Skip to main content

Neuroanatomy and Neurophysiology

  • Living reference work entry
  • First Online:
Female Genitourinary and Pelvic Floor Reconstruction
  • 34 Accesses

Abstract

The bladder has only two simple tasks, to store and empty urine. However, the regulation of these tasks requires strong coordination of afferent and communication between the bladder and the brain, known as the spino-bulbo-spinal reflex arc. As more urine is stored in the bladder, the urothelium is stretched, and afferent neurons are activated. For urinary storage and emptying, information is carried through the pelvic and pundendal nerves to the sacral spinal cord and then to the periaqueductal gray region in the midbrain. Input from the cortex initially shifts the bladder to storage. The sympathetic nervous system is stimulated through the hypogastric nerve, and the detrusor muscle relaxes and the bladder outlet tightens to facilitate storage of urine and avoid leakage per urethra. Once a volume threshold is met, the periaqueductal gray region releases inhibition of the pontine micturition complex. Bladder voiding is now initiated by parasympathetic stimulation of the detrusor through the pelvic nerves. Coordination between this change between storage and voiding can be disrupted by neurologic diseases or injuries to the central or peripheral nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Merchant SH, Vial F, Leodori G, Fahn S, Pullman SL, Hallett M. A novel exaggerated “spino-bulbo-spinal like” reflex of lower brainstem origin. Parkinsonism Relat Disord. 2019;61:34–8.

    Article  Google Scholar 

  2. Lewis SA. Everything you wanted to know about the bladder epithelium but were afraid to ask. Am J Physiol Renal Physiol. 2000;278(6):F867–74.

    Article  CAS  Google Scholar 

  3. Khandelwal P, Abraham SN, Apodaca G. Cell biology and physiology of the uroepithelium. Am J Physiol Renal Physiol. 2009;297(6):F1477–501.

    Article  CAS  Google Scholar 

  4. Birder LA, Kanai AJ, Cruz F, Moore K, Fry CH. Is the urothelium intelligent? Neurourol Urodyn. 2010;29(4):598–602.

    Article  CAS  Google Scholar 

  5. Hauser PJ, Dozmorov MG, Bane BL, Slobodov G, Culkin DJ, Hurst RE. Abnormal expression of differentiation related proteins and proteoglycan core proteins in the urothelium of patients with interstitial cystitis. J Urol. 2008;179(2):764–9.

    Article  CAS  Google Scholar 

  6. Cvach K, Rosamilia A. Review of intravesical therapies for bladder pain syndrome/interstitial cystitis. Transl Androl Urol. 2015;4(6):629–37.

    Google Scholar 

  7. Arrighi S. The urothelium: anatomy, review of the literature, perspectives for veterinary medicine. Ann Anat. 2015;198:73–82.

    Article  CAS  Google Scholar 

  8. Birder LA, Ruggieri M, Takeda M, van Koeveringe G, Veltkamp S, Korstanje C, et al. How does the urothelium affect bladder function in health and disease? ICI-RS 2011. Neurourol Urodyn. 2012;31(3):293–9.

    Article  CAS  Google Scholar 

  9. Everaerts W, Vriens J, Owsianik G, Appendino G, Voets T, De Ridder D, et al. Functional characterization of transient receptor potential channels in mouse urothelial cells. Am J Physiol Renal Physiol. 2010;298(3):F692–701.

    Article  CAS  Google Scholar 

  10. Gillespie JI, Markerink-van Ittersum M, de Vente J. cGMP-generating cells in the bladder wall: identification of distinct networks of interstitial cells. BJU Int. 2004;94(7):1114–24.

    Article  Google Scholar 

  11. Neuhaus J, Gonsior A, Cheng S, Stolzenburg JU, Berger FP. Mechanosensitivity is a characteristic feature of cultured suburothelial interstitial cells of the human bladder. Int J Mol Sci. 2020;21(15):5474.

    Article  CAS  Google Scholar 

  12. Uehling DT, Johnson DB, Hopkins WJ. The urinary tract response to entry of pathogens. World J Urol. 1999;17(6):351–8.

