Skip to main content

Testable Hypotheses Relating Complement Pathways to Elevated Risk for Schizophrenia

  • Chapter
  • First Online:
Immuno-Psychiatry

Abstract

Schizophrenia (SZ) is a common, potentially debilitating disorder. Over 70% of risk for SZ at the population level is attributable to genetic factors. Large-scale genome-wide association studies (GWAS) have revealed risk attributable to over 170 genomic loci, with varied effect sizes. Statistically, the most significant risk locus maps to the major histocompatibility complex (MHC) region on chromosome 6 (odds ratio ~1.28). One of the associated MHC loci involved the complement C4 gene. There is population-wide variation in C4 gene copy number, and SZ risk rises with the number of C4 genes that an individual’s genome encodes. C4 is a component of an immunologic defense mechanism that predates antibody-based adaptive immunity. In mammals, complement proteins also participate in neurodevelopment. Based on rodent model studies, it has been proposed that the C4-related risk for SZ could be explained by aberrant synaptic pruning—a developmental process also implicated in SZ risk. We review the synaptic pruning hypothesis and propose additional mechanisms to explain the C4-SZ link, including disruption in classical immunologic processes and changes in human endogenous retroviral sequences associated with C4. The evidence supporting these hypotheses is discussed, and empirical investigations are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gottesman II, Shields J. A polygenic theory of schizophrenia. Proc Natl Acad Sci U S A. 1967;58(1):199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gottesman I. Schizophrenia genesis: the origins of madness. New York: WH Freeman; 1991.

    Google Scholar 

  3. Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–7.

    Article  CAS  Google Scholar 

  4. Sullivan PF. The psychiatric GWAS consortium: big science comes to psychiatry. Neuron. 2010;68(2):182–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pardinas AF, Holmans P, Pocklington AJ, et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet. 2018;50(3):381–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zheng J, Erzurumluoglu AM, Elsworth BL, et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics. 2017;33(2):272–9.

    Article  CAS  PubMed  Google Scholar 

  7. Farrell MS, Werge T, Sklar P, et al. Evaluating historical candidate genes for schizophrenia. Mol Psychiatry. 2015;20(5):555–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miretti MM, Walsh EC, Ke X, et al. A high-resolution linkage-disequilibrium map of the human major histocompatibility complex and first generation of tag single-nucleotide polymorphisms. Am J Hum Genet. 2005;76(4):634–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sekar A, Bialas AR, de Rivera H, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530(7589):177–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bearden CE, Forsyth JK. The many roads to psychosis: recent advances in understanding risk and mechanisms. F1000Res. 2018;7:1883.

    Article  CAS  Google Scholar 

  11. Rudduck C, Beckman L, Franzén G, Jacobsson L, Lindström L. Complement factor C4 in schizophrenia. Hum Hered. 1985;35(4):223–6.

    Article  CAS  PubMed  Google Scholar 

  12. Walport MJ. Complement. First of two parts. N Engl J Med. 2001;344(14):1058–66.

    Article  CAS  PubMed  Google Scholar 

  13. Walport MJ. Complement. Second of two parts. N Engl J Med. 2001;344(15):1140–4.

    Article  CAS  PubMed  Google Scholar 

  14. Greco E, Domenica Guarino M, Ballanti E, Perricone R. The complement system. The novel factors of autoimmune diseases. London: Academic Press; 2019.

    Google Scholar 

  15. Gal P, Dobo J, Zavodszky P, Sim RB. Early complement proteases: C1r, C1s and MASPs. A structural insight into activation and functions. Mol Immunol. 2009;46(14):2745–52.

    Article  CAS  PubMed  Google Scholar 

  16. Hawlisch H, Kohl J. Complement and Toll-like receptors: key regulators of adaptive immune responses. Mol Immunol. 2006;43(1-2):13–21.

    Article  CAS  PubMed  Google Scholar 

  17. Veerhuis R, Nielsen HM, Tenner AJ. Complement in the brain. Mol Immunol. 2011;48(14):1592–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tenner AJ, Stevens B, Woodruff TM. New tricks for an ancient system: physiological and pathological roles of complement in the CNS. Mol Immunol. 2018;102:3–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carroll MC, Belt T, Palsdottir A, Porter RR. Structure and organization of the C4 genes. Philos Trans R Soc Lond Ser B Biol Sci. 1984;306(1129):379–88.

    CAS  Google Scholar 

  20. Kidmose RT, Laursen NS, Dobo J, et al. Structural basis for activation of the complement system by component C4 cleavage. Proc Natl Acad Sci U S A. 2012;109(38):15425–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Blanchong CA, Chung EK, Rupert KL, et al. Genetic, structural and functional diversities of human complement components C4A and C4B and their mouse homologues, Slp and C4. Int Immunopharmacol. 2001;1(3):365–92.

    Article  CAS  PubMed  Google Scholar 

  22. Wu YL, Savelli SL, Yang Y, et al. Sensitive and specific real-time polymerase chain reaction assays to accurately determine copy number variations (CNVs) of human complement C4A, C4B, C4-long, C4-short, and RCCX modules: elucidation of C4 CNVs in 50 consanguineous subjects with defined HLA genotypes. J Immunol. 2007;179(5):3012–25.

    Article  CAS  PubMed  Google Scholar 

  23. Yang Z, Mendoza AR, Welch TR, Zipf WB, Yu CY. Modular variations of the human major histocompatibility complex class III genes for serine/threonine kinase RP, complement component C4, steroid 21-hydroxylase CYP21, and tenascin TNX (the RCCX module). A mechanism for gene deletions and disease associations. J Biol Chem. 1999;274(17):12147–56.

    Article  CAS  PubMed  Google Scholar 

  24. Wu YL, Yang Y, Chung EK, et al. Phenotypes, genotypes and disease susceptibility associated with gene copy number variations: complement C4 CNVs in European American healthy subjects and those with systemic lupus erythematosus. Cytogenet Genome Res. 2008;123(1-4):131–41.

    Article  CAS  PubMed  Google Scholar 

  25. Yih Chen J, Ling Wu Y, Yin Mok M, et al. Effects of complement C4 gene copy number variations, size dichotomy, and C4A deficiency on genetic risk and clinical presentation of systemic lupus erythematosus in east Asian populations. Arthritis Rheumatol. 2016;68(6):1442–53.

    Article  CAS  Google Scholar 

  26. Saxena K, Kitzmiller KJ, Wu YL, et al. Great genotypic and phenotypic diversities associated with copy-number variations of complement C4 and RP-C4-CYP21-TNX (RCCX) modules: a comparison of Asian-Indian and European American populations. Mol Immunol. 2009;46(7):1289–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mougey R. A review of the Chido/Rodgers blood group. Immunohematology. 2010;26(1):30–8.

    Article  CAS  PubMed  Google Scholar 

  28. Giles CM. Antigenic determinants of human C4, Rodgers and Chido. Exp Clin Immunogenet. 1988;5(2–3):99–114.

    CAS  PubMed  Google Scholar 

  29. Nonaka M. Evolution of the complement system. Subcell Biochem. 2014;80:31–43.

    Article  CAS  PubMed  Google Scholar 

  30. Sottrup-Jensen L, Stepanik TM, Kristensen T, et al. Common evolutionary origin of alpha 2-macroglobulin and complement components C3 and C4. Proc Natl Acad Sci U S A. 1985;82(1):9–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nonaka MI, Terado T, Kimura H, Nonaka M. Evolutionary analysis of two complement C4 genes: ancient duplication and conservation during jawed vertebrate evolution. Dev Comp Immunol. 2017;68:1–11.

    Article  CAS  PubMed  Google Scholar 

  32. Cooper MD, Alder MN. The evolution of adaptive immune systems. Cell. 2006;124(4):815–22.

    Article  CAS  PubMed  Google Scholar 

  33. Nawaz S, Schweitzer J, Jahn O, Werner HB. Molecular evolution of myelin basic protein, an abundant structural myelin component. Glia. 2013;61(8):1364–77.

    Article  PubMed  Google Scholar 

  34. Dodds AW, Law SK. The phylogeny and evolution of the thioester bond-containing proteins C3, C4 and alpha 2-macroglobulin. Immunol Rev. 1998;166:15–26.

    Article  CAS  PubMed  Google Scholar 

  35. Reus K, Mayer J, Sauter M, Zischler H, Muller-Lantzsch N, Meese E. HERV-K(OLD): ancestor sequences of the human endogenous retrovirus family HERV-K(HML-2). J Virol. 2001;75(19):8917–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dangel AW, Baker BJ, Mendoza AR, Yu CY. Complement component C4 gene intron 9 as a phylogenetic marker for primates: long terminal repeats of the endogenous retrovirus ERV-K(C4) are a molecular clock of evolution. Immunogenetics. 1995;42(1):41–52.

    Article  CAS  PubMed  Google Scholar 

  37. Yang Y, Chung EK, Zhou B, et al. Diversity in intrinsic strengths of the human complement system: serum C4 protein concentrations correlate with C4 gene size and polygenic variations, hemolytic activities, and body mass index. J Immunol. 2003;171(5):2734–45.

    Article  CAS  PubMed  Google Scholar 

  38. Gogtay N, Giedd JN, Lusk L, et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci U S A. 2004;101(21):8174–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 1997;387(2):167–78.

    Article  CAS  PubMed  Google Scholar 

  40. Giedd JN, Jeffries NO, Blumenthal J, et al. Childhood-onset schizophrenia: progressive brain changes during adolescence. Biol Psychiatry. 1999;46(7):892–8.

    Article  CAS  PubMed  Google Scholar 

  41. Mayilyan KR, Weinberger DR, Sim RB. The complement system in schizophrenia. Drug News Perspect. 2008;21(4):200–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stanley JA, Kipp H, Greisenegger E, et al. Evidence of developmental alterations in cortical and subcortical regions of children with attention-deficit/hyperactivity disorder: a multivoxel in vivo phosphorus 31 spectroscopy study. Arch Gen Psychiatry. 2008;65(12):1419–28.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Prasad KM, Burgess AM, Keshavan MS, Nimgaonkar VL, Stanley JA. Neuropil pruning in early-course schizophrenia: immunological, clinical, and neurocognitive correlates. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016;1(6):528–38.

    PubMed  PubMed Central  Google Scholar 

  44. Glausier JR, Lewis DA. Dendritic spine pathology in schizophrenia. Neuroscience. 2013;251:90–107.

    Article  CAS  PubMed  Google Scholar 

  45. Hoffman RE, McGlashan TH. Neural network models of schizophrenia. Neuroscientist. 2001;7(5):441–54.

    Article  CAS  PubMed  Google Scholar 

  46. Pantelis C, Velakoulis D, McGorry PD, et al. Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet. 2003;361(9354):281–8.

    Article  PubMed  Google Scholar 

  47. Lieberman J, Chakos M, Wu H, et al. Longitudinal study of brain morphology in first episode schizophrenia. Biol Psychiatry. 2001;49(6):487–99.

    Article  CAS  PubMed  Google Scholar 

  48. Prasad K, Sahni SD, Rohm BR, Keshavan MS. Dorsolateral prefrontal cortex morphology and short-term outcome in first-episode schizophrenia. Psychiatr Res Neuroimaging. 2005;140(2):147–55.

    Article  Google Scholar 

  49. Cannon TD, Chung Y, He G, et al. Progressive reduction in cortical thickness as psychosis develops: a multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biol Psychiatry. 2015;77(2):147–57.

    Article  PubMed  Google Scholar 

  50. Bhojraj TS, Prasad KM, Eack SM, Francis AN, Montrose DM, Keshavan MS. Do inter-regional gray-matter volumetric correlations reflect altered functional connectivity in high-risk offspring of schizophrenia patients? Schizophr Res. 2010;118(1-3):62–68.

    Google Scholar 

  51. Bangalore SS, Goradia DD, Nutche J, Diwadkar VA, Prasad KM, Keshavan MS. Untreated illness duration correlates with gray matter loss in first-episode psychoses. Neuroreport. 2009;20(7):729–34.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry. 2003;60(12):1187–92.

    Article  PubMed  Google Scholar 

  53. Riccomagno MM, Kolodkin AL. Sculpting neural circuits by axon and dendrite pruning. Annu Rev Cell Dev Biol. 2015;31:779–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Andjus PR, Zhu L, Cesa R, Carulli D, Strata P. A change in the pattern of activity affects the developmental regression of the Purkinje cell polyinnervation by climbing fibers in the rat cerebellum. Neuroscience. 2003;121(3):563–72.

    Article  CAS  PubMed  Google Scholar 

  55. Schafer DP, Lehrman EK, Kautzman AG, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74(4):691–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Paolicelli RC, Bolasco G, Pagani F, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333(6048):1456–8.

    Article  CAS  PubMed  Google Scholar 

  57. Stevens B, Allen NJ, Vazquez LE, et al. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131(6):1164–78.

    Article  CAS  PubMed  Google Scholar 

  58. Neniskyte U, Gross CT. Errant gardeners: glial-cell-dependent synaptic pruning and neurodevelopmental disorders. Nat Rev Neurosci. 2017;18(11):658–70.

    Article  CAS  PubMed  Google Scholar 

  59. Chung WS, Clarke LE, Wang GX, et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature. 2013;504(7480):394–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bialas AR, Stevens B. TGF-beta signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci. 2013;16(12):1773–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vasek MJ, Garber C, Dorsey D, et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature. 2016;534(7608):538–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jennings C. Developmental neurobiology. Death of a synapse. Nature. 1994;372(6506):498–9.

    Article  CAS  PubMed  Google Scholar 

  63. Manjunatha N, Math SB, Kulkarni GB, Chaturvedi SK. The neuropsychiatric aspects of influenza/swine flu: a selective review. Ind Psychiatry J. 2011;20(2):83–90.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Meyer U. Developmental neuroinflammation and schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;42:20–34.

    Article  CAS  Google Scholar 

  65. Meyer U, Feldon J, Yee BK. A review of the fetal brain cytokine imbalance hypothesis of schizophrenia. Schizophr Bull. 2009;35(5):959–72.

    Article  PubMed  Google Scholar 

  66. Watanabe Y, Someya T, Nawa H. Cytokine hypothesis of schizophrenia pathogenesis: evidence from human studies and animal models. Psychiatry Clin Neurosci. 2010;64(3):217–30.

    Article  CAS  PubMed  Google Scholar 

  67. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry. 2011;70(7):663–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stolp HB. Neuropoietic cytokines in normal brain development and neurodevelopmental disorders. Mol Cell Neurosci. 2013;53:63–8.

    Article  CAS  PubMed  Google Scholar 

  69. Volanakis JE. Transcriptional regulation of complement genes. Annu Rev Immunol. 1995;13:277–305.

    Article  CAS  PubMed  Google Scholar 

  70. Colten HR, Dowton SB. Regulation of complement gene expression. Biochem Soc Symp. 1986;51:37–46.

    CAS  PubMed  Google Scholar 

  71. Veerhuis R, Janssen I, De Groot CJ, Van Muiswinkel FL, Hack CE, Eikelenboom P. Cytokines associated with amyloid plaques in Alzheimer's disease brain stimulate human glial and neuronal cell cultures to secrete early complement proteins, but not C1-inhibitor. Exp Neurol. 1999;160(1):289–99.

    Article  CAS  PubMed  Google Scholar 

  72. Yasojima K, Schwab C, McGeer EG, McGeer PL. Up-regulated production and activation of the complement system in Alzheimer’s disease brain. Am J Pathol. 1999;154(3):927–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Broecker F, Horton R, Heinrich J, et al. The intron-enriched HERV-K(HML-10) family suppresses apoptosis, an indicator of malignant transformation. Mob DNA. 2016;7:25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Gogvadze E, Buzdin A. Retroelements and their impact on genome evolution and functioning. Cell Mol Life Sci. 2009;66(23):3727–42.

    Article  CAS  PubMed  Google Scholar 

  75. Bannert N, Kurth R. The evolutionary dynamics of human endogenous retroviral families. Annu Rev Genomics Hum Genet. 2006;7:149–73.

    Article  CAS  PubMed  Google Scholar 

  76. Mack M, Bender K, Schneider PM. Detection of retroviral antisense transcripts and promoter activity of the HERV-K(C4) insertion in the MHC class III region. Immunogenetics. 2004;56(5):321–32. https://doi.org/10.1007/s00251-004-0705-y. Epub 2004 Aug 12.

    Article  CAS  PubMed  Google Scholar 

  77. Benros ME, Pedersen MG, Rasmussen H, Eaton WW, Nordentoft M, Mortensen PB. A nationwide study on the risk of autoimmune diseases in individuals with a personal or a family history of schizophrenia and related psychosis. Am J Psychiatry. 2014;171(2):218–26.

    Article  PubMed  Google Scholar 

  78. Benros ME, Eaton WW, Mortensen PB. The epidemiologic evidence linking autoimmune diseases and psychosis. Biol Psychiatry. 2014;75(4):300–6.

    Article  PubMed  Google Scholar 

  79. Kohler-Forsberg O, Petersen L, Gasse C, et al. A nationwide study in Denmark of the association between treated infections and the subsequent risk of treated mental disorders in children and adolescents. JAMA Psychiatry. 2019;76:271–9.

    Article  PubMed  Google Scholar 

  80. Yang Y, Chung EK, Zhou B, et al. The intricate role of complement component C4 in human systemic lupus erythematosus. Curr Dir Autoimmun. 2004;7:98–132.

    Article  CAS  PubMed  Google Scholar 

  81. Blanchong CA, Zhou B, Rupert KL, et al. Deficiencies of human complement component C4A and C4B and heterozygosity in length variants of RP-C4-CYP21-TNX (RCCX) modules in Caucasians. The load of RCCX genetic diversity on major histocompatibility complex-associated disease. J Exp Med. 2000;191(12):2183–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liesmaa I, Paakkanen R, Järvinen A, Valtonen V, Lokki ML. Clinical features of patients with homozygous complement C4A or C4B deficiency. PLoS One. 2018;13(6):e0199305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishwajit Nimgaonkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McClain, L. et al. (2021). Testable Hypotheses Relating Complement Pathways to Elevated Risk for Schizophrenia. In: Berk, M., Leboyer, M., Sommer, I.E. (eds) Immuno-Psychiatry. Springer, Cham. https://doi.org/10.1007/978-3-030-71229-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71229-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71228-0

  • Online ISBN: 978-3-030-71229-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics