Skip to main content

Integrating Geographic Information Systems and Ecological Niche Modeling into Disease Ecology: A Case Study of Bacillus anthracis in the United States and Mexico

  • Conference paper
  • First Online:
Emerging and Endemic Pathogens

Part of the book series: NATO Science for Peace and Security Series A: Chemistry and Biology ((NAPSA,volume 00))

Abstract

This chapter provides an overview of geographic information systems, spatial analysis and spatial statistics, and predictive ecological niche modeling as they apply to disease ecology. I provide a conceptual model of the epidemiology and outbreak ecology of anthrax and the landscape ecology of the pathogen Bacillus anthracis. I apply Anselin’s exploratory spatial data analysis process to these two components of the anthrax-transmission and spore-survival model. Spatial clustering statistics are reviewed in the context of outbreak epidemiology and potential mechanical vector transmission. I then provide a primer on ecological niche theory and apply ecological niche modeling to estimate the potential geographic distribution of B. anthracis on the landscape of the contiguous United States under current and future climate scenarios and to estimate the unknown distribution of B. anthracis in Mexico.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anselin, L. Spatial statistical modeling in a GIS environment. In Maguire, D., Batty, M., Goodchild, M., editors. GIS, spatial analysis, and modeling. Redlands, CA: ESRI Press; 2005. p. 498.

    Google Scholar 

  2. Smith, K.L., De Vos, V., Price, L.B., Hugh-Jones, M.E., Keim, P. 2000. Bacillus anthracis diversity in Kruger National Park. J. Clin. Microbiol. 38:3780–3784.

    CAS  PubMed  Google Scholar 

  3. Hugh-Jones, M.E., De Vos, V. 2002. Anthrax and wildlife. Rev. Sci. Tech. 21:359–383.

    CAS  PubMed  Google Scholar 

  4. Blackburn, J.K., McNyset, K.M., Hugh-Jones, M.E., Curtis, A. 2007. Modeling the geographic distribution of Bacillus anthracis, the causative agent of anthrax disease, for the contiguous United States using predictive ecological niche modeling. Am. J. Trop. Med. Hyg. 77:1103–1110.

    PubMed  Google Scholar 

  5. Van Ness, G., Stein, C.D. 1956. Soils of the United States favorable for anthrax. J. Am. Vet. Med. Assoc. 128:7–9.

    Google Scholar 

  6. Van Ness, G.B. 1971. Ecology of anthrax. Science 172:1303–1307.

    Article  PubMed  Google Scholar 

  7. Dragon, D.C., Rennie, R.P. 1995. The ecology of anthrax spores: tough but not invincible. Can. Vet. J. 36:295–301.

    CAS  PubMed  Google Scholar 

  8. Turner, A.J., Galvin, J.W., Rubira, R.J., Miller, G.T. 2001. Anthrax explodes in an Australian summer. J. Appl. Microbiol. 87:196–199.

    Article  Google Scholar 

  9. Parkinson, R. Andrijana, R. Jenson, C. 2003. Investigation of an anthrax outbreak in Alberta in 1999 using a geographic information system. Can. Vet. J. 44:315–318.

    PubMed  Google Scholar 

  10. Lindeque, P.M., Turnbull, P.C.B. 1994. Ecology and epidemiology of anthrax in the Etosha National Park, Namibia. Onderstepoort J. Vet. Res. 61:71–83.

    CAS  Google Scholar 

  11. Smith, K.L., De Vos, V., Bryden, H.B., Hugh-Jones, M.E., Klevytska, A., Price, L.B., Keim, P., Scholl, D.T. 1999. Meso-scale ecology of anthrax in southern Africa: a pilot study of diversity and clustering. J. Appl. Microbiol. 87:204–207.

    Article  CAS  PubMed  Google Scholar 

  12. Blackburn, J.K. Evaluating the spatial ecology of anthrax in North America: examining epidemiological components across multiple geographic scales using a GIS-based approach. Doctoral Dissertation, Louisiana State University, Department of Geography and Anthropology, 2006.

    Google Scholar 

  13. Braack, L.E.O., De Vos, V. 1990. Feeding habits and flight ranges of blow-flies (Chryosoma spp.) in relation to anthrax transmission in the Kruger National Park, South Africa. Onderstepoort J. Vet. Res. 57:141–142.

    CAS  PubMed  Google Scholar 

  14. De Vos, V., Bryden, H.B. 1996. Anthrax in the Kruger National Park: temporal and spatial patterns of disease occurrence. Salisbury Med. Bull. 87(suppl.):26–30.

    Google Scholar 

  15. Kraneveld F.C., Djaenoedin, R. 1940. Test on the dissemination of anthrax by Tabanus rubidus in horses and buffalo. Overgedrukt uit de Nederlands-Indische Bladen Voor Diergeneeskunde 52:339–380.

    Google Scholar 

  16. Rao, N.S., Mohiyudeen, S. 1958. Tabanus flies as transmitters of anthrax - a field experience. Indian Vet. J. 35:348–353

    Google Scholar 

  17. Davies, J.C. 1983. A major epidemic of anthrax in Zimbabwe. Part II. Cent. Afr. J. Med. 29:8–12.

    CAS  PubMed  Google Scholar 

  18. Turell, M.J., Knudson, G.B. 1987. Mechanical transmission of Bacillus anthrasis by stable flies (Stomoxys calcitrans) and mosquitoes (Aedes aegypti and Aedes taeniorhynchus). Infect. Immun. 55:1859–1861.

    CAS  PubMed  Google Scholar 

  19. Ganeva, D.J. 2004. Analysis of the Bulgarian tabanid fauna with regard to its potential for epidemiological involvement. Bulg. J. Vet. Med. 7:1–8.

    Google Scholar 

  20. Fullbright, T.E., Ortega-S., J.A. White-tailed deer habitat ecology and management on rangelands. College Station, TX: Texas A&M University Press; 2006.

    Google Scholar 

  21. Gates, C.C., Elkin, B.T., Dragon, D.C. 1995. Investigation, control, and epizootiology of anthrax in a geographically isolated, free-roaming bison population in northern Canada. Can. J. Vet. Res. 59:256–264.

    CAS  PubMed  Google Scholar 

  22. Getis, A., Morrison, A.C., Gray, K., Scott, T.W. 2003. Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru. Am. J. Trop. Med. Hyg. 69:494–505.

    PubMed  Google Scholar 

  23. Haines-Young, R., Green, D.R., Cousins, S. Landscape ecology and spatial information systems. In: Haines-Young, R., Green, D.R., Cousins, S, editors. Landscape ecology and geographic information systems. Bristol, UK: Taylor & Francis, Inc.; 1994. pp. 3–8.

    Google Scholar 

  24. Dragon D.C., Bader D.E., Mitchell J., Wollen N. 2005. Natural dissemination of Bacillus anthracis spores in northern Canada. Appl. Environ. Microbiol. 71:1610–1615.

    Article  CAS  PubMed  Google Scholar 

  25. Rogers, D.J. 2006. Models for vectors and vector-borne diseases. In: Hay, S., Graham, A.J., Rogers, D.J., editors. Global mapping of infectious diseases: methods, examples, and emerging application. London: Academic Press; 2006.

    Google Scholar 

  26. Clarke, K.C., McLafferty, S.L., Tempalski, B.J. 1996. On epidemiology and geographic information systems: a review and discussion of future directions. Emerg. Infect. Dis. 2:85–92.

    Article  CAS  PubMed  Google Scholar 

  27. Smith, A.P., Horning, N., Moore, D. 1997. Regional biodiversity planning and lemur conservation with GIS in western Madagascar. Conserv. Biol. 11:498–512.

    Article  Google Scholar 

  28. Blackburn, J.K., Curtis, A., Mujia, F.C., Jones, F., Dorn, P., Coates, R. 2008. The development of the Chagas’ Online Data Entry System (CODES-GIS). Trans. GIS 12:249–265.

    Article  Google Scholar 

  29. Kulldorff, M. 2001. Prospective time periodic geographical disease surveillance using a scan statistic J. Royal Stat. Soc. Series A (Stat. Soc.) 164:61–72.

    Article  Google Scholar 

  30. Guisan, A., Zimmermann, N.E. 2000. Predictive habitat distribution models in ecology. Ecol. Model. 135:147–186.

    Article  Google Scholar 

  31. Curtis, A.C., Blackburn, J.K., Sansyzbayev, Y. Using a geographic information system to spatially investigate infectious disease. In: Tibayrenc, M., editor. Encyclopedia of infectious diseases: modern methodologies. London: John Wiley & Sons, Inc; 2007.

    Google Scholar 

  32. Cutter, S.L., Boruff, B.J., Shirley, W.L. 2003. Social vulnerability to environmental hazards. Soc. Sci. Q. 84:242–261.

    Article  Google Scholar 

  33. Longley, P.A., Goodchild, M.F., Maguire, D.J., Rhind, D.W. Geographic information systems and science, second edition. New York: Wiley; 2005.

    Google Scholar 

  34. Maguire, D.J., Batty, M., Goodchild, M.F., editors. GIS, spatial analysis, and modeling. Redlands, CA: ESRI Press; 2005.

    Google Scholar 

  35. Curtis, A., Mills, J.W., Leitner, M. 2007. Katrina and vulnerability: the geography of stress. J. Health Care Poor Underserved 18:315–330.

    Article  PubMed  Google Scholar 

  36. Eisen, R.J., Bearden, S.W., Wilder, A.P., Montenieri, J.A., Antolin, M.F., Gage, K.L. 2006. Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics. Proc. Natl. Acad. Sci. U S A 103:15380–15385.

    Article  CAS  PubMed  Google Scholar 

  37. Randolph, S., Rogers, D.J. Ecology of tick-borne disease and the role of climate. In: Ergonul, O., Whitehouse, C.A., editors. Crimean-Congo hemorrhagic fever: a global perspective. New York: Springer;2007. pp. 167–186.

    Chapter  Google Scholar 

  38. Peterson, A.T., Sanchez-Cordero, V., Beard, C.B., Ramsey, J.M. 2002. Ecologic niche modeling and potential reservoirs for Chagas disease, Mexico. Emerg. Infect. Dis. 8:662–667.

    Google Scholar 

  39. Lam N.S.N., Liu, K.B. 1994. Spread of AIDS in rural America, 1982-1990. J. Acquir. Immune Defic. Syndr. 7:485–490.

    CAS  PubMed  Google Scholar 

  40. Peterson, A.T., Bauer, J.T., Mills, J.N. 2004. Ecologic and geographic distribution of Filovirus disease. Emerg. Infect. Dis. 10:40–47.

    PubMed  Google Scholar 

  41. Goodchild, M.F. 1992. Geographical information science. Int. J. Geo. Inform. Sys. 6:31–45.

    Article  Google Scholar 

  42. Mark, D.M. Geographic information science: defining the field. In: Duckham, M., Goodchild, M.F., Worboys, M.F., editors. Foundations of geographic information science. New York: Taylor and Francis; 2003. pp. 3–18.

    Google Scholar 

  43. Goodchild, M.F. 2004. GIScience: geography, form, and process. Ann. Assoc. Am. Geographers 94:709–714.

    Google Scholar 

  44. Goodchild, M.F. Geographical information science: fifteen years later. In Fisher, P.F., editor. Classics from IJGIS: twenty years of the International Journal of Geographical Information Science and Systems. Boca Raton, FL: CRC Press; 2006. pp. 199–204.

    Google Scholar 

  45. Getis, A., Ord, J.K. 1992. The analysis of spatial association by use of distance statistics. Geo. Anal. 24:189–260.

    Google Scholar 

  46. Durbeck, H., Greiling, D., Estberg, L., Long, A., Jacquez, G. ClusterSeer™ software for identifying event clusters: user guide 2. Crytsal Lake, IL: TerraSeer, Inc.; 2002. p. 316.

    Google Scholar 

  47. Sagiyev, Z., Pazilov, Y., Lukhnova, L., Temiraliyeva, G., Meka-Menchenko, T., Sansyzbayev, Y., Joyner, T.A., Curtis, A., Hugh-Jones, M.E., Blackburn, J.K. Spatial hotspots of anthrax cases in Kazakh livestock: identifying control strategy needs. Oral Presentation. URISA’s GIS in Public Health Conference, May 20–23, 2007, New Olreans, Louisiana.

    Google Scholar 

  48. Hutchinson, G.E. 1978. An introduction to population ecology. New Haven, CT: Yale University Press; 1978.

    Google Scholar 

  49. Johnson, R.H. Determinate evolution in the color pattern of the lady-beetles. Publication No. 122. Washington, DC: Carnegie Institute of Washington; 1910.

    Google Scholar 

  50. Grinnell, J. 1917. The niche-relationships of the California Thrasher. Auk. 34:427–433.

    Google Scholar 

  51. Hutchinson, G.E. 1944. Limnological studies in Connecticut. VII. A critical examination of the supposed relationship between phytoplakton periodicity and chemical changes in lake waters. Ecology 25:3–26.

    Article  CAS  Google Scholar 

  52. Hutchinson, G.E. 1957. Concluding remarks. Cold Spring Harbour Symposium on Quantitative Biology 22:415–427.

    Google Scholar 

  53. MacArthur, R.H. 1958. Population ecology of some warblers of northeastern coniferous forests. Ecology 39:599–619.

    Article  Google Scholar 

  54. Morrison, M.L., Hall, L.S. Standard terminology: toward a common language to advance ecological understanding and application. In: Scott, J.M., Heglund, P.J., Morrison, M.L., Haufler, J.B., Raphael, M.G., Wall, W.A., Samson, F.B., editors. Predicting species occurrences: issues of accuracy and scale. Washington, DC: Island Press; 2002. pp. 43–52.

    Google Scholar 

  55. Chase, J.M., Leibold, M.A. Ecological niches: linking classical and contemporary approaches. Chicago: University of Chicago Press; 2003.

    Google Scholar 

  56. Peterson, A.T. 2008. Biogeography of diseases: a framework for analysis. Naturwissenschaften 95:483–491.

    Article  CAS  PubMed  Google Scholar 

  57. Peterson, A.T. 2006. Ecologic niche modeling and spatial patterns of disease transmission. Emerg. Infect. Dis. 12:1822–1826.

    PubMed  Google Scholar 

  58. Stockwell, D., Peters, D. 1999. The GARP modelling system: problems and solutions to automated spatial prediction. Int. J. Geo. Inform. Sci. 13:143–158.

    Article  Google Scholar 

  59. Rogers, D.J. Satellites, space, time and the African trypanosomiases. In: Hay, S.I., Randolph, S.E., Rogers, D.J., editors. Remote sensing and geographical information systems in epidemiology. London: Academic Press; 2000.

    Google Scholar 

  60. Phillips, S.J., Anderson, R.P., Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190:231–259.

    Article  Google Scholar 

  61. Adjemian, J.C.Z., Girvetz, E.H., Beckett, L., Foley, J.E. 2006. Analysis of genetic algorithm for rule-set prodution (GARP) modeling approach for predicting distributions of fleas implicated as vectors of plague, Yersinia pestis, in California. J. Med. Entomol. 43:93–103.

    Article  PubMed  Google Scholar 

  62. Ron, R.S. 2005. Predicting the distribution of the amphibian pathogen Batrachochytrium dendrobatidis in the New World. Biotropica 37:209–221.

    Article  Google Scholar 

  63. Stockwell D.R.B., Peterson A.T. 2002. Effects of sample size on accuracy of species distribution models. Ecol. Model. 148:1–13.

    Article  Google Scholar 

  64. Anderson, R.P., Lew, D., Peterson, A.T. 2003. Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol. Model. 162:211–232.

    Article  Google Scholar 

  65. Kluza, D.A., McNyset, K.M. 2005. Ecological niche modeling of aquatic invasion species. Aquat. Invad. 16:1–7.

    Google Scholar 

  66. McNyset, K.M. 2005. Use of ecological niche modelling to predict distributions of freshwater fish species in Kansas. Ecol. Freshwater Fish 14:243–255.

    Article  Google Scholar 

  67. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones P.G., Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25:1965–1978.

    Article  Google Scholar 

  68. Hay, S.I., Tatem, A.J., Graham, A.J., Goetz, S.J., Rogers, D.J. Global environmental data for mapping infectious disease distribution. In: Hay, S., Graham, A.J., Rogers, D.J., editors. Global mapping of infectious diseases: methods, examples, and emerging application. London: Academic Press; 2006.

    Google Scholar 

  69. Nakicenovic, N., Swart, R., editors. Emissions scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press; 2000.

    Google Scholar 

  70. Peterson, A.T., Martínez-Meyer, E., González-Salazar, C., Hall, P. 2004. Modeled climate change effects on distributions of Canadian butterfly species. Can. J. Zool. 82:851–858.

    Article  Google Scholar 

  71. Wiley, E.O., McNyset, K.M., Peterson, A.T., Robins, C.R., Stewart, A.M. 2003. Niche modeling and geographic range predictions in the marine environment using a machine-learning algorithm. Oceanography 16:120–127.

    Google Scholar 

  72. Centor, R.M. 1991. Signal detectability: the use of ROC curves and their analyses. Med. Decis. Mak. 11:102–106.

    Article  CAS  Google Scholar 

  73. Zweig, M.H., Campbell, G. 1993. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem. 39:561–577.

    CAS  PubMed  Google Scholar 

  74. Hanley, J.A., McNeil, B.J. 1982. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36.

    CAS  PubMed  Google Scholar 

  75. Patterson, B.D., Ceballos, G., Sechrest, W., Tognelli, M.F., Brooks, T., Luna, L., Ortega, P., Salazar, I., Young, B.E. Digital distribution maps of the mammals of the western hemisphere, version 3.0. Arlington, VA: NatureServe; 2007.

    Google Scholar 

  76. Stein, C.D. 1945. The history and distribution of anthrax in livestock in the United States. Vet. Med. 40:340–349.

    Google Scholar 

  77. Van Ert, M.N., Easterday, W.R., Huynh, L.Y., Okinaka, R.T., Hugh-Jones, M.E., Ravel, J., Zanecki, S.R., Pearson, T., Simonson, T., Uren, J.M., Kachur, S.M., Leadem-Dougherty, R.R., Rhoton, S.D., Zinser, G., Farlow, J., Coker, P.R., Smith, K.L., Wang, B., Kenefic, L.J., Fraser-Liggett, C.M., Wagner, D.M., Keim, P. 2007. Global genetic population structure of Bacillus anthracis. PLoS ONE 2:e461.

    Google Scholar 

  78. Machado, M.A. 1976. An industry in limbo: the Mexican cattle industry 1920–1924. Ag. His. 50:615–625.

    Google Scholar 

  79. Hugh-Jones, M. 1999. 1996–97 global anthrax report. J. Appl. Microbiol. 87:189–191.

    Article  CAS  PubMed  Google Scholar 

  80. Fragoso Uribe, R., Villicana Fuentes, H. 1984. Antrax en dos communidades de Zacatecas, Mexico. Bol. Oficina Sanit. Panam. 97:526–533.

    CAS  Google Scholar 

  81. Anthrax-cattle, human, livestock, Mexico (Michoacan). ProMED-mail, June 22, 2003. 20030622.1543. Available at http://www.promedmail.org. Accessed August 27, 2007.

  82. Siefert, H.S., Bader, K., Cyplik, J., González Salinas, J., Roth, F., Salinas Meléndez, J.A., Sukop, U. 1996. Environment, incidence, aetiology, epizootiology and immunoprophylaxis of soil-borne diseases in north-east Mexico. Zentralbl. Veterinarmed B. 43:593–606.

    Google Scholar 

  83. de la Rocque, S., Hendrickx, G., Morand, S., editors. 2008. Climate change: impact on epidemiology and control in animal diseases. Revue Scientifique et Technique, OIE, 27(2).

    Google Scholar 

  84. Holt, R.D., Gaines, M.S. 1992. Analysis and adaptation in heterogeneous landscapes: implications for the evolution of fundamental niches. Evolution. Ecol. 6:433–337.

    Article  Google Scholar 

  85. Peterson, A.T., Soberon, J., Sanchez-Cordero, V. 1999. Conservatism of ecological niches in evolutionary time. Science 285:1265–1267.

    Article  CAS  PubMed  Google Scholar 

  86. Peterson, A.T. 2003. Predicting the geography of species’ invasions via ecological niche modeling. Q. Rev. Biol. 78:419–433.

    Article  PubMed  Google Scholar 

  87. Van Ness, G.B. 1959. Soil relationship in the Oklahoma-Kansas anthrax outbreak of 1957. J. Soil Water Conserv. 14:70–71.

    Google Scholar 

  88. Isard, S.A., Schaetzl, R.J., Andresen, J.A. 2007. Soils cool as climate warms in the Great Lakes region: 1951–2000. Ann. Assoc. Am. Geog. 97:467–476.

    Article  Google Scholar 

  89. Strode, P.K. 2003. Implications of climate change for North American wood warblers (Parulidae). Global Change Biol. 9:1137–1144.

    Article  Google Scholar 

  90. Bradley, N.L., Leopold, A.C., Ross, J., Huffaker, W. 1999. Phenological changes reflect climate change in Wisconsin. Proc. Natl. Acad. Sci. U S A 96:9701–9704.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Blackburn, J.K. (2010). Integrating Geographic Information Systems and Ecological Niche Modeling into Disease Ecology: A Case Study of Bacillus anthracis in the United States and Mexico. In: O'Connell, K., Skowronski, E., Sulakvelidze, A., Bakanidze, L. (eds) Emerging and Endemic Pathogens. NATO Science for Peace and Security Series A: Chemistry and Biology, vol 00. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9637-1_7

Download citation

Publish with us

Policies and ethics