    Article  CAS  Google Scholar 

  13. Yeh J, Lu M, Alvarez-Lugo L, Chai TC. Bladder urothelial BK channel activity is a critical mediator for innate immune response in urinary tract infection pathogenesis. Am J Physiol Renal Physiol. 2019;316(4):F617–F23.

    Article  CAS  Google Scholar 

  14. Acevedo-Alvarez M, Yeh J, Alvarez-Lugo L, Lu M, Sukumar N, Hill WG, et al. Mouse urothelial genes associated with voiding behavior changes after ovariectomy and bladder lipopolysaccharide exposure. Neurourol Urodyn. 2018;37(8):2398–405.

    Article  CAS  Google Scholar 

  15. Shah G, Zhang G, Chen F, Cao Y, Kalyanaraman B, See WA. The dose-response relationship of bacillus Calmette-Guerin and urothelial carcinoma cell biology. J Urol. 2016;195(6):1903–10.

    Article  Google Scholar 

  16. Saito R, Smith CC, Utsumi T, Bixby LM, Kardos J, Wobker SE, et al. Molecular subtype-specific immunocompetent models of high-grade urothelial carcinoma reveal differential neoantigen expression and response to immunotherapy. Cancer Res. 2018;78(14):3954–68.

    Article  CAS  Google Scholar 

  17. Lewis DA, Brown R, Williams J, White P, Jacobson SK, Marchesi JR, et al. The human urinary microbiome; bacterial DNA in voided urine of asymptomatic adults. Front Cell Infect Microbiol. 2013;3:41.

    Article  CAS  Google Scholar 

  18. Josephs-Spaulding J, Krogh TJ, Rettig HC, Lyng M, Chkonia M, Waschina S, et al. Recurrent urinary tract infections: unraveling the complicated environment of uncomplicated rUTIs. Front Cell Infect Microbiol. 2021;11:562525.

    Article  CAS  Google Scholar 

  19. Govender Y, Gabriel I, Minassian V, Fichorova R. The current evidence on the association between the urinary microbiome and urinary incontinence in women. Front Cell Infect Microbiol. 2019;9:133.

    Article  CAS  Google Scholar 

  20. Wu C, Sui GP, Fry CH. Purinergic regulation of guinea pig suburothelial myofibroblasts. J Physiol. 2004;559(Pt 1):231–43.

    Article  CAS  Google Scholar 

  21. Kanai A, Fry C, Hanna-Mitchell A, Birder L, Zabbarova I, Bijos D, et al. Do we understand any more about bladder interstitial cells?-ICI-RS 2013. Neurourol Urodyn. 2014;33(5):573–6.

    Article  Google Scholar 

  22. Kanai A, Andersson KE. Bladder afferent signaling: recent findings. J Urol. 2010;183(4):1288–95.

    Article  CAS  Google Scholar 

  23. Andersson KE, McCloskey KD. Lamina propria: the functional center of the bladder? Neurourol Urodyn. 2014;33(1):9–16.

    Article  Google Scholar 

  24. Chun SY, Lim GJ, Kwon TG, Kwak EK, Kim BW, Atala A, et al. Identification and characterization of bioactive factors in bladder submucosa matrix. Biomaterials. 2007;28(29):4251–6.

    Article  CAS  Google Scholar 

  25. Liu Y, Bharadwaj S, Lee SJ, Atala A, Zhang Y. Optimization of a natural collagen scaffold to aid cell-matrix penetration for urologic tissue engineering. Biomaterials. 2009;30(23-24):3865–73.

    Article  CAS  Google Scholar 

  26. Davis NF, Mooney R, Piterina AV, Callanan A, McGuire BB, Flood HD, et al. Construction and evaluation of urinary bladder bioreactor for urologic tissue-engineering purposes. Urology. 2011;78(4):954–60.

    Article  Google Scholar 

  27. Shaikh FM, O’Brien TP, Callanan A, Kavanagh EG, Burke PE, Grace PA, et al. New pulsatile hydrostatic pressure bioreactor for vascular tissue-engineered constructs. Artif Organs. 2010;34(2):153–8.

    Article  Google Scholar 

  28. Liu HT, Shie JH, Chen SH, Wang YS, Kuo HC. Differences in mast cell infiltration, E-cadherin, and zonula occludens-1 expression between patients with overactive bladder and interstitial cystitis/bladder pain syndrome. Urology. 2012;80(1):225 e13–8.

    Article  Google Scholar 

  29. Sant GR, Kempuraj D, Marchand JE, Theoharides TC. The mast cell in interstitial cystitis: role in pathophysiology and pathogenesis. Urology. 2007;69(4 Suppl):34–40.

    Article  Google Scholar 

  30. Kullmann FA, McDonnell BM, Wolf-Johnston AS, Lynn AM, Giglio D, Getchell SE, et al. Inflammation and tissue remodeling in the bladder and urethra in feline interstitial cystitis. Front Syst Neurosci. 2018;12:13.

    Article  Google Scholar 

  31. Andersson KE, Arner A. Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev. 2004;84(3):935–86.

    Article  CAS  Google Scholar 

  32. Stolzenburg JU, Schwalenberg T, Do M, Dorschner W, Salomon FV, Jurina K, et al. Is the male dog comparable to human? A histological study of the muscle systems of the lower urinary tract. Anat Histol Embryol. 2002;31(4):198–205.

    Article  Google Scholar 

  33. Zhou F, Li H, Zhou C, Lv H, Ma Y, Wang Y, et al. Structural and functional changes in gap junctional intercellular communication in a rat model of overactive bladder syndrome induced by partial bladder outlet obstruction. Exp Ther Med. 2016;11(6):2139–46.

    Article  Google Scholar 

  34. Phe V, Behr-Roussel D, Oger-Roussel S, Roupret M, Chartier-Kastler E, Lebret T, et al. Involvement of connexins 43 and 45 in functional mechanism of human detrusor overactivity in neurogenic bladder. Urology. 2013;81(5):1108 e1–6.

    Article  Google Scholar 

  35. Hypolite JA, Malykhina AP. Regulation of urinary bladder function by protein kinase C in physiology and pathophysiology. BMC Urol. 2015;15:110.

    Article  Google Scholar 

  36. Fry CH, Vahabi B. The role of the mucosa in normal and abnormal bladder function. Basic Clin Pharmacol Toxicol. 2016;119(Suppl 3):57–62.

    Article  CAS  Google Scholar 

  37. Kim SJ, Kim J, Na YG, Kim KH. Irreversible bladder remodeling induced by fibrosis. Int Neurourol J. 2021;25(Suppl 1):S3–7.

    Article  Google Scholar 

  38. Rosenbloom J, Koo H, Howard PS, Mecham R, Macarak EJ. Elastic fibers and their role in bladder extracellular matrix. Adv Exp Med Biol. 1995;385:161–72; discussion 79–84.

    Article  CAS  Google Scholar 

  39. Aitken KJ, Bagli DJ. The bladder extracellular matrix. Part I: architecture, development and disease. Nat Rev Urol. 2009;6(11):596–611.

    Article  CAS  Google Scholar 

  40. Inaba M, Ukimura O, Yaoi T, Kawauchi A, Fushiki S, Miki T. Upregulation of heme oxygenase and collagen type III in the rat bladder after partial bladder outlet obstruction. Urol Int. 2007;78(3):270–7.

    Article  CAS  Google Scholar 

  41. Bellucci CHS, Ribeiro WO, Hemerly TS, de Bessa J Jr, Antunes AA, Leite KRM, et al. Increased detrusor collagen is associated with detrusor overactivity and decreased bladder compliance in men with benign prostatic obstruction. Prostate Int. 2017;5(2):70–4.

    Article  Google Scholar 

  42. Kwon J, Lee EJ, Cho HJ, Jang JA, Han MS, Kwak E, et al. Antifibrosis treatment by inhibition of VEGF, FGF, and PDGF receptors improves bladder wall remodeling and detrusor overactivity in association with modulation of C-fiber afferent activity in mice with spinal cord injury. Neurourol Urodyn. 2021;40(6):1460–9.

    Article  CAS  Google Scholar 

  43. Landau EH, Jayanthi VR, Churchill BM, Shapiro E, Gilmour RF, Khoury AE, et al. Loss of elasticity in dysfunctional bladders: urodynamic and histochemical correlation. J Urol. 1994;152(2 Pt 2):702–5.

    Article  CAS  Google Scholar 

  44. Peyronnet B, Richard C, Bendavid C, Naudet F, Hascoet J, Brochard C, et al. Urinary TIMP-2 and MMP-2 are significantly associated with poor bladder compliance in adult patients with spina bifida. Neurourol Urodyn. 2019;38(8):2151–8.

    Article  CAS  Google Scholar 

  45. Clemens JQ. Basic bladder neurophysiology. Urol Clin North Am. 2010;37(4):487–94.

    Article  Google Scholar 

  46. Michel MC, Vrydag W. Alpha1-, alpha2- and beta-adrenoceptors in the urinary bladder, urethra and prostate. Br J Pharmacol. 2006;147(Suppl 2):S88–119.

    Article  CAS  Google Scholar 

  47. Scofield MA, Liu F, Abel PW, Jeffries WB. Quantification of steady state expression of mRNA for alpha-1 adrenergic receptor subtypes using reverse transcription and a competitive polymerase chain reaction. J Pharmacol Exp Ther. 1995;275(2):1035–42.

    CAS  Google Scholar 

  48. Yono M, Foster HE Jr, Shin D, Takahashi W, Pouresmail M, Latifpour J. Doxazosin-induced up-regulation of alpha 1A-adrenoceptor mRNA in the rat lower urinary tract. Can J Physiol Pharmacol. 2004;82(10):872–8.

    Article  CAS  Google Scholar 

  49. Walden PD, Durkin MM, Lepor H, Wetzel JM, Gluchowski C, Gustafson EL. Localization of mRNA and receptor binding sites for the alpha 1a-adrenoceptor subtype in the rat, monkey and human urinary bladder and prostate. J Urol. 1997;157(3):1032–8.

    Article  CAS  Google Scholar 

  50. Schwinn DA, Roehrborn CG. Alpha1-adrenoceptor subtypes and lower urinary tract symptoms. Int J Urol. 2008;15(3):193–9.

    Article  CAS  Google Scholar 

  51. Swierzewski SJ 3rd, Gormley EA, Belville WD, Sweetser PM, Wan J, McGuire EJ. The effect of terazosin on bladder function in the spinal cord injured patient. J Urol. 1994;151(4):951–4.

    Article  Google Scholar 

  52. Nomiya M, Yamaguchi O. A quantitative analysis of mRNA expression of alpha 1 and beta-adrenoceptor subtypes and their functional roles in human normal and obstructed bladders. J Urol. 2003;170(2 Pt 1):649–53.

    Article  CAS  Google Scholar 

  53. Yamazaki Y, Takeda H, Akahane M, Igawa Y, Nishizawa O, Ajisawa Y. Species differences in the distribution of beta-adrenoceptor subtypes in bladder smooth muscle. Br J Pharmacol. 1998;124(3):593–9.

    Article  CAS  Google Scholar 

  54. Jiang YH, Kuo HC. Urothelial barrier deficits, suburothelial inflammation and altered sensory protein expression in detrusor underactivity. J Urol. 2017;197(1):197–203.

    Article  Google Scholar 

  55. Yamanishi T, Chapple CR, Yasuda K, Chess-Williams R. The role of M(2)-muscarinic receptors in mediating contraction of the pig urinary bladder in vitro. Br J Pharmacol. 2000;131(7):1482–8.

    Article  CAS  Google Scholar 

  56. Hegde SS. Muscarinic receptors in the bladder: from basic research to therapeutics. Br J Pharmacol. 2006;147(Suppl 2):S80–7.

    Article  CAS  Google Scholar 

  57. Schneider T, Hein P, Michel MC. Signal transduction underlying carbachol-induced contraction of rat urinary bladder. I. Phospholipases and Ca2+ sources. J Pharmacol Exp Ther. 2004;308(1):47–53.

    Article  CAS  Google Scholar 

  58. Callegari E, Malhotra B, Bungay PJ, Webster R, Fenner KS, Kempshall S, et al. A comprehensive non-clinical evaluation of the CNS penetration potential of antimuscarinic agents for the treatment of overactive bladder. Br J Clin Pharmacol. 2011;72(2):235–46.

    Article  CAS  Google Scholar 

  59. Vanneste M, Segal A, Voets T, Everaerts W. Transient receptor potential channels in sensory mechanisms of the lower urinary tract. Nat Rev Urol. 2021;18(3):139–59.

    Article  Google Scholar 

  60. Munoz A, Yazdi IK, Tang X, Rivera C, Taghipour N, Grossman RG, et al. Localized inhibition of P2X7R at the spinal cord injury site improves neurogenic bladder dysfunction by decreasing urothelial P2X3R expression in rats. Life Sci. 2017;171:60–7.

    Article  CAS  Google Scholar 

  61. Cockayne DA, Dunn PM, Zhong Y, Rong W, Hamilton SG, Knight GE, et al. P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP. J Physiol. 2005;567(Pt 2):621–39.

    Article  CAS  Google Scholar 

  62. Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y, Novakovic S, et al. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature. 2000;407(6807):1011–5.

    Article  CAS  Google Scholar 

  63. Davenport AJ, Neagoe I, Brauer N, Koch M, Rotgeri A, Nagel J, et al. Eliapixant is a selective P2X3 receptor antagonist for the treatment of disorders associated with hypersensitive nerve fibers. Sci Rep. 2021;11(1):19877.

    Article  CAS  Google Scholar 

  64. Slobodov G, Feloney M, Gran C, Kyker KD, Hurst RE, Culkin DJ. Abnormal expression of molecular markers for bladder impermeability and differentiation in the urothelium of patients with interstitial cystitis. J Urol. 2004;171(4):1554–8.

    Article  CAS  Google Scholar 

  65. Cho KJ, Koh JS, Choi J, Kim JC. Changes in adenosine triphosphate and nitric oxide in the urothelium of patients with benign prostatic hyperplasia and detrusor underactivity. J Urol. 2017;198(6):1392–6.

    Article  CAS  Google Scholar 

  66. He W, Xiang H, Liu D, Liu J, Li M, Wang Q, et al. Changes in the expression and function of the PDE5 pathway in the obstructed urinary bladder. J Cell Mol Med. 2020;24(22):13181–95.

    Article  CAS  Google Scholar 

  67. Porst H, McVary KT, Montorsi F, Sutherland P, Elion-Mboussa A, Wolka AM, et al. Effects of once-daily tadalafil on erectile function in men with erectile dysfunction and signs and symptoms of benign prostatic hyperplasia. Eur Urol. 2009;56(4):727–35.

    Article  CAS  Google Scholar 

  68. Fernandez-Carvajal A, Gonzalez-Muniz R, Fernandez-Ballester G, Ferrer-Montiel A. Investigational drugs in early phase clinical trials targeting thermotransient receptor potential (thermoTRP) channels. Expert Opin Investig Drugs. 2020;29(11):1209–22.

    Article  CAS  Google Scholar 

  69. Lashinger ES, Steiginga MS, Hieble JP, Leon LA, Gardner SD, Nagilla R, et al. AMTB, a TRPM8 channel blocker: evidence in rats for activity in overactive bladder and painful bladder syndrome. Am J Physiol Renal Physiol. 2008;295(3):F803–10.

    Article  CAS  Google Scholar 

  70. Skibsbye L, Poulet C, Diness JG, Bentzen BH, Yuan L, Kappert U, et al. Small-conductance calcium-activated potassium (SK) channels contribute to action potential repolarization in human atria. Cardiovasc Res. 2014;103(1):156–67.

