Skip to main content

Noninvasive Ventilation: Continuous Positive Air Pressure Ventilation (CPAP) and Pressure Support Ventilation (PSV)

  • Chapter
  • First Online:
Teaching Pearls in Noninvasive Mechanical Ventilation

Abstract

Background and objectives: Acute Respiratory Failure (ARF) in Idiopathic Pulmonary Fibrosis (IPF) patients (pts) is associated with poor prognosis, therefore a noninvasive approach, such as noninvasive ventilation (NIV) may represent a good option to turn to. NIV modes: Continuous positive airway pressure (CPAP) in spontaneous breathing (SB) (range 8–10 cmH2O level) is applied in the absence of respiratory acidosis in order to treat hypoxemia with tachypnea. FiO2 is set at the lowest value to keep PaO2 at more than 60 mmHg. Hypercapnia, hypoventilation and respiratory fatigue are treated in assisted/controlled ventilation by face-mask (FM) in Pressure Support ventilation (PSV). Pressure Support (PS) and Positive End Expiratory Pressure (PEEP) level are generally imposed respectively equal to 12–18 and 4–9 cmH2O, titrated to provide a moderate tidal volume (TV) (6–8 mL/kg of predicted body weight). When NIV-Helmet is applied, PS and PEEP baseline levels are respectively set at 10 and 5 cmH2O, both raising in increments of 2–3 cmH2O. FM advantages: higher efficacy in improving CO2 elimination and reducing work of breathing while applying PSV in pts with high respiratory muscle load. Disadvantages: not tolerated in pts who need prolonged MV. Helmet advantages over FM: improved tolerability and lesser air leaks as with a new helmet that can be performed for prolonged periods of time. Disadvantages: because of its larger inner volume, standard helmet is characterized by less efficient rates of pressurization and triggering function, worsening patient–ventilator synchrony. In pts with high respiratory drive and intense inspiratory effort, the risk of patient self-inflicted lung injury (P-SILI) is highly considerable. Conclusions: NIV by helmet in CPAP mode and face-mask in PSV provides relief from dyspnoea and avoids endo-tracheal intubation (ETI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hypoxaemic respiratory failure is usually defined as significant hypoxaemia (P/F ≤ 200), tachypnoea (respiratory rate > 30–35 breaths·min−1) or use of accessory respiratory muscles or paradoxical abdominal motion, and a non-COPD diagnosis (e.g. pneumonia and/or acute respiratory distress syndrome (ARDS) [19].

Abbreviations

% pred:

Percent of predicted value

AE-IPF:

Acute exacerbation of IPF

ARDS:

Acute respiratory distress syndrome

ARF:

Acute respiratory failure

CPAP:

Continuous positive airway pressure

DAD:

Diffuse alveolar damage

DNR:

Do not resuscitate

DP:

Driving pressure

ECCO2R:

Extracorporeal CO2 removal

ETI:

Endotracheal intubation

FEV1:

Forced expiratory volume in the 1st second

FEV1/FVC ratio:

Forced expiratory volume in the 1st second/Forced Vital capacity

FiO2:

Inspired oxygen fraction

FMV:

Face-mask ventilation

FVC:

Forced Vital capacity

GCS:

Glasgow Coma Scale score

HFOT:

High flow oxygen therapy

HRCT:

High resolution computed tomography

ICU:

Intensive care unit

ILD:

Interstitial lung disease

IMV:

Invasive mechanical ventilation

IPF:

Idiopathic pulmonary fibrosis

MOF:

Multiple organ failure

MV:

Mechanical ventilation

NIV:

Noninvasive mechanical ventilation

NMBAs:

Neuromuscular blocking

P/F:

PaO2/FiO2: ratio of PaO2 to fraction of inspired oxygen

PaCO2:

Carbon dioxide arterial pressure

PaO2:

Oxygen arterial pressure

PBW:

Predicted body weight

PEEP:

Positive end expiratory pressure

P-SILI:

Patient self-inflicted lung injury percentage (%)

PSV:

Pressure support ventilation

pts:

Patient/s

RICU:

Respiratory intensive care unit

RR:

Respiratory rate

SaO2:

Arterial oxygen saturation

SAPS:

Simplified acute physiology score

SB:

Spontaneous breathing

TLC:

Total lung capacity

TV:

Tidal volume

UIP:

Usual interstitial pneumonia

VAP:

Ventilator-associated pneumonia

VILI:

Ventilator-induced lung injury

WOB:

Work of breathing

References

  1. Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183:788–824. https://doi.org/10.1164/rccm.2009-040GL.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Olson AL, Gifford AH, Inase N, Fernández Pérez ER, Suda T. The epidemiology of idiopathic pulmonary fibrosis and interstitial lung diseases at risk of a progressive-fibrosing phenotype. Eur Respir Rev. 2018;27(150):180077. https://doi.org/10.1183/16000617.0077-2011.

    Article  PubMed  Google Scholar 

  3. Collard HR, Moore BB, Flaherty KR, Brown KK, Kaner RJ, King TE Jr, et al. Idiopathic Pulmonary Fibrosis Clinical Research Network Investigators. Acute exacerbations of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2007;176:636–43. https://doi.org/10.1164/rccm.200703-463PP.

    Article  PubMed  Google Scholar 

  4. Raghu G, Rochwerg B, Zhang Y, Garcia CAC, Azuma A, Behr J, et al. An official ATS/ERS/JRS/ALAT clinical practice guideline: treatment of idiopathic pulmonary fibrosis. An update of the 2011 clinical practice guideline. Am J Respir Crit Care Med. 2015;192:e3–19. https://doi.org/10.1164/rccm.201506-1063ST.

    Article  PubMed  Google Scholar 

  5. Mallick S. Outcome of patients with idiopathic pulmonary fibrosis (IPF) ventilated in intensive care unit. Respir Med. 2008;102:1355–9. https://doi.org/10.1016/j.rmed.2008.06.003.

    Article  PubMed  Google Scholar 

  6. Aliberti S, Messinesi G, Gamberini S, Maggiolin SI, Visca D, Galavotti, et al. Non-invasive mechanical ventilation in patients with diffuse interstitial lung diseases. BMC Pulm Med. 2014;14:194. https://doi.org/10.1186/1471-2466-14-194.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fernández-Pérez ER, Yilmaz M, Jenad H, Daniels CE, Ryu JH, Hubmayr RD, Gajic O. Ventilator settings and outcome of respiratory failure in chronic interstitial lung disease. Chest. 2008;13:1113–9. https://doi.org/10.1378/chest.07-1481.

    Article  Google Scholar 

  8. Gacouin A, Jouneau S, Letheulle J, Kerjouan M, Bouju P, Fillatre P, et al. Trends in prevalence and prognosis in subjects with acute chronic respiratory failure treated with noninvasive and/or invasive ventilation. Respir Care. 2015;60:210–8. https://doi.org/10.4187/respcare.03467.

    Article  PubMed  Google Scholar 

  9. Nava S, Rubini F. Lung and chest wall mechanics in ventilated patients with end stage idiopathic pulmonary fibrosis. Thorax. 1999;54(5):390–5. https://doi.org/10.1136/thx.54.5.390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dreyfuss D, Ricard J-D, Saumon G. On the physiologic and clinical relevance of lung-borne cytokines during ventilator-induced lung injury. Am J Respir Crit Care Med. 2003;167:1467–147. https://doi.org/10.1164/rccm.200206-611CP.

    Article  PubMed  Google Scholar 

  11. Marchioni A, Tonelli R, Ball L, Fantini R, Castaniere I, Cerri S, et al. Acute exacerbation of idiopathic pulmonary fibrosis: lessons learned from acute respiratory distress syndrome? Crit Care. 2018;22:80. https://doi.org/10.1186/s13054-018-2002-4.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Papiris SA, Manali ED, Kolilekas L, Kagouridis K, Triantafillidou C, Tsangaris I, et al. Clinical review: idiopathic pulmonary fibrosis acute exacerbations—unravelling Ariadne’s thread. Crit Care. 2010;14:246. https://doi.org/10.1186/cc9241.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med. 2006;354:1775–86. https://doi.org/10.1056/NEJMoa052052.

    Article  CAS  PubMed  Google Scholar 

  14. Marchioni A, Tonelli R, Rossi G, Spagnolo P, Luppi F, Cerri S, et al. Ventilatory support and mechanical properties of the fibrotic lung acting as a “squishy ball”. Ann Intensive Care. 2020;10:13–22. https://doi.org/10.1186/s13613-020-0632-6.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gungor G, Tatar D, Salturk C, Cimen P, Saltürk C, Çimen P, et al. Why do patients with interstitial lung diseases fail in the ICU? A 2-center cohort study. Respir Care. 2013;58:525–31. https://doi.org/10.4187/respcare.01734.

    Article  PubMed  Google Scholar 

  16. Gaudry S, Vincent F, Rabbat A, Nunes H, Crestani B, Naccache J, et al. Invasive mechanical ventilation in patients with fibrosing interstitial pneumonia. J Thorac Cardiovasc Surg. 2014;147:47–53. https://doi.org/10.1016/j.jtcvs.2013.06.039.

    Article  PubMed  Google Scholar 

  17. Rush B, Wiskar K, Berger L, Griesdale D. The use of mechanical ventilation in patients with idiopathic pulmonary fibrosis in the United States: a nationwide retrospective cohort analysis. Respir Med. 2016;111:72–6. https://doi.org/10.1016/j.rmed.2015.12.005.

    Article  PubMed  Google Scholar 

  18. Silva Santos P, Cruz C, Esquinas AM. Mechanical ventilation in idiopathic pulmonary fibrosis: unresolved dilemma. Respir Med. 2016;117:283. https://doi.org/10.1016/j.rmed.2016.04.003.

    Article  PubMed  Google Scholar 

  19. Rochwerg B, Brochard L, Elliott MW, Hess D, Hill NS, Nava S, et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J. 2017;50:1602426. https://doi.org/10.1183/13993003.02426-2016.

    Article  PubMed  Google Scholar 

  20. Mooney JJ, Raimundo K, Chang E, Broder MS. Mechanical ventilation in idiopathic pulmonary fibrosis: a nationwide analysis of ventilator use, outcomes, and resource burden. BMC Pulm Med. 2017;17:84. https://doi.org/10.1186/s12890-017-0426-2.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yokoyama T, Kondoh Y, Taniguchi H, Kataoka K, Kato K, Nishiyama O, et al. Noninvasive ventilation in acute exacerbation of idiopathic pulmonary fibrosis. Intern Med. 2010;49:1509–14. https://doi.org/10.2169/internalmedicine.49.3222.

    Article  PubMed  Google Scholar 

  22. Vianello A, Arcaro G, Battistella L, Pipitone E, Vio S, Concas A, et al. Noninvasive ventilation in the event of acute respiratory failure in patients with idiopathic pulmonary fibrosis. J Crit Care. 2014;29:562–7. https://doi.org/10.1016/j.jcrc.2014.03.019.

    Article  PubMed  Google Scholar 

  23. Tomii K, Tachikawa R, Chin K, Murase K, Handa T, Mishima M, et al. Role of non-invasive ventilation in managing life-threatening acute exacerbation of interstitial pneumonia. Intern Med Tokyo Jpn. 2010;49:1341–7. https://doi.org/10.2169/internalmedicine.49.3491.

    Article  Google Scholar 

  24. Faverio P, De Giacomi F, Sardella L, Fiorentino G, Carone M, Salerno F, et al. Management of acute respiratory failure in interstitial lung diseases: overview and clinical insights. BMC Pulm Med. 2018;18:70. https://doi.org/10.1186/s12890-018-0643-3.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Grasselli G, Vergnano B, Pozzi MR, Sala V, D’Andrea G, Scaravilli V, et al. Interstitial pneumonia with autoimmune features: an additional risk factor for ARDS? Ann Intensive Care. 2017;7:98. https://doi.org/10.1186/s13613-017-0320-3.

    Article  PubMed  PubMed Central  Google Scholar 

  26. L’Her E, Deye N, Lellouche F, Taille S, Demoule A, Fraticelli A, et al. Physiologic effects of noninvasive ventilation during acute lung injury. Am J Respir Crit Care Med. 2005;172:1112–8. https://doi.org/10.1164/rccm.200402-226OC.

    Article  PubMed  Google Scholar 

  27. Navalesi P, Costa R, Ceriana P, Carlucci A, Prinianakis G, Antonelli M, et al. Non-invasive ventilation in chronic obstructive pulmonary disease patients: helmet versus facial mask. Intensive Care Med. 2007;33(1):74–81. https://doi.org/10.1007/s00134-006-0391-3.

    Article  PubMed  Google Scholar 

  28. Antonelli M, Conti G, Pelosi P, Gregoretti C, Pennisi MA, Costa R, et al. New treatment of acute hypoxemic respiratory failure: non invasive pressure support ventilation delivered by helmet—a pilot controlled trial. Crit Care Med. 2002;30:602–8. https://doi.org/10.1097/00003246-200203000-00019.

    Article  PubMed  Google Scholar 

  29. Antonelli M, Pennisi MA, Pelosi P, Gregoretti C, Squadrone V, Rocco M, et al. Noninvasive positive pressure ventilation using a helmet in patients with acute exacerbation of chronic obstructive pulmonary disease: a feasibility study. Anesthesiology. 2004;100:16–24. https://doi.org/10.1097/00000542-200401000-00007.

    Article  PubMed  Google Scholar 

  30. Kallet RH, Diaz JV. The physiologic effects of noninvasive ventilation. Respir Care. 2009;54:102–15.

    Article  PubMed  Google Scholar 

  31. Racca F, Appendini L, Gregoretti C, Stra E, Patessio A, Donner CF, et al. Effectiveness of mask and helmet interfaces to deliver noninvasive ventilation in a human model of resistive breathing. J Appl Physiol. 2005;99:1262–71. https://doi.org/10.1152/japplphysiol.01363.2004.

    Article  PubMed  Google Scholar 

  32. Olivieri C, Longhini F, Cena T, Cammarota G, Vaschetto R, Messina A, et al. New versus conventional helmet for delivering noninvasive ventilation a physiologic, crossover randomized study in critically ill patients. Anesthesiology. 2016;124:101–8. https://doi.org/10.1097/ALN.0000000000000910.

    Article  PubMed  Google Scholar 

  33. Esquinas Rodriguez AM, Papadakos PJ, Carron M, Cosentini R, Chiumello D. Clinical review: helmet and non-invasive mechanical ventilation in critically ill patients. Crit Care. 2013;17:223. https://doi.org/10.1097/ALN.0000000000000910.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chiumello D, Pelosi P, Carlesso E, Severgnini P, Aspesi M, Gamberoni C, et al. Noninvasive positive pressure ventilation delivered by helmet vs. standard face mask. Intensive Care Med. 2003;29:1671–9. https://doi.org/10.1007/s00134-003-1825-9.

    Article  PubMed  Google Scholar 

  35. Yoshida T, Uchiyama A, Matsuura N, Mashimo T, Fujino Y. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med. 2012;40:1578–85. https://doi.org/10.1097/CCM.0b013e3182451c40.

    Article  PubMed  Google Scholar 

  36. Grieco DL, Menga LS, Eleuteri D, Antonelli M. Patient self-inflicted lung injury: implications for acute hypoxemic respiratory failure and ARDS patients on non-invasive support. Minerva Anestesiol. 2019;85:1014–23. https://doi.org/10.23736/S0375-9393.19.13418-9.

    Article  PubMed  Google Scholar 

  37. Chiumello D, Brioni M. Severe hypoxemia: which strategy to choose. Crit Care. 2016;20:132. https://doi.org/10.1186/s13054-016-1304-7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gattinoni L, Tonetti T, Cressoni M, Cadringher P, Herrmann P, Moerer O, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42:1567–75. https://doi.org/10.1007/s00134-016-4505-2.

    Article  CAS  PubMed  Google Scholar 

  39. Marini JJ, Jaber S. Dynamic predictors of VILI risk: beyond the driving pressure. Intensive Care Med. 2016;42:1597–600. https://doi.org/10.1007/s00134-016-4534-x.

    Article  PubMed  Google Scholar 

  40. Xie Y, Wang Y, Liu K, Li X. Correlation analysis between mechanical power, transforming growth factor-β1, and connective tissue growth factor levels in acute respiratory distress syndrome patients and their clinical significance in pulmonary structural remodeling. Medicine (Baltimore). 2019;98(29):e16531. https://doi.org/10.1097/MD.0000000000016531.

    Article  Google Scholar 

  41. Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957–63. https://doi.org/10.1001/jama.270.24.2957.

    Article  PubMed  Google Scholar 

  42. Duan J, Han X, Bai L, Zhou L, Huang S. Assessment of heart rate, acidosis, consciousness, oxygenation, and respiratory rate to predict noninvasive ventilation failure in hypoxemic patients. Intensive Care Med. 2017;43:192–9. https://doi.org/10.1007/s00134-016-4601-3.

    Article  CAS  PubMed  Google Scholar 

  43. Esquinas AM. Fibrosing interstitial pneumonia: is mechanical ventilation always the final alternative for the intensivist? J Thorac Cardiovasc Surg. 2014;147:1113. https://doi.org/10.1016/j.jtcvs.2013.09.077.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Fabrizio Bigotti, PhD, and Francesca Niutta for revising the final draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Piervincenzi .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Ventilatory mode, basic presssure, volume and flow waveforms_1 (MOV 30802 kb)

Ventilatory mode, basic presssure, volume and flow waveforms_2 (MOV 11819 kb)

Ventilatory mode, basic presssure, volume and flow waveforms_3 (MOV 18342 kb)

Ventilatory mode, basic presssure, volume and flow waveforms_4 (MOV 15689 kb)

Ventilatory mode, basic presssure, volume and flow waveforms_5 (MOV 14039 kb)

Ventilatory mode, basic presssure, volume and flow waveforms_6 (MOV 19727 kb)

Ventilatory mode, basic presssure, volume and flow waveforms: BIPAP Mode_1 (MOV 20894 kb)

Ventilatory mode, basic presssure, volume and flow waveforms: BIPAP Mode_2 (MOV 58798 kb)

Ventilatory mode, basic presssure, volume and flow waveforms: CPAP Mode_1 (MOV 33981 kb)

Ventilatory mode, basic presssure, volume and flow waveforms: CPAP Mode_2 (MOV 78519 kb)

Ventilatory mode, basic presssure, volume and flow waveforms: CPAP Mode_3 (MOV 21043 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piervincenzi, E., Zampini, G., Perrotta, D. (2022). Noninvasive Ventilation: Continuous Positive Air Pressure Ventilation (CPAP) and Pressure Support Ventilation (PSV). In: Esquinas, A.M. (eds) Teaching Pearls in Noninvasive Mechanical Ventilation. Springer, Cham. https://doi.org/10.1007/978-3-030-71298-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71298-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71297-6

  • Online ISBN: 978-3-030-71298-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics