce apoptosis in PC12 cells.Pharmacol. Toxicol. 80, 76–84.

    PubMed  CAS  Google Scholar 

  • Wakabayashi, K., Matsumoto, K., Takayama, K., Yoshimoto, M. and Takahashi, H. (1997). NACP, a presynaptic protein, immunoreactivity in Lewy bodies in Parkinson’s disease.Neurosci. Lett. 239, 45–48.

    PubMed  CAS  Google Scholar 

  • Wakamatsu, K., Ito, S. and Nagatsu, T. (1991). Cysteinyl-dopamine is not incorporated into neuromelanin.Neurosci. Lett. 131, 57–60.

    PubMed  CAS  Google Scholar 

  • Walkinshaw, G. and Waters, CM. (1995). Induction of apoptosis in catecholaminergic PC12 cells by L-DOPA. Implications for the treatment of Parkinson’s disease.J. Clinic. Inv. 95, 2458–2464.

    CAS  Google Scholar 

  • Welch, W.J. and Gambetti, P. (1998). Chaperoning brain diseases.Nature 392, 23–24.

    PubMed  CAS  Google Scholar 

  • Xu, Y., Stokes, A.H., Freeman, W.M., Kumer, S.C., Vogt, B.A. and Vrana, K.E. (1997). Tyrosinase mRNA is expressed in human substantia nigra.Mol. Brain Res. 45, 159–162.

    PubMed  CAS  Google Scholar 

  • Yamada, T. (1995). Further observations on MxA positive Lewy bodies in Parkinson’s disease brain tissues.Neurosci. Lett. 195, 41–44.

    PubMed  CAS  Google Scholar 

  • Youdim, M.B. and Riederer, P. (1993). The role of iron in senescence of dopaminergic neurons in Parkinson’s disease.J. Neural. Trans. 40, 57–67.

    CAS  Google Scholar 

  • Zecca, L., Parati, E., Mecacci, C. and Seraglia, R. (1992). The chemical characterization of melanin contained in substantia nigra of human brain.Biochim. Biophys. Acta 1138, 6–10.

    PubMed  CAS  Google Scholar 

  • Zecca, L., Pietra, R., Goj, C, Mecacci, C, Radice, D. and Sabbioni, E. (1994). Iron and other metals in neuromel-anin, substantia nigra, and putamen of human brain.J. Neurochem. 62, 1097–101.

    PubMed  CAS  Google Scholar 

  • Zecca, L., Shima, T., Stroppolo, A., Goj, C., Battiston, G.A., Gerbasi, R., Sarna, T. and Swartz, H.M. (1996). Interaction of neuromelanin and iron in substantia nigra and other areas of human brain.Neurosci. 73, 407–415.

    CAS  Google Scholar 

  • Zhang, F. and Dryhurst, G. (1994). Effects of 1-cysteine on the oxidation chemistry of dopamine: new reaction pathways of potential relevance to idiopathic Parkinson’s Disease.J. Med. Chem. 37, 1084–1098.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sulzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sulzer, D., Zecca, L. Intraneuronal dopamine-quinone synthesis: A review. neurotox res 1, 181–195 (1999). https://doi.org/10.1007/BF03033289

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033289

Keywords

Navigation