Skip to main content

Spatially Integrating Microbiology and Geochemistry to Reveal Complex Environmental Health Issues: Anthrax in the Contiguous United States

  • Chapter
  • First Online:
Geospatial Technology for Human Well-Being and Health

Abstract

Maxent models were run using the B. anthracis presence data and/or the animal outbreak presence data. Models run using the animal outbreak data alone utilized two scales: the Outbreak State scale which included only states reporting animal anthrax outbreaks from 2001 to 2013 and the National scale which included all states in the contiguous United States. Three iterations of the environmental data were used and included the Sample Location dataset which utilized the environmental variable data with assigned latitude and longitude locations from the USGS NASGLP project; the Normalized dataset which scaled the environmental variables so that the values fell between 0 and 1; and the Interpolated dataset which provided an interpolation of the environmental variables averaged for each county and assigned to a point for that county at the centroid (rather than using the NASGLP latitude and longitude location). Two metrics were used to measure model performance including the widely used area under the curve (AUC) and an alternative method, the True Skill Statistic (TSS). The AUC gives the probability that a randomly chosen presence location has been correctly ranked higher than the absence/background site. AUC values at 0.5 or lower mean the ranking is no better than random, while the AUC values nearer to 1 mean the model is a better predictor. The TSS provides a comparison of how well the background predictions made by the model match the model results at the test dataset (presence) locations. TSS values near +1 means the model approaches perfect agreement, while values near −1 indicate the model is no better than random.

Maxent models to determine the influence of environmental factors on the B. anthracis distribution using the PCR data yielded a low TSS, which suggested the model might be underfitting the data. This was not surprising due to the difficulty in recovering B. anthracis in soil samples as well as the samples themselves being discrete in nature and only capturing a snapshot in time. Therefore, the distribution of B. anthracis and its niche in the contiguous United States could not be determined in this study. However, efforts to investigate environmental factors that would have a higher potential of supporting an anthrax outbreak in wildlife and livestock yielded better results. Results showed that most of the Maxent models in this study performed best when using the Outbreak State scale. When the models were scaled up to the National scale, model performance declined, except for the Normalized variable dataset. At the Outbreak State scale, a large proportion of the area was predicted to be of higher probability for wildlife/livestock anthrax outbreaks, and the statistical measures assumed the model was underfitting the data. The model with the highest AUC and TSS scores for this study was the Outbreak State scale using Sample Location dataset (AUC = 0.918 and TSS = 0.82). Some of the variables found to be closely related to the occurrence of B. anthracis in this study included pH, drainage potential, and concentration of elements including Na, Ca, Sr, and Mg, which have also been found to be related to animal outbreaks or to the occurrence of B. anthracis in previous studies.

The models in the current study indicated possible regions that have not had recent wildlife/livestock anthrax outbreaks but contained environmental conditions that could potentially support an outbreak if one were to occur (Michigan and Maine). This work provides an extension to the use of ecological niche modeling to outbreak potential in livestock/wildlife in the United States because it utilizes additional soil geochemistry data and has shown that further validation techniques, such as the TSS, should be considered in addition to AUC. Results from this study could be used by animal and public health officials to identify areas with a higher potential for anthrax outbreak in wildlife and livestock due to naturally occurring soil and environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahsan, M.M., et al. 2013. Investigation into Bacillus anthracis spore in soil and analysis of environmental parameters related to repeated anthrax outbreak in Sirajganj. Bangladesh Thai Journal of Veterinary Medicine 43: 449–454.

    Google Scholar 

  • Allouche, O., A. Tsoar, and R. Kadmon. 2006. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x.

    Article  Google Scholar 

  • Anderson, R.P. 2003. Real vs. artefactual absences in species distributions: Tests for Oryzomys albigularis (Rodentia: Muridae) in Venezuela. Journal of Biogeography 30: 591–605.

    Article  Google Scholar 

  • Anderson, R.P., M. Gomez-Laverde, and A.T. Peterson. 2002a. Geographical distributions of spiny pocket mice in South America: Insights from predictive models. Global Ecology and Biogeography 11: 131–141. https://doi.org/10.1046/j.1466-822X.2002.00275.x.

    Article  Google Scholar 

  • Anderson, R.P., A.T. Peterson, and M. Gomez-Laverde. 2002b. Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos 98: 3–16. https://doi.org/10.1034/j.1600-0706.2002.t01-1-980116.x.

    Article  Google Scholar 

  • APHIS. 2014. Animal and plant inspection service. U.S. Department of Agriculture. http://www.aphis.usda.gov/wps/portal/aphis/home/. Accessed 8 Aug 2014.

  • Beyer, W., S. Pocivalsek, and R. Bohm. 1999. Polymerase chain reaction-ELISA to detect Bacillus anthracis from soil samples-limitations of present published primers. Journal of Applied Microbiology 87: 229–236.

    Article  Google Scholar 

  • Blackburn, J.K. 2010. Integrating geographic information systems and ecological niche modeling into disease ecology: A case study of Bacillus anthracis in the United States and Mexico. In Emerging and endemic pathogens: Advances in surveillance, detection, and identification, ed. K.P. O'Connell, E.W. Skowronski, A. Sulakvelidze, and L. Bakanidze, 59–88. Dordrecht: Springer Science.

    Chapter  Google Scholar 

  • Blackburn, J.K., K.M. McNyset, A. Curtis, and M.E. Hugh-Jones. 2007. Modeling the geographic distribution of Bacillus anthracis, the causative agent of anthrax disease, for the contiguous United States using predictive ecological [corrected] niche modeling. The American Journal of Tropical Medicine and Hygiene 77: 1103–1110.

    Article  Google Scholar 

  • Blackburn, J.K., M. Van Ert, J.C. Mullins, T.L. Hadfield, and M.E. Hugh-Jones. 2014. The necrophagous fly anthrax transmission pathway: empirical and genetic evidence from wildlife epizootics. Vector Borne and Zoonotic Diseases 14: 576–583. https://doi.org/10.1089/vbz.2013.1538.

    Article  Google Scholar 

  • Breed, F. 1932. Anthrax history, diagnosis and control measures. The Iowa Veterinary 3: 34–38.

    Google Scholar 

  • Carnaval, A.C., and C. Moritz. 2008. Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. Journal of Biogeography 35: 1187–1201. https://doi.org/10.1111/j.1365-2699.2007.01870.x.

    Article  Google Scholar 

  • Chikerema, S.M., A. Murwira, G. Matope, and D.M. Pfukenyi. 2013. Spatial modelling of Bacillus anthracis ecological niche in Zimbabwe. Preventive Veterinary Medicine 111: 25–30.

    Article  Google Scholar 

  • Coker P.R. 2002. Bacillus anthracis spore concentrations at various carcass sites. LSU Doctoral Dissertation, Louisiana State University and Agricultural and Mechanical College. Department of Pathobiological Sciences.

    Google Scholar 

  • Cordellier, M., and M. Pfenninger. 2009. Inferring the past to predict the future: Climate modelling predictions and phylogeography for the freshwater gastropod Radix balthica (Pulmonata, Basommatophora). Molecular Ecology 18: 534–544. https://doi.org/10.1111/j.1365-294X.2008.04042.x.

    Article  Google Scholar 

  • Dey, R., P.S. Hoffman, and I.J. Glomski. 2012. Germination and amplification of anthrax spores by soil-dwelling amoebas. Applied and Environmental Microbiology 78: 8075–8081. https://doi.org/10.1128/AEM.02034-12.

    Article  Google Scholar 

  • Dragon, D.C., and R.P. Rennie. 1995. The ecology of anthrax spores: Tough but not invincible. The Canadian Veterinary Journal 36: 295–301.

    Google Scholar 

  • Elith, J., et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x.

    Article  Google Scholar 

  • Elith, J., S.J. Phillips, T. Hastie, M. Dudik, Y.E. Chee, and C.J. Yates. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17: 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x.

    Article  Google Scholar 

  • Epp, T., C. Argue, C. Waldner, and O. Berke. 2010. Spatial analysis of an anthrax outbreak in Saskatchewan, 2006. The Canadian Veterinary Journal 51: 743–748.

    Google Scholar 

  • Grabenstein, J.D. 2008. Countering anthrax: Vaccines and immunoglobulins. Clinical Infectious Diseases 46: 129–136. https://doi.org/10.1086/523578.

    Article  Google Scholar 

  • Graham, C.H., and R.J. Hijmans. 2006. A comparison of methods for mapping species ranges and species richness. Global Ecology and Biogeography 15: 578–587. https://doi.org/10.1111/j.1466-822x.2006.00257.x.

    Article  Google Scholar 

  • Griffin, D.W., T. Petrosky, S.A. Morman, and V.A. Luna. 2009. A survey of the occurrence of Bacillus anthracis in North American soils over two long-range transects and within post-Katrina New Orleans. Applied Geochemistry 24: 1464–1471.

    Article  Google Scholar 

  • Griffin, D., E.E. Silvestri, C.Y. Bowling, T. Boe, D.B. Smith, and T.L. Nichols. 2014. Anthrax and the geochemistry of soils in the contiguous United States. Geosciences 4: 114–127.

    Article  Google Scholar 

  • Guillera-Arroita, G. 2017. Modelling of species distributions, range dynamics and communities under imperfect detection: advances, challenges and opportunities. Ecography 40. https://doi.org/10.1111/ecog.02445.

  • Guillera-Arroita, G., et al. 2015. Is my species distribution model fit for purpose? Matching data and models to applications. Global Ecology and Biogeography 24: 276–292. https://doi.org/10.1111/geb.12268.

    Article  Google Scholar 

  • Hastie, T., R. Tibshirani, and J. Friedman. 2001. The elements of statistical learning: Data mining, inference, and prediction. New York: Springer.

    Book  Google Scholar 

  • Higgins, C.H. 1916. Anthrax. Bulletin no. 23. Ottawa: Health of Animals Branch, Department of Agriculture.

    Google Scholar 

  • Homer, C., C.Q. Huang, L.M. Yang, B. Wylie, and M. Coan. 2004. Development of a 2001 National Land-Cover Database for the United States. Photogrammetric Engineering and Remote Sensing 70: 829–840.

    Article  Google Scholar 

  • Hornaday, W.T. 1889. Map illustrating the extermination of the American bison. Washington: Government Printing Office.

    Google Scholar 

  • Hugh-Jones, M., and J. Blackburn. 2009. The ecology of Bacillus anthracis. Molecular Aspects of Medicine 30: 356–367. https://doi.org/10.1016/j.mam.2009.08.003.

    Article  Google Scholar 

  • Hugh-Jones, M.E., and V. de Vos. 2002. Anthrax and wildlife. Revue Scientifique et Technique 21: 359–383.

    Article  Google Scholar 

  • Hutchinson, G.E. 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415–427.

    Article  Google Scholar 

  • Kellogg, F.E., A.K. Prestwood, and R.E. Noble. 1970. Anthrax epizootic in white-tailed deer. Journal of Wildlife Diseases 6: 226–228.

    Article  Google Scholar 

  • Kenefic, L.J., et al. 2008. Texas isolates closely related to Bacillus anthracis Ames. Emerging Infectious Diseases 14: 1494–1496. https://doi.org/10.3201/eid1409.080076.

    Article  Google Scholar 

  • Kharouba, H.M., A.C. Algar, and J.T. Kerr. 2009. Historically calibrated predictions of butterfly species’ range shift using global change as a pseudo-experiment. Ecology 90: 2213–2222. https://doi.org/10.1890/08-1304.1.

    Article  Google Scholar 

  • Ko, K.S., J.M. Kim, J.W. Kim, B.Y. Jung, W. Kim, I.J. Kim, and Y.H. Kook. 2003. Identification of Bacillus anthracis by rpoB sequence analysis and multiplex PCR. Journal of Clinical Microbiology 41: 2908–2914.

    Article  Google Scholar 

  • Koch, R. 1882. On the anthrax inoculation. In Essays of Robert Koch, ed. K. Carters, 97–116. Westport: Greenwood Press, Inc.

    Google Scholar 

  • Kochi, S.K., G. Schiavo, M. Mock, and C. Montecucco. 1994. Zinc content of the Bacillus anthracis lethal factor. FEMS Microbiology Letters 124: 343–348.

    Article  Google Scholar 

  • Kumar, S., and T.J. Stohlgren. 2009. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and The Natural Environment 1: 94–98.

    Google Scholar 

  • Lamb, J.M., et al. 2008. Phylogeography and predicted distribution of African-Arabian and Malagasy populations of giant mastiff bats, Otomops spp. (Chiroptera: Molossidae). Acta Chiropterologica 10: 21–40. https://doi.org/10.3161/150811008x331063.

    Article  Google Scholar 

  • Letant, S.E., et al. 2011. Rapid-viability PCR method for detection of live, virulent Bacillus anthracis in environmental samples. Applied and Environmental Microbiology 77: 6570–6578. https://doi.org/10.1128/Aem.00623-11.

    Article  Google Scholar 

  • Lindeque, P.M., and P.C. Turnbull. 1994. Ecology and epidemiology of anthrax in the Etosha National Park, Namibia Onderstepoort. Journal of Veterinary Research 61: 71–83.

    Google Scholar 

  • Lobo, J.M., A. Jimenez-Valverde, and R. Real. 2008. AUC: A misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography 17: 145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x.

    Article  Google Scholar 

  • Luna, V.A., et al. 2006. Bacillus anthracis virulent plasmid pX02 genes found in large plasmids of two other Bacillus species. Journal of Clinical Microbiology 44: 2367–2377. https://doi.org/10.1128/JCM.00154-06.

    Article  Google Scholar 

  • Manchee, R.J., M.G. Broster, A.J. Stagg, and S.E. Hibbs. 1994. Formaldehyde solution effectively inactivates spores of Bacillus anthracis on the Scottish Island of Gruinard. Applied and Environmental Microbiology 60: 4167–4171.

    Article  Google Scholar 

  • Minett, F.C. 1950. Sporulation and viability of B. anthracis in relation to environmental temperature and humidity. Journal of Comparative Pathology 60: 161–176.

    Article  Google Scholar 

  • Minett, F.C., and M.R. Dhanda. 1941. Multiplication of B. anthracis and Cl. chauvoei in soil. The Indian Journal of Veterinary Science and Animal Husbandry 11: 308–328.

    Google Scholar 

  • Monterroso, P., J.C. Brito, P. Ferreras, and P.C. Alves. 2009. Spatial ecology of the European wildcat in a Mediterranean ecosystem: Dealing with small radio-tracking datasets in species conservation. Journal of Zoology 279: 27–35. https://doi.org/10.1111/j.1469-7998.2009.00585.x.

    Article  Google Scholar 

  • Mullins, J., L. Lukhnova, A. Aikimbayev, Y. Pazilov, M. Van Ert, and J.K. Blackburn. 2011. Ecological niche modelling of the Bacillus anthracis A1.a sub-lineage in Kazakhstan. BMC Ecology 11: 32. https://doi.org/10.1186/1472-6785-11-32.

    Article  Google Scholar 

  • Mullins, J.C., G. Garofolo, M. Van Ert, A. Fasanella, L. Lukhnova, M.E. Hugh-Jones, and J.K. Blackburn. 2013. Ecological niche modeling of Bacillus anthracis on three continents: Evidence for genetic-ecological divergence? PLoS One 8: e72451. https://doi.org/10.1371/journal.pone.0072451.

    Article  Google Scholar 

  • Murray-Smith, C., N.A. Brummitt, A.T. Oliveira-Filho, S. Bachman, J. Moat, E.M.N. Lughadha, and E.J. Lucas. 2009. Plant diversity hotspots in the Atlantic Coastal Forests of Brazil. Conservation Biology 23: 151–163. https://doi.org/10.1111/j.1523-1739.2008.01075.x.

    Article  Google Scholar 

  • Nath, S., and A. Dere. 2016. Soil geochemical parameters influencing the spatial distribution of anthrax in Northwest Minnesota. USA Applied Geochemistry 74: 144–156. https://doi.org/10.1016/j.apgeochem.2016.09.004.

    Article  Google Scholar 

  • Ndiva Mongoh, M., N. Dyer, C. Stoltenow, and M.L. Khaitsa. 2008. A review of management practices for the control of anthrax in animals: The 2005 anthrax epizootic in North Dakota–case study. Zoonoses and Public Health 55: 279–290.

    Article  Google Scholar 

  • NOAA. 2010. Precipitation Data. National Oceanic and Atmospheric Administration, National Centers for Environmental Information. Available at: ftp://ftp.ncdc.noaa.gov/pub/data/normals/1981-2010/products/precipitation/. Last accessed 01/12/18.

  • ———. 2015. National Centers for Environmental Information Temperature Data Search. National Oceanic and Atmospheric Administration, National Climatic Data Center. Available at: https://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp#. Last accessed 01/12/18.

  • Pasteur, L. 1880. Sur l'étiologie du charbon [On the etiology of anthrax]. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences 91: 86–94.

    Google Scholar 

  • Pearson, R.G., C.J. Raxworthy, M. Nakamura, and A.T. Peterson. 2007. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography 34: 102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x.

    Article  Google Scholar 

  • Pedregosa, F., et al. 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12: 2825–2830.

    Google Scholar 

  • Peterson, A.T. 2006. Ecologic niche modeling and spatial patterns of disease transmission. Emerging Infectious Diseases 12: 1822–1826.

    Article  Google Scholar 

  • ———. 2008. Biogeography of diseases: A framework for analysis. Naturwissenschaften 95: 483–491. https://doi.org/10.1007/s00114-008-0352-5.

    Article  Google Scholar 

  • Peterson, A.T., and K.P. Cohoon. 1999. Sensitivity of distributional prediction algorithms to geographic data completeness. Ecological Modelling 117: 159–164. https://doi.org/10.1016/S0304-3800(99)00023-X.

    Article  Google Scholar 

  • Peterson, A.T., and J. Soberon. 2012. Species distribution modeling and ecological niche modelling: Getting the concepts right Natureza & Conservação. Brazilian Journal of Nature Conservation 10: 102–107.

    Google Scholar 

  • Phillips, S.J., and M. Dudik. 2008. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31: 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x.

    Article  Google Scholar 

  • Phillips, S.J., R.P. Anderson, and R.E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026.

    Article  Google Scholar 

  • Phillips, S.J., M. Dudík, and R.E. Schapire. 2017. Maxent software for modeling species niches and distributions (Version 3.4.1). https://www.gbif.org/tool/81279/maxent.

  • Radosavljevic, A., and R.P. Anderson. 2014. Making better Maxent models of species distributions: Complexity, overfitting, and evaluation. Journal of Biogeography 41: 629–643. https://doi.org/10.1111/jbi.12227.

    Article  Google Scholar 

  • Saile, E., and T.M. Koehler. 2006. Bacillus anthracis multiplication, persistence, and genetic exchange in the rhizosphere of grass plants. Applied and Environmental Microbiology 72: 3168–3174. https://doi.org/10.1128/AEM.72.5.3168-3174.2006.

    Article  Google Scholar 

  • Schuch, R., and V.A. Fischetti. 2009. The secret life of the Anthrax agent Bacillus anthracis: Bacteriophage-mediated ecological adaptations. PLoS One 4. https://doi.org/10.1371/journal.pone.0006532.

  • Siamudaala, V.M., et al. 2006. Ecology and epidemiology of anthrax in cattle and humans in Zambia. The Japanese Journal of Veterinary Research 54: 15–23.

    Google Scholar 

  • Silva, D.P., B. Vilela, P.J. De Marco, and A. Nemesio. 2014. Using ecological niche models and niche analyses to understand speciation patterns: The case of Sister Neotropical Orchid Bees. PLoS One 9: e113246. https://doi.org/10.1371/journal.pone.0113246.

    Article  Google Scholar 

  • Silvestri, E.E., S.D. Perkins, D. Feldhake, T.L. Nichols, and F.W.I. Schaefer. 2015. Recent literature review of soil processing methods for recovery of Bacillus anthracis spores. Annales de Microbiologie 65: 1215–1226.

    Article  Google Scholar 

  • Silvestri, E.E., et al. 2016. Optimization of a sample processing protocol for recovery of Bacillus anthracis spores from soil. Journal of Microbiological Methods 130: 6–13. https://doi.org/10.1016/j.mimet.2016.08.013.

    Article  Google Scholar 

  • Smith, K.L., V. DeVos, H. Bryden, L.B. Price, M.E. Hugh-Jones, and P. Keim. 2000. Bacillus anthracis diversity in Kruger National Park. Journal of Clinical Microbiology 38: 3780–3784.

    Article  Google Scholar 

  • Smith, D.B. et al. 2005. Major- and trace-element concentrations in soils from two continental-scale transects of the United States and Canada. Department of the Interior. U.S. Geological Survey open file report, 2005-1253. Reston, VA: Department of the Interior. U.S. Geological Survey.

    Google Scholar 

  • Smith, D.B., L.G. Woodruff, R.M. O’Leary, W.F. Cannon, R.G. Garrett, J.E. Kilburn, and M.B. Goldhaber. 2009. Pilot studies for the North American Soil Geochemical Landscapes Project - Site selection, sampling protocols, analytical methods, and quality control protocols. Applied Geochemistry 24: 1357–1368. https://doi.org/10.1016/j.apgeochem.2009.04.008.

    Article  Google Scholar 

  • Smith, D.B., W.F. Cannon, and L.G. Woodruff. 2011. A national-scale geochemical and mineralogical survey of soils of the conterminous United States. Applied Geochemistry 26: S250–S255.

    Article  Google Scholar 

  • Smith, D.B., W.F. Cannon, L.G. Woodruff, F.M. Rivera, A.N. Rencz, and R.G. Garrett. 2012. History and progress of the North American Soil Geochemical Landscapes Project, 2001-2010. Earth Science Frontiers 19: 19–32.

    Google Scholar 

  • Soil Survey Staff. 2017. Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at the following link: https://websoilsurvey.sc.egov.usda.gov/. Last accessed 12 Jan 2018.

  • Stein, C.D. 1945. The history and distribution of anthrax in livestock in the United States. Veterinary Medicine 40: 340–349.

    Google Scholar 

  • ———. 1950. Anthrax in livestock during 1949 and incidence of the disease from 1945 to 1949. Veterinary Medicine 45: 205–208.

    Google Scholar 

  • Stein, C.D., and B.G. Van Ness. 1955. A ten year survey of anthrax in livestock with special reference to outbreaks in 1954. Veterinary Medicine 50: 579–588.

    Google Scholar 

  • Stevens, D.L.J., and A.R. Olsen. 1999. Spatially restricted surveys over time for aquatic resources. Journal of Agricultural, Biological and Environmental Statistics 4: 415–428.

    Article  Google Scholar 

  • ———. 2003. Variance estimation for spatially balanced samples of environmental resources. Environmetrics 14: 593–610. https://doi.org/10.1002/env.606.

    Article  Google Scholar 

  • ———. 2004. Spatially balanced sampling of natural resources. Journal of the American Statistical Association 99: 262–278. https://doi.org/10.1198/016214504000000250.

    Article  Google Scholar 

  • Teshale, E.H., et al. 2002. Environmental sampling for spores of Bacillus anthracis. Emerging Infectious Diseases 8: 1083–1087. https://doi.org/10.3201/eid0810.020398.

    Article  Google Scholar 

  • Tinoco, B.A., P.X. Astudillo, S.C. Latta, and C.H. Graham. 2009. Distribution, ecology and conservation of an endangered Andean hummingbird: The Violet-throated Metaltail (Metallura baroni). Bird Conservation International 19: 63–76. https://doi.org/10.1017/S0959270908007703.

    Article  Google Scholar 

  • Titball, R.W., P.C. Turnbull, and R.A. Hutson. 1991. The monitoring and detection of Bacillus anthracis in the environment. Society for Applied Bacteriology Symposium Series 20: 9S–18S.

    Google Scholar 

  • Tittensor, D.P., et al. 2009. Predicting global habitat suitability for stony corals on seamounts. Journal of Biogeography 36: 1111–1128. https://doi.org/10.1111/j.1365-2699.2008.02062.x.

    Article  Google Scholar 

  • Tognelli, M.F., S.A. Roig-Junent, A.E. Marvaldi, G.E. Flores, and J.M. Lobo. 2009. An evaluation of methods for modelling distribution of Patagonian insects. Revista Chilena de Historia Natural 82: 347–360.

    Article  Google Scholar 

  • Turell, M.J., and G.B. Knudson. 1987. Mechanical transmission of Bacillus anthracis by stable flies (Stomoxys calcitrans) and mosquitoes (Aedes aegypti and Aedes taeniorhynchus). Infection and Immunity 55: 1859–1861.

    Article  Google Scholar 

  • Turnbull, P.C.B., J.A. Carman, P.M. Lindeque, F. Joubert, O.J.B. Hübschle, and G.H. Snoeyenbos. 1989. Further progress in understanding anthrax in the Etosha National Park. Madoqua 16: 93–104.

    Google Scholar 

  • Turnbull, P.C., P.M. Lindeque, J. Le Roux, A.M. Bennett, and S.R. Parks. 1998. Airborne movement of anthrax spores from carcass sites in the Etosha National Park, Namibia. Journal of Applied Microbiology 84: 667–676.

    Article  Google Scholar 

  • Turner, A.J., J.W. Galvin, R.J. Rubira, R.J. Condron, and T. Bradley. 1999a. Experiences with vaccination and epidemiological investigations on an anthrax outbreak in Australia in 1997. Journal of Applied Microbiology 87: 294–297.

    Article  Google Scholar 

  • Turner, A.J., J.W. Galvin, R.J. Rubira, and G.T. Miller. 1999b. Anthrax explodes in an Australian summer. Journal of Applied Microbiology 87: 196–199.

    Article  Google Scholar 

  • USDA. 2006. Epizootiology and Ecology of Anthrax.

    Google Scholar 

  • ———. 2014. 2012 census of agriculture. U.S. Department of Agriculture, National Agricultural Statistics Service. Available at: https://www.nass.usda.gov/. Last accessed 12 Jan 2018.

    Google Scholar 

  • USEPA. 2012. Protocol for detection of Bacillus anthracis in environmental samples. Cincinnati: U.S. Environmental Protection Agency. EPA/600/R12/577.

    Google Scholar 

  • ———. 2014. Literature review on mechanisms that affect persistence on Bacillus anthracis in soils. Cincinnati: U.S. Environmental Protection Agency, EPA 600/R-14/216.

    Google Scholar 

  • ———. 2015. Distinguishing intentional releases from natural occurrences and unintentional releases of Bacillus anthracis: Literature search and analysis. Cincinnati: U.S. Environmental Protection Agency. EPA/600/R-15/066.

    Google Scholar 

  • USEPA and USGS. 2017. Processing protocol for soil samples potentially contaminated with Bacillus anthracis spores. Cincinnati: U.S. Environmental Protection Agency. EPA/600/R17/028.

    Google Scholar 

  • USGS. 2012. National elevation dataset. U.S. Geological Survey. Available at: https://catalog.data.gov/dataset/100-meter-resolution-elevation-of-the-conterminous-united-states-direct-download. Last accessed 12 Jan 2018.

    Google Scholar 

  • ———. 2013. Geochemical and mineralogical data for soils of the conterminous United States, Data series 801. Reston: U.S. Geological Survey. Available at: http:pubs.usgs.gov/ds/801/pdf/ds801.pdf Last accessed 6 Mar 2018.

    Google Scholar 

  • Van Ness, G.B. 1959. Soil relationship in Oklahoma-Kansas anthrax outbreak of 1957. Journal of Soil and Water Conservation 14: 70–71.

    Google Scholar 

  • ———. 1967. Geologic implications of anthrax. The Geological Society of America Special Paper 90: 61–64.

    Article  Google Scholar 

  • ———. 1971. Ecology of anthrax. Science 172: 1303–1307.

    Article  Google Scholar 

  • Van Ness, G.B., and C.D. Stein. 1956. Soils of the United States favorable for anthrax. Journal of the American Veterinary Medical Association 128: 7–12.

    Google Scholar 

  • Verbruggen, H., et al. 2009. Macroecology meets macroevolution: Evolutionary niche dynamics in the seaweed Halimeda. Global Ecology and Biogeography 18: 393–405. https://doi.org/10.1111/j.1466-8238.2009.00463.x.

    Article  Google Scholar 

  • Ward, D.F. 2007. Modelling the potential geographic distribution of invasive ant species in New Zealand. Biological Invasions 9: 723–735. https://doi.org/10.1007/s10530-006-9072-y.

    Article  Google Scholar 

  • Weinberg, E.D. 1987. The influence of soil on infectious disease. Experientia 43: 81–87. https://doi.org/10.1007/Bf01940358.

    Article  Google Scholar 

  • West, A.W., and H.D. Burges. 1985. Persistence of Bacillus thuringiensis and Bacillus cereus in soil supplemented with grass or manure. Plant and Soil 83: 389–398.

    Article  Google Scholar 

  • Williams, J.N., C.W. Seo, J. Thorne, J.K. Nelson, S. Erwin, J.M. O'Brien, and M.W. Schwartz. 2009. Using species distribution models to predict new occurrences for rare plants. Diversity and Distributions 15: 565–576. https://doi.org/10.1111/j.1472-4642.2009.00567.x.

    Article  Google Scholar 

  • Wollan, A.K., V. Bakkestuen, H. Kauserud, G. Gulden, and R. Halvorsen. 2008. Modelling and predicting fungal distribution patterns using herbarium data. Journal of Biogeography 35: 2298–2310. https://doi.org/10.1111/j.1365-2699.2008.01965.x.

    Article  Google Scholar 

  • Wright, G.G., L.H. Angelety, and B. Swanson. 1970. Studies on immunity in anthrax XII. Requirement for phosphate for elaboration of protective antigen and it’s partial replacement by charcoal. Infection and Immunity 2: 772–777.

    Article  Google Scholar 

  • Yates, C.J., A. McNeill, J. Elith, and G.F. Midgley. 2010. Assessing the impacts of climate change and land transformation on Banksia in the South West Australian Floristic Region. Diversity and Distributions 16: 187–201. https://doi.org/10.1111/j.1472-4642.2009.00623.x.

    Article  Google Scholar 

  • Yesson, C., and A. Culham. 2006. A phyloclimatic study of Cyclamen. BMC Evolutionary Biology 6: 72. https://doi.org/10.1186/1471-2148-6-72.

    Article  Google Scholar 

  • Young, B.E., I. Franke, P.A. Hernandez, S.K. Herzog, L. Paniagua, C. Tovar, and T. Valqui. 2009. Using spatial models to predict areas of endemism and gaps in the protection of Andean Slope Birds. Auk 126: 554–565. https://doi.org/10.1525/auk.2009.08155.

    Article  Google Scholar 

  • Zhang, J., et al. 2013. An adenovirus-vectored nasal vaccine confers rapid and sustained protection against anthrax in a single-dose regimen. Clinical and Vaccine Immunology 20: 1–8. https://doi.org/10.1128/CVI.00280-12.

    Article  Google Scholar 

Download references

Acknowledgements and Disclaimer

USGS collaborated on the analysis of samples for the presence of Bacillus and B. anthracis with the US Environmental Protection Agency (USEPA) through USEPA’s Office of Research and Development under EPA IA# DW 1495774801. Maxent and statistical analysis was completed by completed under the USEPA and USGS IA # DW 1492401101. This joint agency project was supported by the USGS Geochemical Landscape Project and the USGS Environmental Health Mission Area’s Contaminate Biology Program. We would like to thank John Lisle (USGS), Sarah Perkins (formerly from USEPA), Charlena Bowling (USEPA), M. Worth Calfee (USEPA), and Paul Lemieux (USEPA) for their help and assistance on this project. This content has been peer and administratively reviewed and has been approved for publication as a joint USGS and USEPA publication. Note that approval does not signify that the contents necessarily reflect the views of the USEPA or the USGS. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the US government. The views and opinions expressed herein do not state or reflect those of the US government and shall not be used for advertising or product endorsement purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale W. Griffin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silvestri, E.E. et al. (2022). Spatially Integrating Microbiology and Geochemistry to Reveal Complex Environmental Health Issues: Anthrax in the Contiguous United States. In: Faruque, F.S. (eds) Geospatial Technology for Human Well-Being and Health. Springer, Cham. https://doi.org/10.1007/978-3-030-71377-5_19

Download citation

Publish with us

Policies and ethics