    Article  CAS  Google Scholar 

  71. Kitta T, Kanno Y, Chiba H, Higuchi M, Ouchi M, Togo M, et al. Benefits and limitations of animal models in partial bladder outlet obstruction for translational research. Int J Urol. 2018;25(1):36–44.

    Article  Google Scholar 

  72. Shen JD, Chen SJ, Chen HY, Chiu KY, Chen YH, Chen WC. Review of animal models to study urinary bladder function. Biology (Basel). 2021;10(12):1316.

    CAS  Google Scholar 

  73. de Groat WC, Yoshimura N. Afferent nerve regulation of bladder function in health and disease. Handb Exp Pharmacol. 2009;194:91–138.

    Article  Google Scholar 

  74. Morgan C, deGroat WC, Nadelhaft I. The spinal distribution of sympathetic preganglionic and visceral primary afferent neurons that send axons into the hypogastric nerves of the cat. J Comp Neurol. 1986;243(1):23–40.

    Article  CAS  Google Scholar 

  75. Shafik A, el-Sherif M, Youssef A, Olfat ES. Surgical anatomy of the pudendal nerve and its clinical implications. Clin Anat. 1995;8(2):110–5.

    Article  CAS  Google Scholar 

  76. Yoshimura N, Erdman SL, Snider MW, de Groat WC. Effects of spinal cord injury on neurofilament immunoreactivity and capsaicin sensitivity in rat dorsal root ganglion neurons innervating the urinary bladder. Neuroscience. 1998;83(2):633–43.

    Article  CAS  Google Scholar 

  77. Sengupta JN. Visceral pain: the neurophysiological mechanism. Handb Exp Pharmacol. 2009;194:31–74.

    Article  CAS  Google Scholar 

  78. Zagorodnyuk VP, Costa M, Brookes SJ. Major classes of sensory neurons to the urinary bladder. Auton Neurosci. 2006;126–127:390–7.

    Article  Google Scholar 

  79. Sengupta JN, Gebhart GF. Mechanosensitive properties of pelvic nerve afferent fibers innervating the urinary bladder of the rat. J Neurophysiol. 1994;72(5):2420–30.

    Article  CAS  Google Scholar 

  80. Habler HJ, Janig W, Koltzenburg M. Activation of unmyelinated afferent fibres by mechanical stimuli and inflammation of the urinary bladder in the cat. J Physiol. 1990;425:545–62.

    Article  CAS  Google Scholar 

  81. Juszczak K, Ziomber A, Thor PJ. Effect of partial and complete blockade of vanilloid (TRPV1-6) and ankyrin (TRPA1) transient receptor potential ion channels on urinary bladder motor activity in an experimental hyperosmolar overactive bladder rat model. J Physiol Pharmacol. 2011;62(3):321–6.

    CAS  Google Scholar 

  82. Baron R, Hans G, Dickenson AH. Peripheral input and its importance for central sensitization. Ann Neurol. 2013;74(5):630–6.

    Article  Google Scholar 

  83. Aurore V, Rothlisberger R, Boemke N, Hlushchuk R, Bangerter H, Bergmann M, et al. Anatomy of the female pelvic nerves: a macroscopic study of the hypogastric plexus and their relations and variations. J Anat. 2020;237(3):487–94.

    Google Scholar 

  84. Marcinowski F. Bronislaw Onuf-Onufrowicz (1863–1928). J Neurol. 2019;266(1):281–2.

    Article  Google Scholar 

  85. Rogers MJ, Shen B, Reese JN, Xiao Z, Wang J, Lee A, et al. Role of glycine in nociceptive and non-nociceptive bladder reflexes and pudendal afferent inhibition of these reflexes in cats. Neurourol Urodyn. 2016;35(7):798–804.

    Article  CAS  Google Scholar 

  86. Fowler CJ. Integrated control of lower urinary tract--clinical perspective. Br J Pharmacol. 2006;147(Suppl 2):S14–24.

    Article  CAS  Google Scholar 

  87. D’Amico SC, Schuster IP, Collins WF 3rd. Quantification of external urethral sphincter and bladder activity during micturition in the intact and spinally transected adult rat. Exp Neurol. 2011;228(1):59–68.

    Article  Google Scholar 

  88. Jiang HH, Salcedo LB, Song B, Damaser MS. Pelvic floor muscles and the external urethral sphincter have different responses to applied bladder pressure during continence. Urology. 2010;75(6):1515 e1–7.

    Article  Google Scholar 

  89. Oliveira R, Coelho A, Franquinho F, Sousa MM, Cruz F, Cruz CD. Effects of early intravesical administration of resiniferatoxin to spinal cord-injured rats in neurogenic detrusor overactivity. Neurourol Urodyn. 2019;38(6):1540–50.

    Article  CAS  Google Scholar 

  90. Payne CK, Mosbaugh PG, Forrest JB, Evans RJ, Whitmore KE, Antoci JP, et al. Intravesical resiniferatoxin for the treatment of interstitial cystitis: a randomized, double-blind, placebo controlled trial. J Urol. 2005;173(5):1590–4.

    Article  CAS  Google Scholar 

  91. van Ophoven A, Engelberg S, Lilley H, Sievert KD. Systematic literature review and meta-analysis of sacral neuromodulation (SNM) in patients with neurogenic lower urinary tract dysfunction (nLUTD): over 20 years’ experience and future directions. Adv Ther. 2021;38(4):1987–2006.

    Article  Google Scholar 

  92. Wang M, Jian Z, Ma Y, Jin X, Li H, Wang K. Percutaneous tibial nerve stimulation for overactive bladder syndrome: a systematic review and meta-analysis. Int Urogynecol J. 2020;31(12):2457–71.

    Article  Google Scholar 

  93. Fujihara A, Ukimura O, Iwata T, Miki T. Neuroselective measure of the current perception threshold of A-delta and C-fiber afferents in the lower urinary tract. Int J Urol. 2011;18(5):341–9.

    Article  Google Scholar 

  94. Stoffel JT. Detrusor sphincter dyssynergia: a review of physiology, diagnosis, and treatment strategies. Transl Androl Urol. 2016;5(1):127–35.

    Google Scholar 

  95. Castro-Diaz D, Taracena Lafuente JM. Detrusor-sphincter dyssynergia. Int J Clin Pract Suppl. 2006;151:17–21.

    Article  Google Scholar 

  96. Miyazato M, Sugaya K, Nishijima S, Ashitomi K, Hatano T, Ogawa Y. Inhibitory effect of intrathecal glycine on the micturition reflex in normal and spinal cord injury rats. Exp Neurol. 2003;183(1):232–40.

    Article  CAS  Google Scholar 

  97. Miyazato M, Sugaya K, Nishijima S, Ashitomi K, Ohyama C, Ogawa Y. Rectal distention inhibits bladder activity via glycinergic and GABAergic mechanisms in rats. J Urol. 2004;171(3):1353–6.

    Article  Google Scholar 

  98. Miyazato M, Sugaya K, Saito S, Chancellor MB, Goins WF, Goss JR, et al. Suppression of detrusor-sphincter dyssynergia by herpes simplex virus vector mediated gene delivery of glutamic acid decarboxylase in spinal cord injured rats. J Urol. 2010;184(3):1204–10.

    Article  CAS  Google Scholar 

  99. Griffiths D, Tadic SD. Bladder control, urgency, and urge incontinence: evidence from functional brain imaging. Neurourol Urodyn. 2008;27(6):466–74.

    Article  Google Scholar 

  100. Ding YQ, Zheng HX, Gong LW, Lu Y, Zhao H, Qin BZ. Direct projections from the lumbosacral spinal cord to Barrington’s nucleus in the rat: a special reference to micturition reflex. J Comp Neurol. 1997;389(1):149–60.

    Article  CAS  Google Scholar 

  101. Meriaux C, Hohnen R, Schipper S, Zare A, Jahanshahi A, Birder LA, et al. Neuronal activation in the periaqueductal gray matter upon electrical stimulation of the bladder. Front Cell Neurosci. 2018;12:133.

    Article  Google Scholar 

  102. An X, Bandler R, Ongur D, Price JL. Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys. J Comp Neurol. 1998;401(4):455–79.

    Article  CAS  Google Scholar 

  103. Griffiths DJ, Tadic SD, Schaefer W, Resnick NM. Cerebral control of the lower urinary tract: how age-related changes might predispose to urge incontinence. NeuroImage. 2009;47(3):981–6.

    Article  Google Scholar 

  104. Andrew J, Nathan PW. Lesions on the anterior frontal lobes and disturbances of micturition and defaecation. Brain. 1964;87:233–62.

    Article  CAS  Google Scholar 

  105. Sakakibara R, Hattori T, Yasuda K, Yamanishi T. Micturitional disturbance after acute hemispheric stroke: analysis of the lesion site by CT and MRI. J Neurol Sci. 1996;137(1):47–56.

    Article  CAS  Google Scholar 

  106. Stoffel JT, Morgan D, Dunn R, Hsu Y, Fenner D, Delancey J, et al. Urinary incontinence after stress incontinence surgery: a risk factor for depression. Urology. 2009;73(1):41–6.

    Article  Google Scholar 

  107. Zhang FF, Peng W, Sweeney JA, Jia ZY, Gong QY. Brain structure alterations in depression: psychoradiological evidence. CNS Neurosci Ther. 2018;24(11):994–1003.

    Article  Google Scholar 

  108. Pang D, Liao L. Abnormal functional connectivity within the prefrontal cortex in interstitial cystitis/bladder pain syndrome (IC/BPS): a pilot study using resting state functional near-infrared spectroscopy (rs-fNIRS). Neurourol Urodyn. 2021;40(6):1634–42.

    Article  Google Scholar 

  109. Weissbart SJ, Bhavsar R, Rao H, Wein AJ, Detre JA, Arya LA, et al. Specific changes in brain activity during urgency in women with overactive bladder after successful sacral neuromodulation: a functional magnetic resonance imaging study. J Urol. 2018;200(2):382–8.

    Article  Google Scholar 

  110. Hyder F, Phelps EA, Wiggins CJ, Labar KS, Blamire AM, Shulman RG. “Willed action”: a functional MRI study of the human prefrontal cortex during a sensorimotor task. Proc Natl Acad Sci U S A. 1997;94(13):6989–94.

    Article  CAS  Google Scholar 

  111. Boes AD, Fischer D, Geerling JC, Bruss J, Saper CB, Fox MD. Connectivity of sleep- and wake-promoting regions of the human hypothalamus observed during resting wakefulness. Sleep. 2018;41(9):zsy108.

    Article  Google Scholar 

  112. Morrison JF. The discovery of the pontine micturition centre by F. J. F. Barrington. Exp Physiol. 2008;93(6):742–5.

    Article  Google Scholar 

  113. Verstegen AMJ, Vanderhorst V, Gray PA, Zeidel ML, Geerling JC. Barrington’s nucleus: neuroanatomic landscape of the mouse “pontine micturition center”. J Comp Neurol. 2017;525(10):2287–309.

    Article  CAS  Google Scholar 

  114. Filbin MT. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci. 2003;4(9):703–13.

    Article  CAS  Google Scholar 

  115. Tso D, McKinnon RD. Cell replacement therapy for central nervous system diseases. Neural Regen Res. 2015;10(9):1356–8.

    Article  Google Scholar 

  116. Smith JA, Nicaise AM, Ionescu RB, Hamel R, Peruzzotti-Jametti L, Pluchino S. Stem cell therapies for progressive multiple sclerosis. Front Cell Dev Biol. 2021;9:696434.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Stoffel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Stoffel, J.T. (2022). Neuroanatomy and Neurophysiology. In: Martins, F.E., Holm, H.V., Sandhu, J., McCammon, K.A. (eds) Female Genitourinary and Pelvic Floor Reconstruction. Springer, Cham. https://doi.org/10.1007/978-3-030-71112-2_3-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71112-2_3-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71112-2

  • Online ISBN: 978-3-030-71112-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics