Skip to main content

Biopolymers/Ceramic-Based Nanocomposite Scaffolds for Drug Delivery in Bone Tissue Engineering

  • Chapter
  • First Online:
Polymeric and Natural Composites

Part of the book series: Advances in Material Research and Technology ((AMRT))

  • 1089 Accesses

Abstract

Joint repair and reconstructive bone surgeries are growing worldwide. Self-healing of bone is constrained, which entails external stimuli to bolster bone repair and rejuvenation. While conventional approaches (autografts, allografts, or xenografts) have been increasingly utilized to repair bone defects, they all have corresponding drawbacks, thus minimizing their clinical applications. Bone tissue engineering (BTE) is a fascinating approach encompassing bone biology and engineering concepts to combat the flaws associated with grafting, as mentioned above. A variety of biomaterials such as biopolymers (natural and synthetic) and ceramics as scaffolds has been exploited to fabricate the ideal bone constructs using conventional and advanced techniques. Scaffolds loaded with appropriate drugs, including growth factors, bone remodeling molecules, phytochemicals, and other regulatory molecules for sustained and site-targeted delivery, can promote functional bone tissues. Hence, this chapter presents a distinct variety of biopolymer-ceramic-based nanocomposite scaffolds for drug delivery in BTE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three dimensional

Alg:

Alginate

ALP:

Alkaline phosphatase

BG:

Bioactive glass/bioglass

BMP:

Bone morphogenetic protein

BMSCs:

Bone marrow stromal cells

BSA:

Bovine serum albumin

BTE:

Bone tissue engineering

CaP:

Calcium phosphate

CIP:

Ciprofloxacin

Col:

Collagen

CS:

Chitosan

DEX:

Dexamethasone

ECM:

Extracellular matrix

FGF:

Fibroblast growth factor

GDL:

Glucono-d-lactone

Gel:

Gelatin

GO:

Graphene oxide

HA:

Hyaluronic acid

HAp:

Hydroxyapatite

HGF:

Hepatocyte growth factor

HME:

Hereditary multiple exostoses

HPCS:

Hydroxypropyl chitosan

IGF:

Insulin growth factor

MRSA:

Methicillin-resistant staphylococcus aureus

MSC:

Mesenchymal stem cell

nHAp:

Nano-hydroxyapatite

NP:

Nanoparticle

OCN:

Osteocalcin

OPN:

Osteopontin

PCL:

Polycaprolactone

PDGF:

Platelet derived growth factor

PEUR:

Poly(ester urethane)

PHBV:

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

PLA:

Polylactic acid

PLGA:

Poly(lactic-co-glycolic acid)

PLLA:

Poly-L-Lactic Acid

PTH:

Parathyroid hormone

PTMC:

Poly(trimethylene carbonate)

PVP:

Polyvinyl pyrrolidone

rBMP2:

Recombinant bone morphogenetic protein 2

SBF:

Simulated body fluid

SDF:

Stromal cell-derived Factor

SF:

Silk fibroin

TCP:

Tricalcium phosphate

TGF-β:

Transforming growth factor-β

TiO2:

Titanium oxide

VEGF:

Vascular endothelial growth factor

References

  1. Agarwal R, García AJ (2015) Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Deliv Rev 94:53–62

    Article  Google Scholar 

  2. Bai X, Gao M, Syed S, Zhuang J, Xu X, Zhang XQ (2018) Bioactive hydrogels for bone regeneration. Bioact Mater 3(4):401–417

    Article  Google Scholar 

  3. Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y (2015) Nanomaterials and bone regeneration. Bone Res 3:15029

    Article  Google Scholar 

  4. Boskey AL, Coleman R (2010) Aging and bone. J Dent Res 89(12):1333–1348

    Article  Google Scholar 

  5. Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3(Supplement 3):S131–S139

    Article  Google Scholar 

  6. Chen JH, Liu C, You L, Simmons CA (2010) Boning up on Wolff’s Law: mechanical regulation of the cells that make and maintain bone. J Biomech 43(1):108–118

    Article  Google Scholar 

  7. Bueno EM, Glowacki J (2009) Cell-free and cell-based approaches for bone regeneration. Nat Rev Rheumatol 5(12):685

    Article  Google Scholar 

  8. Han Y, You X, Xing W, Zhang Z, Zou W (2018) Paracrine and endocrine actions of bone—the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res 6(1):1

    Article  Google Scholar 

  9. Mackie EJ (2003) Osteoblasts: novel roles in orchestration of skeletal architecture. Int J Biochem Cell Biol 35(9):1301–1305

    Article  Google Scholar 

  10. Moreira CA, Dempster DW, Baron R (2019) Anatomy and ultrastructure of bone–histogenesis, growth and remodeling. InEndotext [Internet]. MDText. com, Inc

    Google Scholar 

  11. Blair HC, Larrouture QC, Li Y, Lin H, Beer-Stoltz D, Liu L, Tuan RS, Robinson LJ, Schlesinger PH, Nelson DJ (2017) Osteoblast differentiation and bone matrix formation in vivo and in vitro. Tissue Eng Part B Rev 23(3):268–280

    Article  Google Scholar 

  12. Su N, Yang J, Xie Y, Du X, Chen H, Zhou H, Chen L (2019) Bone function, dysfunction and its role in diseases including critical illness. Int J Biol Sci 15(4):776

    Article  Google Scholar 

  13. Schaffler MB, Kennedy OD (2012) Osteocyte signaling in bone. Curr Osteoporos Rep 10(2):118–125

    Article  Google Scholar 

  14. Franz-Odendaal TA, Hall BK, Witten PE (2006) Buried alive: how osteoblasts become osteocytes. Dev Dyn Publ Am Assoc Anatomists 235(1):176–190

    Google Scholar 

  15. Kylmaoja E, Nakamura M, Tuukkanen J (2016) Osteoclasts and remodeling based bone formation. Curr Stem Cell Res Ther 11(8):626–633

    Article  Google Scholar 

  16. Teti A (2012) Osteoclasts and hematopoiesis. BoneKEy reports. 1

    Google Scholar 

  17. Zhao H (2012) Membrane trafficking in osteoblasts and osteoclasts: new avenues for understanding and treating skeletal diseases. Traffic 13(10):1307–1314

    Article  Google Scholar 

  18. Wang L, Liu S, Zhao Y, Liu D, Liu Y, Chen C, Karray S, Shi S, Jin Y (2015) Osteoblast-induced osteoclast apoptosis by fas ligand/FAS pathway is required for maintenance of bone mass. Cell Death Differ 22(10):1654–1664

    Article  Google Scholar 

  19. Smith LD, Masood M, Bajaj GS, Couser NL (2018) Genetic abnormalities of the anterior segment, eyelids, and external ocular adnexa. Ophthalmic Genet Dis 22:15

    Google Scholar 

  20. Smolen JS, Aletaha D, Bijlsma JW, Breedveld FC, Boumpas D, Burmester G, Combe B, Cutolo M, De Wit M, Dougados M, Emery P (2010) Treating rheumatoid arthritis to target: recommendations of an international task force. Ann Rheum Dis 69(4):631–637

    Article  Google Scholar 

  21. Momodu II, Savaliya V (2019) Osteomyelitis. InStatPearls [Internet]. StatPearls Publishing

    Google Scholar 

  22. Rajani R, Gibbs CP (2012) Treatment of bone tumors. Surg Pathol Clin 5(1):301–318

    Article  Google Scholar 

  23. Na K, Park YK (2020) Multiple osteochondromatosis. In: Tumors and tumor-like lesions of bone. Springer, Cham, pp 283–292

    Google Scholar 

  24. Busch A, Wegner A, Haversath M, Jäger M (2020) Bone substitutes in orthopedic surgery: current status and future perspectives. Zeitschrift für Orthopädie und Unfallchirurgie

    Google Scholar 

  25. Offner D, de Grado GF, Meisels I, Pijnenburg L, Fioretti F, Benkirane-Jessel N, Musset AM (2019) Bone grafts, bone substitutes and regenerative medicine acceptance for the management of bone defects among French population: issues about ethics, religion or fear? Cell Med 11:2155179019857661

    Article  Google Scholar 

  26. Koons GL, Diba M, Mikos AG (2020) Materials design for bone-tissue engineering. Nat Rev Mater 1–20

    Google Scholar 

  27. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 40(5)

    Google Scholar 

  28. Zhu L, Luo D, Liu Y (2020) Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. Int J Oral Sci 12(1):1–5

    Article  Google Scholar 

  29. Pina S, Ribeiro VP, Marques CF, Maia FR, Silva TH, Reis RL, Oliveira JM (2019) Scaffolding strategies for tissue engineering and regenerative medicine applications. Materials 12(11):1824

    Article  Google Scholar 

  30. Nikolova MP, Chavali MS (2019) Recent advances in biomaterials for 3D scaffolds: a review. Bioact Mater 1(4):271–292

    Article  Google Scholar 

  31. Hill MJ, Qi B, Bayaniahangar R, Araban V, Bakhtiary Z, Doschak MR, Goh BC, Shokouhimehr M, Vali H, Presley JF, Zadpoor AA (2019) Nanomaterials for bone tissue regeneration: updates and future perspectives. Nanomedicine 14(22):2987–3006

    Google Scholar 

  32. Li Y, Liu C (2017) Nanomaterial-based bone regeneration. Nanoscale 9(15):4862–4874

    Article  Google Scholar 

  33. Wang Q, Yan J, Yang J, Li B (2016) Nanomaterials promise better bone repair. Mater Today 19(8):451–463

    Article  Google Scholar 

  34. Lee JH, Kim HW, Seo SJ (2016) Polymer-ceramic bionanocomposites for dental application. J Nanomaterials. 2016

    Google Scholar 

  35. Bramhill J, Ross S, Ross G (2017) Bioactive nanocomposites for tissue repair and regeneration: a review. Int J Environ Res Public Health 14(1):66

    Article  Google Scholar 

  36. Devescovi V, Leonardi E, Ciapetti G, Cenni E (2008) Growth factors in bone repair. La Chirurgia Degli Organi di Movimento 92(3):161–168

    Article  Google Scholar 

  37. Ekenseair AK, Kasper FK, Mikos AG (2013) Perspectives on the interface of drug delivery and tissue engineering. Adv Drug Deliv Rev 65(1):89–92

    Article  Google Scholar 

  38. Kim YH, Tabata Y (2015) Dual-controlled release system of drugs for bone regeneration. Adv Drug Deliv Rev 1(94):28–40

    Article  Google Scholar 

  39. Chen FM, Zhang M, Wu ZF (2010) Toward delivery of multiple growth factors in tissue engineering. Biomaterials 31(24):6279–6308

    Article  Google Scholar 

  40. Tessmar JK, Göpferich AM (2007) Matrices and scaffolds for protein delivery in tissue engineering. Adv Drug Deliv Rev 59(4–5):274–291

    Article  Google Scholar 

  41. Samorezov JE, Alsberg E (2015) Spatial regulation of controlled bioactive factor delivery for bone tissue engineering. Adv Drug Deliv Rev 84:45–67

    Article  Google Scholar 

  42. Ye K, Liu D, Kuang H, Cai J, Chen W, Sun B, Xia L, Fang B, Morsi Y, Mo X (2019) Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. J Colloid Interface Sci 534:625–636

    Article  Google Scholar 

  43. Chen L, Shi Y, Zhang X, Hu X, Shao Z, Dai L, Ju X, Ao Y, Wang J (2019) CaAlg hydrogel containing bone morphogenetic protein 4-enhanced adipose-derived stem cells combined with osteochondral mosaicplasty facilitated the repair of large osteochondral defects. Knee Surg Sports Traumatol Arthrosc 27(11):3668–3678

    Article  Google Scholar 

  44. Sun J, Lyu J, Xing F, Chen R, Duan X, Xiang Z (2020) A biphasic, demineralized, and Decellularized allograft bone‐hydrogel scaffold with a cell‐based BMP‐7 delivery system for osteochondral defect regeneration. J Biomed Mater Res Part A

    Google Scholar 

  45. Yoon JP, Lee CH, Jung JW, Lee HJ, Lee YS, Kim JY, Park GY, Choi JH, Chung SW (2018) Sustained delivery of transforming growth factor β1 by use of absorbable alginate scaffold enhances rotator cuff healing in a rabbit model. Am J Sports Med 46(6):1441–1450

    Article  Google Scholar 

  46. Deng M, Mei T, Hou T, Luo K, Luo F, Yang A, Yu B, Pang H, Dong S, Xu J (2017) TGFβ3 recruits endogenous mesenchymal stem cells to initiate bone regeneration. Stem cell Res Ther 8(1):1–2

    Article  Google Scholar 

  47. Murahashi Y, Yano F, Nakamoto H, Maenohara Y, Iba K, Yamashita T, Tanaka S, Ishihara K, Okamura Y, Moro T, Saito T (2019) Multi-layered PLLA-nanosheets loaded with FGF-2 induce robust bone regeneration with controlled release in critical-sized mouse femoral defects. Acta Biomater 85:172–179

    Article  Google Scholar 

  48. Casarrubios L, Gómez-Cerezo N, Sánchez-Salcedo S, Feito MJ, Serrano MC, Saiz-Pardo M, Ortega L, De Pablo D, Díaz-Güemes I, Fernández-Tomé B, Enciso S (2020) Silicon substituted hydroxyapatite/VEGF scaffolds stimulate bone regeneration in osteoporotic sheep. Acta Biomater 101:544–553

    Article  Google Scholar 

  49. Lee J, Lee S, Ahmad T, Perikamana SK, Lee J, Kim EM, Shin H (2020) Human adipose-derived stem cell spheroids incorporating platelet-derived growth factor (PDGF) and bio-minerals for vascularized bone tissue engineering. Biomaterials 12:

    Article  Google Scholar 

  50. Qi Z, Xia P, Pan S, Zheng S, Fu C, Chang Y, Ma Y, Wang J, Yang X (2018) Combined treatment with electrical stimulation and insulin-like growth factor-1 promotes bone regeneration in vitro. PLoS ONE 13(5):

    Article  Google Scholar 

  51. Lauer A, Wolf P, Mehler D, Götz H, Rüzgar M, Baranowski A, Henrich D, Rommens PM, Ritz U (2020) Biofabrication of SDF-1 functionalized 3D-printed cell-free scaffolds for bone tissue regeneration. Int J Mol Sci 21(6):2175

    Article  Google Scholar 

  52. Witt R, Weigand A, Boos AM, Cai A, Dippold D, Boccaccini AR, Schubert DW, Hardt M, Lange C, Arkudas A, Horch RE (2017) Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. BMC Cell Biol 18(1):1–6

    Article  Google Scholar 

  53. Xie Z, Ye G, Wang P, Li J, Liu W, Li M, Wang S, Wu X, Cen S, Zheng G, Ma M (2018) Interleukin-6/interleukin-6 receptor complex promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 9(1):1

    Article  Google Scholar 

  54. Paidikondala M, Wang S, Yan H, Podiyan O, Hilborn J, Larsson S, Varghese OP rational design of biomaterials for growth factor delivery: impact of hydrogel crosslinking chemistry on the in vitro and in vivo bioactivity of recombinant human bone morphogenetic protein-2

    Google Scholar 

  55. Nyberg E, Holmes C, Witham T, Grayson WL (2016) Growth factor-eluting technologies for bone tissue engineering. Drug Deliv Transl Res 6(2):184–194

    Article  Google Scholar 

  56. Suárez-González D, Lee JS, Diggs A, Lu Y, Nemke B, Markel M, Hollister SJ, Murphy WL (2014) Controlled multiple growth factor delivery from bone tissue engineering scaffolds via designed affinity. Tissue Eng Part A 20(15–16):2077–2087

    Article  Google Scholar 

  57. Newman MR, Benoit DS (2016) Local and targeted drug delivery for bone regeneration. Curr Opin Biotechnol 40:125–132

    Article  Google Scholar 

  58. Saini RK, Bagri LP, Bajpai AK (2019) Nano-silver hydroxyapatite based antibacterial 3D scaffolds of gelatin/alginate/poly (vinyl alcohol) for bone tissue engineering applications. Colloids Surf B 177:211–218

    Article  Google Scholar 

  59. Nadar RA, Margiotta N, Iafisco M, van den Beucken JJ, Boerman OC, Leeuwenburgh SC (2017) Bisphosphonate-functionalized imaging agents, anti-tumor agents and nanocarriers for treatment of bone cancer. Adv Healthc Mater 6(8):1601119

    Article  Google Scholar 

  60. Iafisco M, Palazzo B, Falini G, Di Foggia M, Bonora S, Nicolis S, Casella L, Roveri N (2008) Adsorption and conformational change of myoglobin on biomimetic hydroxyapatite nanocrystals functionalized with alendronate. Langmuir 24(9):4924–4930

    Article  Google Scholar 

  61. Cui Y, Zhu T, Li D, Li Z, Leng Y, Ji X, Liu H, Wu D, Ding J (2019) Bisphosphonate-functionalized scaffolds for enhanced bone regeneration. Adv Healthc Mater 8(23):1901073

    Article  Google Scholar 

  62. Hu X, Neoh KG, Shi Z, Kang ET, Wang W (2013) An in vitro assessment of fibroblast and osteoblast response to alendronate-modified titanium and the potential for decreasing fibrous encapsulation. Tissue Eng Part A 19(17–18):1919–1930

    Article  Google Scholar 

  63. Hur W, Park M, Lee JY, Kim MH, Lee SH, Park CG, Kim SN, Min HS, Min HJ, Chai JH, Lee SJ (2016) Bioabsorbable bone plates enabled with local, sustained delivery of alendronate for bone regeneration. J Controlled Release 222:97–106

    Article  Google Scholar 

  64. Cheng X, Zhu Z, Liu Y, Xue Y, Gao X, Wang J, Pei X, Wan Q (2020) Zeolitic imidazolate framework-8 encapsulating risedronate synergistically enhances osteogenic and antiresorptive properties for bone regeneration. ACS Biomaterials Sci Eng 6(4):2186–2197

    Article  Google Scholar 

  65. Guo J, Zhang Q, Li J, Liu Y, Hou Z, Chen W, Jin L, Tian Y, Ju L, Liu B, Dong T (2017) Local application of an ibandronate/collagen sponge improves femoral fracture healing in ovariectomized rats. PLoS ONE 12(11):

    Article  Google Scholar 

  66. Mardas N, Busetti J, de Figueiredo JA, Mezzomo LA, Scarparo RK, Donos N (2017) Guided bone regeneration in osteoporotic conditions following treatment with zoledronic acid. Clin Oral Implant Res 28(3):362–371

    Article  Google Scholar 

  67. Valenti MT, Mottes M, Biotti A, Perduca M, Pisani A, Bovi M, Deiana M, Cheri S, Dalle Carbonare L (2017) Clodronate as a therapeutic strategy against osteoarthritis. Int J Mol Sci 18(12):2696

    Article  Google Scholar 

  68. Rangabhatla AS, Tantishaiyakul V, Oungbho K, Boonrat O (2016) Fabrication of pluronic and methylcellulose for etidronate delivery and their application for osteogenesis. Int J Pharm 499(1–2):110–118

    Article  Google Scholar 

  69. Abass BT, Shekho HA (2009) Effects of tiludronate on healing of femoral fracture in dogs. Iraqi J Vet Sci 2:23

    Google Scholar 

  70. Ellegaard M, Jørgensen NR, Schwarz P (2010) Parathyroid hormone and bone healing. Calcif Tissue Int 87(1):1–3

    Article  Google Scholar 

  71. Kim SJ, Park HS, Lee DW, Lee JW (2019) Short-term daily teriparatide improve postoperative functional outcome and fracture healing in unstable intertrochanteric fractures. Injury 50(7):1364–1370

    Article  Google Scholar 

  72. Bernhardsson M, Aspenberg P (2018) Abaloparatide versus teriparatide: a head to head comparison of effects on fracture healing in mouse models. Acta Orthopedica 89(6):674–677

    Article  Google Scholar 

  73. Bhandari M, Schemitsch EH, Karachalios T, Sancheti P, Poolman RW, Caminis J, Daizadeh N, Dent-Acosta RE, Egbuna O, Chines A, Miclau T (2020) Romosozumab in skeletally mature adults with a fresh unilateral tibial diaphyseal fracture: a randomized phase-2 study. JBJS

    Google Scholar 

  74. Deeks ED (2018) Denosumab: a review in postmenopausal osteoporosis. Drugs Aging 35(2):163–173

    Article  Google Scholar 

  75. Laurencin CT, Ashe KM, Henry N, Kan HM, Lo KW (2014) Delivery of small molecules for bone regenerative engineering: preclinical studies and potential clinical applications. Drug Discov Today 19(6):794–800

    Article  Google Scholar 

  76. Izzah Ibrahim N, Mohamed N, Nazrun Shuid A (2013) Update on statins: hope for osteoporotic fracture healing treatment. Curr Drug Targets 14(13):1524–1532

    Article  Google Scholar 

  77. Yu WL, Sun TW, Qi C, Zhao HK, Ding ZY, Zhang ZW, Sun BB, Shen J, Chen F, Zhu YJ, Chen DY (2017) Enhanced osteogenesis and angiogenesis by mesoporous hydroxyapatite microspheres-derived simvastatin sustained release system for superior bone regeneration. Sci Rep 7:44129

    Article  Google Scholar 

  78. Kim BB, Tae JY, Ko Y, Park JB (2019) Lovastatin increases the proliferation and osteoblastic differentiation of human gingiva derived stem cells in three dimensional cultures. Exp Ther Med 18(5):3425–3430

    Google Scholar 

  79. Rezazadeh M, Parandeh M, Akbari V, Ebrahimi Z, Taheri A (2019) Incorporation of rosuvastatin-loaded chitosan/chondroitin sulfate nanoparticles into a thermosensitive hydrogel for bone tissue engineering: preparation, characterization, and cellular behavior. Pharm Dev Technol 24(3):357–367

    Article  Google Scholar 

  80. Leppäranta O, Tikkanen JM, Bespalov MM, Koli K, Myllärniemi M (2013) Bone morphogenetic protein-inducer tilorone identified by high-throughput screening is antifibrotic in vivo. Am J Respir Cell Mol Biol 48(4):448–455

    Article  Google Scholar 

  81. Li X, Wang Y, Wang Z, Qi Y, Li L, Zhang P, Chen X, Huang Y (2018) Composite PLA/PEG/nHA/dexamethasone scaffold prepared by 3D printing for bone regeneration. Macromol Biosci 18(6):1800068

    Article  Google Scholar 

  82. Liu L, Zhao F, Chen X, Luo M, Yang Z, Cao X, Miao G, Chen D (2020) Local delivery of FTY720 in mesoporous bioactive glass improves bone regeneration by synergistically immunomodulating osteogenesis and osteoclastogenesis. J Mater Chem B 8(28):6148–6158

    Article  Google Scholar 

  83. Gellynck K, Shah R, Parkar M, Young A, Buxton P, Brett P (2013) Small molecule stimulation enhances bone regeneration but not titanium implant osseointegration. Bone 57(2):405–412

    Article  Google Scholar 

  84. Farzamfar S, Naseri-Nosar M, Sahrapeyma H, Ehterami A, Goodarzi A, Rahmati M, Ahmadi Lakalayeh G, Ghorbani S, Vaez A, Salehi M (2019) Tetracycline hydrochloride-containing poly (ε-caprolactone)/poly lactic acid scaffold for bone tissue engineering application: in vitro and in vivo study. Int J Polym Mater Polym Biomater 68(8):472–479

    Article  Google Scholar 

  85. Avani F, Damoogh S, Mottaghitalab F, Karkhaneh A, Farokhi M (2019) Vancomycin loaded halloysite nanotubes embedded in silk fibroin hydrogel applicable for bone tissue engineering. Int J Polym Mater Polym Biomater

    Google Scholar 

  86. Semyari H, Salehi M, Taleghani F, Ehterami A, Bastami F, Jalayer T, Semyari H, Hamed Nabavi M, Semyari H (2018) Fabrication and characterization of collagen–hydroxyapatite-based composite scaffolds containing doxycycline via freeze-casting method for bone tissue engineering. J Biomater Appl 33(4):501–513

    Article  Google Scholar 

  87. Praphakar RA, Sumathra M, Ebenezer RS, Vignesh S, Shakila H, Rajan M (2019) Fabrication of bioactive rifampicin loaded κ-Car-MA-INH/Nano hydroxyapatite composite for tuberculosis osteomyelitis infected tissue regeneration. Int J Pharm 565:543–556

    Article  Google Scholar 

  88. Stevanović M, Djošić M, Janković A, Kojić V, Vukašinović‐Sekulić M, Stojanović J, Odović J, Sakač MC, Rhee KY, Mišković‐Stanković V (2020) Antibacterial graphene‐based hydroxyapatite/chitosan coating with gentamicin for potential applications in bone tissue engineering. J Biomed Mater Res Part A

    Google Scholar 

  89. Pahlevanzadeh F, Bakhsheshi-Rad HR, Kasiri-Asgarani M, Emadi R, Omidi M, Ismail AF, Afrand M, Berto F (2020) Mechanical property, antibacterial activity and cytocompatibility of a PMMA-based bone cement loaded with clindamycin for orthopedic surgeries. Mater Technol 26:1

    Google Scholar 

  90. Qiao Z, Yuan Z, Zhang W, Wei D, Hu N (2019) Preparation, in vitro release and antibacterial activity evaluation of rifampicin and moxifloxacin-loaded poly (D, L-lactide-co-glycolide) microspheres. Artif Cells Nanomed Biotechnol 47(1):790–798

    Article  Google Scholar 

  91. Ribeiro M, Ferraz MP, Monteiro FJ, Fernandes MH, Beppu MM, Mantione D, Sardon H (2017) Antibacterial silk fibroin/nanohydroxyapatite hydrogels with silver and gold nanoparticles for bone regeneration. Nanomed Nanotechnol Biol Med 13(1):231–239

    Google Scholar 

  92. Felice B, Sánchez MA, Socci MC, Sappia LD, Gómez MI, Cruz MK, Felice CJ, Martí M, Pividori MI, Simonelli G, Rodríguez AP (2018) Controlled degradability of PCL-ZnO nanofibrous scaffolds for bone tissue engineering and their antibacterial activity. Mater Sci Eng C 93:724–738

    Article  Google Scholar 

  93. Jaidev LR, Kumar S, Chatterjee K (2017) Multi-biofunctional polymer graphene composite for bone tissue regeneration that elutes copper ions to impart angiogenic, osteogenic and bactericidal properties. Colloids Surf B 159:293–302

    Article  Google Scholar 

  94. Liu W, Su P, Chen S, Wang N, Wang J, Liu Y, Ma Y, Li H, Zhang Z, Webster TJ (2015) Antibacterial and osteogenic stem cell differentiation properties of photoinduced TiO2 nanoparticle-decorated TiO2 nanotubes. Nanomedicine 10(5):713–723

    Article  Google Scholar 

  95. Coelho CC, Araújo R, Quadros PA, Sousa SR, Monteiro FJ (2019) Antibacterial bone substitute of hydroxyapatite and magnesium oxide to prevent dental and orthopedic infections. Mater Sci Eng C 97:529–538

    Article  Google Scholar 

  96. Wei P, Jing W, Yuan Z, Huang Y, Guan B, Zhang W, Zhang X, Mao J, Cai Q, Chen D, Yang X (2019) Vancomycin-and strontium-loaded microspheres with multifunctional activities against bacteria, in angiogenesis, and in osteogenesis for enhancing infected bone regeneration. ACS Appl Mater Interfaces 11(34):30596–30609

    Article  Google Scholar 

  97. Li Y, Bai Y, Pan J, Wang H, Li H, Xu X, Fu X, Shi R, Luo Z, Li Y, Li Q (2019) A hybrid 3D-printed aspirin-laden liposome composite scaffold for bone tissue engineering. J Mater Chem B 7(4):619–629

    Article  Google Scholar 

  98. Kumar P, Dehiya BS, Sindhu A (2019) Ibuprofen-loaded CTS/nHA/nBG scaffolds for the applications of hard tissue engineering. Iran Biomed J 23(3):190

    Article  Google Scholar 

  99. Karimi S, Ghaee A, Barzin J (2019) Preparation and characterization of a piezoelectric poly (vinylidene fluoride)/nanohydroxyapatite scaffold capable of naproxen delivery. Eur Polymer J 112:442–451

    Article  Google Scholar 

  100. Yar M, Farooq A, Shahzadi L, Khan AS, Mahmood N, Rauf A, Chaudhry AA, ur Rehman I (2016) Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications. Mater Sci Eng 64:148–156

    Google Scholar 

  101. Kordjamshidi A, Saber-Samandari S, Nejad MG, Khandan A (2019) Preparation of novel porous calcium silicate scaffold loaded by celecoxib drug using freeze drying technique: fabrication, characterization and simulation. Ceram Int 45(11):14126–14135

    Article  Google Scholar 

  102. Mihai IB, Marin MM, Ghica MV, Albu-Kaya M, Dincă LC, Drăguşin D, Dinu-Pîrvu CE (2016) Collagen-indomethacin-hydroxyapatite spongious forms for bone reconstruction treatment. In: International conference on advanced materials and systems (ICAMS), pp 293–298. The National Research and Development Institute for Textiles and Leather-INCDTP

    Google Scholar 

  103. Lin HY, Chang TW, Peng TK (2018) Three-dimensional plotted alginate fibers embedded with diclofenac and bone cells coated with chitosan for bone regeneration during inflammation. J Biomed Mater Res Part A 106(6):1511–1521

    Article  Google Scholar 

  104. Cheng W, Yue Y, Fan W, Hu Y, Wang X, Pan X, Zhou X, Qin L, Zhang P (2012) Effects of tetracyclines on bones: an ambiguous question needs to be clarified. Die Pharmazie-An Int J Pharm Sci 67(5):457–459

    Google Scholar 

  105. Raghavan RN, Vignesh G, Kumar BS, Selvaraj R, Dare BJ (2015) Phytochemicals: do they hold the future in stem cell differentiation. Int J Res Pharma 6(3):379–381

    Google Scholar 

  106. Joseph J, Sundar R, John A, Abraham A (2018) Phytochemical incorporated drug delivery scaffolds for tissue regeneration. Regenerative Eng Transl Med 4(3):167–176

    Article  Google Scholar 

  107. Roy M, Datta A (2019) Fundamentals of phytochemicals. In: Cancer genetics and therapeutics. Springer, Singapore, pp 49–81

    Google Scholar 

  108. Xue W, Yu J, Chen W (2018) Plants and their bioactive constituents in mesenchymal stem cell-based periodontal regeneration: a novel prospective. BioMed Res Int 2018

    Google Scholar 

  109. Xie Y, Sun W, Yan F, Liu H, Deng Z, Cai L (2019) Icariin-loaded porous scaffolds for bone regeneration through the regulation of the coupling process of osteogenesis and osteoclastic activity. Int J Nanomed 14:6019

    Google Scholar 

  110. Fernandes CJ, Veiga MR, Peracoli MT, Zambuzzi WF (2019) Modulatory effects of silibinin in cell behavior during osteogenic phenotype. J Cell Biochem 120(8):13413–13425

    Article  Google Scholar 

  111. Choi Y, Yoon DS, Lee KM, Choi SM, Lee MH, Park KH, Han SH, Lee JW (2019) Enhancement of mesenchymal stem cell-driven bone regeneration by resveratrol-mediated SOX2 regulation. Aging Dis 10(4):818

    Article  Google Scholar 

  112. Song JE, Tian J, Kook YJ, Thangavelu M, Choi JH, Khang G (2020) A BMSCs-laden quercetin/duck’s feet collagen/hydroxyapatite sponge for enhanced bone regeneration. J Biomed Mater Res Part A 108(3):784–794

    Article  Google Scholar 

  113. Thaler R, Maurizi A, Roschger P, Sturmlechner I, Khani F, Spitzer S, Rumpler M, Zwerina J, Karlic H, Dudakovic A, Klaushofer K (2016) Anabolic and antiresorptive modulation of bone homeostasis by the epigenetic modulator sulforaphane, a naturally occurring isothiocyanate. J Biol Chem 291(13):6754–6771

    Article  Google Scholar 

  114. Kim M, Lim J, Lee JH, Lee KM, Kim S, Park KW, Nho CW, Cho YS (2018) Understanding the functional role of genistein in the bone differentiation in mouse osteoblastic cell line MC3T3-E1 by RNA-seq analysis. Sci Rep 8(1):1–2

    Google Scholar 

  115. Balagangadharan K, Trivedi R, Vairamani M, Selvamurugan N (2019) Sinapic acid-loaded chitosan nanoparticles in polycaprolactone electrospun fibers for bone regeneration in vitro and in vivo. Carbohyd Polym 216:1–6

    Article  Google Scholar 

  116. Srinaath N, Balagangadharan K, Pooja V, Paarkavi U, Trishla A, Selvamurugan N (2019) Osteogenic potential of zingerone, a phenolic compound in mouse mesenchymal stem cells. BioFactors 45(4):575–582

    Google Scholar 

  117. Menon AH, Soundarya SP, Sanjay V, Chandran SV, Balagangadharan K, Selvamurugan N (2018) Sustained release of chrysin from chitosan-based scaffolds promotes mesenchymal stem cell proliferation and osteoblast differentiation. Carbohyd Polym 195:356–367

    Article  Google Scholar 

  118. Chandran SV, Vairamani M, Selvamurugan N (2019) Osteostimulatory effect of biocomposite scaffold containing phytomolecule diosmin by Integrin/FAK/ERK signaling pathway in mouse mesenchymal stem cells. Sci Rep 9(1):1–3

    Article  Google Scholar 

  119. Sruthi R, Balagangadharan K, Selvamurugan N (2020) Polycaprolactone/polyvinylpyrrolidone coaxial electrospun fibers containing veratric acid-loaded chitosan nanoparticles for bone regeneration. Colloids Surf B 193:

    Article  Google Scholar 

  120. Akshaya N, Prasith P, Abinaya B, Ashwin B, Chandran SV, Selvamurugan N (2020) Valproic acid, a potential inducer of osteogenesis in mouse mesenchymal stem cells. Curr Mol Pharmacol

    Google Scholar 

  121. Ashwin B, Abinaya B, Prasith TP, Chandran SV, Yadav LR, Vairamani M, Patil S, Selvamurugan N (2020) 3D-poly (lactic acid) scaffolds coated with gelatin and mucic acid for bone tissue engineering. Int J Biol Macromol

    Google Scholar 

  122. Dadashpour M, Pilehvar-Soltanahmadi Y, Zarghami N, Firouzi-Amandi A, Pourhassan-Moghaddam M, Nouri M (2017) Emerging importance of phytochemicals in regulation of stem cells fate via signaling pathways. Phytotherapy Res 31(11):1651–1668

    Article  Google Scholar 

  123. Mouriño V, Boccaccini AR (2010) Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface 7(43):209–227

    Article  Google Scholar 

  124. Bagherifard S (2017) Mediating bone regeneration by means of drug eluting implants: from passive to smart strategies. Mater Sci Eng C 71:1241–1252

    Article  Google Scholar 

  125. Santos A, Aw MS, Bariana M, Kumeria T, Wang Y, Losic D (2014) Drug-releasing implants: current progress, challenges and perspectives. J Mater Chem B 2(37):6157–6182

    Article  Google Scholar 

  126. Sun W, Ge K, Jin Y, Han Y, Zhang H, Zhou G, Yang X, Liu D, Liu H, Liang XJ, Zhang J (2019) Bone-targeted nanoplatform combining zoledronate and photothermal therapy to treat breast cancer bone metastasis. ACS Nano 13(7):7556–7567

    Article  Google Scholar 

  127. Toussaint ND, Elder GJ, Kerr PG (2009) Bisphosphonates in chronic kidney disease; balancing potential benefits and adverse effects on bone and soft tissue. Clin J Am Soc Nephrol 4(1):221–233

    Article  Google Scholar 

  128. Aguilar LM, Silva SM, Moulton SE (2019) Growth factor delivery: defining the next generation platforms for tissue engineering. J Controlled Release 306:40–58

    Article  Google Scholar 

  129. Cottrell JA, Vales FM, Schachter D, Wadsworth S, Gundlapalli R, Kapadia R, O’Connor JP (2010) Osteogenic activity of locally applied small molecule drugs in a rat femur defect model. J Biomed Biotechnol. 2010

    Google Scholar 

  130. Ferracini R, Martínez Herreros I, Russo A, Casalini T, Rossi F, Perale G (2018) Scaffolds as structural tools for bone-targeted drug delivery. Pharmaceutics 10(3):122

    Article  Google Scholar 

  131. Dorati R, DeTrizio A, Modena T, Conti B, Benazzo F, Gastaldi G, Genta I (2017) Biodegradable scaffolds for bone regeneration combined with drug-delivery systems in osteomyelitis therapy. Pharmaceuticals 10(4):96

    Article  Google Scholar 

  132. Chen S, Shi Y, Luo Y, Ma J (2019) Layer-by-layer coated porous 3D printed hydroxyapatite composite scaffolds for controlled drug delivery. Colloids Surf B 179:121–127

    Article  Google Scholar 

  133. Eltom A, Zhong G, Muhammad A (2019) Scaffold techniques and designs in tissue engineering functions and purposes: a review. Adv Mater Sci Eng 2019

    Google Scholar 

  134. Garg T, Singh O, Arora S, Murthy RS (2012) Scaffold: a novel carrier for cell and drug delivery. Crit Rev Ther Drug Carrier Syst 29(1)

    Google Scholar 

  135. Sharma B, Varghese S Progress in orthopedic biomaterials and drug delivery

    Google Scholar 

  136. Costa PF (2015) Bone tissue engineering drug delivery. Curr Mol Biol Rep 1(2):87–93

    Article  Google Scholar 

  137. Sofi HS, Ashraf R, Khan AH, Beigh MA, Majeed S, Sheikh FA (2019) Reconstructing nanofibers from natural polymers using surface functionalization approaches for applications in tissue engineering, drug delivery and biosensing devices. Mater Sci Eng C 94:1102–1124

    Article  Google Scholar 

  138. Jayaraman P, Gandhimathi C, Venugopal JR, Becker DL, Ramakrishna S, Srinivasan DK (2015) Controlled release of drugs in electrosprayed nanoparticles for bone tissue engineering. Adv Drug Deliv Rev 94:77–95

    Article  Google Scholar 

  139. Liu X, Zhang W, Wang Y, Chen Y, Xie J, Su J, Huang C (2020) One-step treatment of periodontitis based on a core-shell micelle-in-nanofiber membrane with time-programmed drug release. J Controlled Release 320:201–213

    Article  Google Scholar 

  140. Sood N, Bhardwaj A, Mehta S, Mehta A (2016) Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Delivery 23(3):748–770

    Article  Google Scholar 

  141. Saber-Samandari S, Saber-Samandari S (2017) Biocompatible nanocomposite scaffolds based on copolymer-grafted chitosan for bone tissue engineering with drug delivery capability. Mater Sci Eng C 75:721–732

    Article  Google Scholar 

  142. Sahoo NG, Pan YZ, Li L, He CB (2013) Nanocomposites for bone tissue regeneration. Nanomedicine 8(4):639–653

    Article  Google Scholar 

  143. Shen S, Dong YC, Ng WK, Chia L, Tan RB (2010) Nanocomposites for drug delivery. In: Nanotechnologies for the life sciences

    Google Scholar 

  144. Hasnain MS, Ahmad SA, Chaudhary N, Hoda MN, Nayak AK (2019) Biodegradable polymer matrix nanocomposites for bone tissue engineering. In: Applications of nanocomposite materials in orthopedics. Woodhead Publishing, pp 1–37

    Google Scholar 

  145. Chen J, Ashames A, Buabeid MA, Fahelelbom KM, Ijaz M, Murtaza G (2020) Nanocomposites drug delivery systems for the healing of bone fractures. Int J Pharm 585:

    Article  Google Scholar 

  146. Armentano I, Puglia D, Luzi F, Arciola CR, Morena F, Martino S, Torre L (2018) Nanocomposites based on biodegradable polymers. Materials 11(5):795

    Article  Google Scholar 

  147. Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 27(7):1143–1169

    Article  Google Scholar 

  148. Bharadwaz A, Jayasuriya AC (2020) Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mater Sci Eng C 110:

    Article  Google Scholar 

  149. Saravanan S, Leena RS, Selvamurugan N (2016) Chitosan based biocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 93:1354–1365

    Article  Google Scholar 

  150. Kavya KC, Jayakumar R, Nair S, Chennazhi KP (2013) Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering. Int J Biol Macromol 59:255–263

    Article  Google Scholar 

  151. Ren B, Chen X, Du S, Ma Y, Chen H, Yuan G, Li J, Xiong D, Tan H, Ling Z, Chen Y (2018) Injectable polysaccharide hydrogel embedded with hydroxyapatite and calcium carbonate for drug delivery and bone tissue engineering. Int J Biol Macromol 118:1257–1266

    Article  Google Scholar 

  152. Keller L, Regiel-Futyra A, Gimeno M, Eap S, Mendoza G, Andreu V, Wagner Q, Kyzioł A, Sebastian V, Stochel G, Arruebo M (2017) Chitosan-based nanocomposites for the repair of bone defects. Nanomedicine: Nanotechnol Biol Med 13(7):2231–2240

    Google Scholar 

  153. Molaei A, Yousefpour M (2019) Preparation of Chitosan-based nanocomposites and biomedical investigations in bone tissue engineering. Int J Polym Mater Polym Biomater 68(12):701–713

    Article  Google Scholar 

  154. Ran J, Hu J, Sun G, Chen S, Jiang P, Shen X, Tong H (2016) A novel chitosan-tussah silk fibroin/nano-hydroxyapatite composite bone scaffold platform with tunable mechanical strength in a wide range. Int J Biol Macromol 93:87–97

    Article  Google Scholar 

  155. Shakir M, Zia I, Rehman A, Ullah R (2018) Fabrication and characterization of nanoengineered biocompatible n-HA/chitosan-tamarind seed polysaccharide: Bio-inspired nanocomposites for bone tissue engineering. Int J Biol Macromol 111:903–916

    Article  Google Scholar 

  156. Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281

    Article  Google Scholar 

  157. Bi YG, Lin ZT, Deng ST (2019) Fabrication and characterization of hydroxyapatite/sodium alginate/chitosan composite microspheres for drug delivery and bone tissue engineering. Mater Sci Eng C 100:576–583

    Article  Google Scholar 

  158. Purohit SD, Bhaskar R, Singh H, Yadav I, Gupta MK, Mishra NC (2019) Development of a nanocomposite scaffold of gelatin–alginate–graphene oxide for bone tissue engineering. Int J Biol Macromol 133:592–602

    Article  Google Scholar 

  159. Azami M, Tavakol S, Samadikuchaksaraei A, Hashjin MS, Baheiraei N, Kamali M, Nourani MR (2012) A porous hydroxyapatite/gelatin nanocomposite scaffold for bone tissue repair: in vitro and in vivo evaluation. J Biomater Sci Polym Ed 23(18):2353–2368

    Article  Google Scholar 

  160. Arabi N, Zamanian A, Rashvand SN, Ghorbani F (2018) The tunable porous structure of gelatin–bioglass nanocomposite scaffolds for bone tissue engineering applications: physicochemical, mechanical, and in vitro properties. Macromol Mater Eng 303(3):1700539

    Article  Google Scholar 

  161. Ferreira AM, Gentile P, Chiono V, Ciardelli G (2012) Collagen for bone tissue regeneration. Acta Biomater 8(9):3191–3200

    Article  Google Scholar 

  162. Türk S, Altınsoy I, Efe GÇ, İpek M, Özacar M, Bindal C (2018) 3D porous collagen/functionalized multiwalled carbon nanotube/chitosan/hydroxyapatite composite scaffolds for bone tissue engineering. Mater Sci Eng C 92:757–768

    Article  Google Scholar 

  163. Ao C, Niu Y, Zhang X, He X, Zhang W, Lu C (2017) Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering. Int J Biol Macromol 97:568–573

    Article  Google Scholar 

  164. Sarkar C, Chowdhuri AR, Kumar A, Laha D, Garai S, Chakraborty J, Sahu SK (2018) One pot synthesis of carbon dots decorated carboxymethyl cellulose-hydroxyapatite nanocomposite for drug delivery, tissue engineering and Fe3+ ion sensing. Carbohyd Polym 181:710–718

    Article  Google Scholar 

  165. Abeer MM, Mohd Amin MC, Martin C (2014) A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol 66(8):1047–1061

    Article  Google Scholar 

  166. Li H, Qi Z, Zheng S, Chang Y, Kong W, Fu C, Yu Z, Yang X, Pan S (2019) The application of hyaluronic acid-based hydrogels in bone and cartilage tissue engineering. Adv Mater Sci Eng 2019

    Google Scholar 

  167. Unnithan AR, Sasikala AR, Park CH, Kim CS (2017) A unique scaffold for bone tissue engineering: an osteogenic combination of graphene oxide–hyaluronic acid–chitosan with simvastatin. J Ind Eng Chem 46:182–191

    Article  Google Scholar 

  168. Trombino S, Servidio C, Curcio F, Cassano R (2019) Strategies for hyaluronic acid-based hydrogel design in drug delivery. Pharmaceutics 11(8):407

    Article  Google Scholar 

  169. Melke J, Midha S, Ghosh S, Ito K, Hofmann S (2016) Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater 31:1–6

    Article  Google Scholar 

  170. Mottaghitalab F, Farokhi M, Shokrgozar MA, Atyabi F, Hosseinkhani H (2015) Silk fibroin nanoparticle as a novel drug delivery system. J Controlled Release 206:161–176

    Article  Google Scholar 

  171. Cilurzo F, Gennari CG, Selmin F, Marotta LA, Minghetti P, Montanari L (2011) An investigation into silk fibroin conformation in composite materials intended for drug delivery. Int J Pharm 414(1–2):218–224

    Article  Google Scholar 

  172. Cortizo MS, Belluzo MS (2017) Biodegradable polymers for bone tissue engineering. In: Industrial applications of renewable biomass products. Springer, Cham, pp 47–74

    Google Scholar 

  173. Donnaloja F, Jacchetti E, Soncini M, Raimondi MT (2020) Natural and synthetic polymers for bone scaffolds optimization. Polymers 12(4):905

    Article  Google Scholar 

  174. Hu C, Ashok D, Nisbet DR, Gautam V (2019) Bioinspired surface modification of orthopedic implants for bone tissue engineering. Biomaterials 219:

    Article  Google Scholar 

  175. Englert C, Brendel JC, Majdanski TC, Yildirim T, Schubert S, Gottschaldt M, Windhab N, Schubert US (2018) Pharmapolymers in the 21st century: synthetic polymers in drug delivery applications. Prog Polym Sci 87:107–164

    Article  Google Scholar 

  176. Li Y, Liao C, Tjong SC (2019) Synthetic biodegradable aliphatic polyester nanocomposites reinforced with nanohydroxyapatite and/or graphene oxide for bone tissue engineering applications. Nanomaterials 9(4):590

    Article  Google Scholar 

  177. Khoshroo K, Kashi TS, Moztarzadeh F, Tahriri M, Jazayeri HE, Tayebi L (2017) Development of 3D PCL microsphere/TiO2 nanotube composite scaffolds for bone tissue engineering. Mater Sci Eng C 70:586–598

    Article  Google Scholar 

  178. Wang W, Caetano G, Ambler WS, Blaker JJ, Frade MA, Mandal P, Diver C, Bártolo P (2016) Enhancing the hydrophilicity and cell attachment of 3D printed PCL/graphene scaffolds for bone tissue engineering. Materials 9(12):992

    Article  Google Scholar 

  179. Rostami F, Tamjid E, Behmanesh M (2020) Drug-eluting PCL/graphene oxide nanocomposite scaffolds for enhanced osteogenic differentiation of mesenchymal stem cells. Mater Sci Eng C 115:

    Article  Google Scholar 

  180. Liu S, Qin S, He M, Zhou D, Qin Q, Wang H (2020) Current applications of poly (lactic acid) composites in tissue engineering and drug delivery. Compos B Eng 199:

    Article  Google Scholar 

  181. Sha L, Chen Z, Chen Z, Zhang A, Yang Z (2016) Polylactic acid based nanocomposites: Promising safe and biodegradable materials in biomedical field. Int J Polym Sci 2016

    Google Scholar 

  182. Mir M, Ahmed N, ur Rehman A (2017) Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B: Biointerfaces. 159:217–231

    Google Scholar 

  183. Rasoulianboroujeni M, Fahimipour F, Shah P, Khoshroo K, Tahriri M, Eslami H, Yadegari A, Dashtimoghadam E, Tayebi L (2019) Development of 3D-printed PLGA/TiO2 nanocomposite scaffolds for bone tissue engineering applications. Mater Sci Eng C 96:105–113

    Article  Google Scholar 

  184. Elmowafy EM, Tiboni M, Soliman ME (2019) Biocompatibility, biodegradation and biomedical applications of poly (lactic acid)/poly (lactic-co-glycolic acid) micro and nanoparticles. J Pharm Invest 1–34

    Google Scholar 

  185. Ginebra MP, Espanol M, Maazouz Y, Bergez V, Pastorino D (2018) Bioceramics and bone healing. EFORT Open Rev 3(5):173–183

    Article  Google Scholar 

  186. Levingstone TJ, Herbaj S, Dunne NJ (2019) Calcium phosphate nanoparticles for therapeutic applications in bone regeneration. Nanomaterials 9(11):1570

    Article  Google Scholar 

  187. Dorozhkin SV (2015) Calcium orthophosphate bioceramics. Ceram Int 41(10):13913–13966

    Article  Google Scholar 

  188. Uskoković V, Uskoković DP (2011) Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. J Biomed Mater Res B Appl Biomater 96(1):152–191

    Article  Google Scholar 

  189. Mondal S, Dorozhkin SV, Pal U (2018) Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite. Wiley Interdisc Rev Nanomed Nanobiotechnol 10(4):

    Google Scholar 

  190. Lin K, Chang J (2015) Structure and properties of hydroxyapatite for biomedical applications. In: Hydroxyapatite (HAp) for biomedical applications. Woodhead Publishing, pp 3–19

    Google Scholar 

  191. Erol-Taygun M, Unalan I, Idris MI, Mano JF, Boccaccini AR (2019) Bioactıve glass-polymer nanocomposites for bone tissue regeneration applications: a review. Adv Eng Mater 21(8):1900287

    Article  Google Scholar 

  192. Jiang S, Zhang Y, Shu Y, Wu Z, Cao W, Huang W (2017) Amino-functionalized mesoporous bioactive glass for drug delivery. Biomed Mater 12(2):

    Article  Google Scholar 

  193. Madison J, Joy-anne NO, Zhu D (2020) Bioactive glasses in orthopedic applications. In: Racing for the surface. Springer, Cham, pp 557–575

    Google Scholar 

  194. Iannazzo D, Pistone A, Salamò M, Galvagno S (2017) Hybrid ceramic/polymer composites for bone tissue regeneration. In: Hybrid polymer composite materials. Woodhead Publishing, pp 125–155

    Google Scholar 

  195. Huang B, Caetano G, Vyas C, Blaker JJ, Diver C, Bártolo P (2018) Polymer-ceramic composite scaffolds: the effect of hydroxyapatite and β-tri-calcium phosphate. Materials 11(1):129

    Article  Google Scholar 

  196. Filippi M, Born G, Chaaban M, Scherberich A (2020) Natural polymeric scaffolds in bone regeneration. Front Bioeng Biotechnol 8:474

    Article  Google Scholar 

  197. Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N (2010) Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 47(1):1–4

    Article  Google Scholar 

  198. Venkatesan J, Nithya R, Sudha PN, Kim SK (2014) Role of alginate in bone tissue engineering. In: Advances in food and nutrition research, vol 73. Academic Press, pp 45–57

    Google Scholar 

  199. Hatton J, Davis GR, Mourad AH, Cherupurakal N, Hill RG, Mohsin S (2019) Fabrication of porous bone scaffolds using alginate and bioactive glass. J Funct Biomater 10(1):15

    Article  Google Scholar 

  200. Naik K, Chandran VG, Rajashekaran R, Waigaonkar S, Kowshik M (2016) Mechanical properties, biological behaviour and drug release capability of nano TiO2-HAp-Alginate composite scaffolds for potential application as bone implant material. J Biomater Appl 31(3):387–399

    Article  Google Scholar 

  201. Venkatasubbu GD, Ramasamy S, Ramakrishnan V, Kumar J (2011) Hydroxyapatite-alginate nanocomposite as drug delivery matrix for sustained release of ciprofloxacin. J Biomed Nanotechnol 7(6):759–767

    Article  Google Scholar 

  202. Luciano B, Juan L, Graciela S, Mónica B, Paula M (2020) Antibacterial alginate/nano-hydroxyapatite composites for bone tissue engineering: assessment of their bioactivity, biocompatibility, and antibacterial activity. Mater Sci Eng C 115:

    Article  Google Scholar 

  203. Maji K, Dasgupta S, Bhaskar R, Gupta MK (2020) Photo-crosslinked alginate nano-hydroxyapatite paste for bone tissue engineering. Biomed Mater

    Google Scholar 

  204. Hoque ME, Nuge T, Yeow TK, Nordin N, Prasad RG (2015) Gelatin based scaffolds for tissue engineering-a review. Polym Res J 9(1):15–32

    Google Scholar 

  205. Reiter T, Panick T, Schuhladen K, Roether JA, Hum J, Boccaccini AR (2019) Bioactive glass based scaffolds coated with gelatin for the sustained release of icariin. Bioact Mater 4:1–7

    Article  Google Scholar 

  206. Rahmanian M, Dehghan MM, Eini L, Naghib SM, Gholami H, Mohajeri SF, Mamaghani KR, Majidzadeh-A K (2019) Multifunctional gelatin–tricalcium phosphate porous nanocomposite scaffolds for tissue engineering and local drug delivery: in vitro and in vivo studies. J Taiwan Inst Chem Eng 101:214–220

    Article  Google Scholar 

  207. Govindan R, Gu FL, Karthi S, Girija EK (2020) Effect of phosphate glass reinforcement on the mechanical and biological properties of freeze-dried gelatin composite scaffolds for bone tissue engineering applications. Mater Today Commun 22:

    Article  Google Scholar 

  208. Udomluck N, Lee H, Hong S, Lee SH, Park H (2020) Surface functionalization of dual growth factor on hydroxyapatite-coated nanofibers for bone tissue engineering. Appl Surf Sci 11:

    Article  Google Scholar 

  209. Gritsch L, Maqbool M, Mouriño V, Ciraldo FE, Cresswell M, Jackson PR, Lovell C, Boccaccini AR (2019) Chitosan/hydroxyapatite composite bone tissue engineering scaffolds with dual and decoupled therapeutic ion delivery: copper and strontium. J Mater Chem B 7(40):6109–6124

    Article  Google Scholar 

  210. Uskoković V, Desai TA (2014) In vitro analysis of nanoparticulate hydroxyapatite/chitosan composites as potential drug delivery platforms for the sustained release of antibiotics in the treatment of osteomyelitis. J Pharm Sci 103(2):567–579

    Article  Google Scholar 

  211. Zarghami V, Ghorbani M, Bagheri KP, Shokrgozar MA (2020) Prolongation of bactericidal efficiency of chitosan—bioactive glass coating by drug controlled release. Prog Org Coat 139:

    Article  Google Scholar 

  212. Jolly R, Khan AA, Ahmed SS, Alam S, Kazmi S, Owais M, Farooqi MA, Shakir M (2020) Bioactive Phoenix dactylifera seeds incorporated chitosan/hydroxyapatite nanoconjugate for prospective bone tissue engineering applications: a bio-synergistic approach. Mater Sci Eng C 109:

    Article  Google Scholar 

  213. Lu HT, Lu TW, Chen CH, Mi FL (2019) Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering. Int J Biol Macromol 128:973–984

    Article  Google Scholar 

  214. Wang G, Qiu J, Zheng L, Ren N, Li J, Liu H, Miao J (2014) Sustained delivery of BMP-2 enhanced osteoblastic differentiation of BMSCs based on surface hydroxyapatite nanostructure in chitosan–HAp scaffold. J Biomater Sci Polym Ed 25(16):1813–1827

    Article  Google Scholar 

  215. Ali AF, Ahmed MM, El-Kady AM, Abd El-Hady BM, Ibrahim AM (2020) Synthesis of gelatin-agarose scaffold for controlled antibiotic delivery and its modification by glass nanoparticles addition as a potential osteomyelitis treatment. Silicon, pp 1–8

    Google Scholar 

  216. Cattalini JP, Hoppe A, Pishbin F, Roether J, Boccaccini AR, Lucangioli S, Mouriño V (2015) Novel nanocomposite biomaterials with controlled copper/calcium release capability for bone tissue engineering multifunctional scaffolds. J R Soc Interface 12(110):20150509

    Article  Google Scholar 

  217. Pacelli S, Maloney R, Chakravarti AR, Whitlow J, Basu S, Modaresi S, Gehrke S, Paul A (2017) Controlling adult stem cell behavior using nanodiamond-reinforced hydrogel: implication in bone regeneration therapy. Sci Rep 7(1):1–5

    Article  Google Scholar 

  218. Knaack S, Lode A, Hoyer B, Rösen-Wolff A, Gabrielyan A, Roeder I, Gelinsky M (2014) Heparin modification of a biomimetic bone matrix for controlled release of VEGF. J Biomed Mater Res Part A 102(10):3500–3511

    Article  Google Scholar 

  219. Sarkar C, Chowdhuri AR, Garai S, Chakraborty J, Sahu SK (2019) Three-dimensional cellulose-hydroxyapatite nanocomposite enriched with dexamethasone loaded metal–organic framework: a local drug delivery system for bone tissue engineering. Cellulose 26(12):7253–7269

    Article  Google Scholar 

  220. Zhang Y, Chen M, Dai Z, Cao H, Li J, Zhang W (2020) Sustained protein therapeutics enabled by self-healing nanocomposite hydrogels for non-invasive bone regeneration. Biomater Sci 8(2):682–693

    Article  Google Scholar 

  221. Lei B, Guo B, Rambhia KJ, Ma PX (2019) Hybrid polymer biomaterials for bone tissue regeneration. Front Med 13(2):189–201

    Article  Google Scholar 

  222. Shi C, Yuan Z, Han F, Zhu C, Li B (2016) Polymeric biomaterials for bone regeneration. Ann Jt 1:1

    Article  Google Scholar 

  223. Dwivedi R, Kumar S, Pandey R, Mahajan A, Nandana D, Katti DS, Mehrotra D (2020) Polycaprolactone as biomaterial for bone scaffolds: review of literature. J Oral Biol Craniofac Res 10(1):381–388

    Article  Google Scholar 

  224. Kouhi M, Morshed M, Varshosaz J, Fathi MH (2013) Poly (ε-caprolactone) incorporated bioactive glass nanoparticles and simvastatin nanocomposite nanofibers: preparation, characterization and in vitro drug release for bone regeneration applications. Chem Eng J 228:1057–1065

    Article  Google Scholar 

  225. Nithya R, Sundaram NM (2015) Biodegradation and cytotoxicity of ciprofloxacin-loaded hydroxyapatite-polycaprolactone nanocomposite film for sustainable bone implants. Int J Nanomed 10(Suppl 1):119

    Google Scholar 

  226. Liu X, Zhao K, Gong T, Song J, Bao C, Luo E, Weng J, Zhou S (2014) Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect. Biomacromolecules 15(3):1019–1030

    Article  Google Scholar 

  227. Grémare A, Guduric V, Bareille R, Heroguez V, Latour S, L’heureux N, Fricain JC, Catros S, Le Nihouannen D (2018) Characterization of printed PLA scaffolds for bone tissue engineering. J Biomed Mater Res Part A 106(4):887–894

    Google Scholar 

  228. Zhou R, Xu W, Chen F, Qi C, Lu BQ, Zhang H, Wu J, Qian QR, Zhu YJ (2014) Amorphous calcium phosphate nanospheres/polylactide composite coated tantalum scaffold: facile preparation, fast biomineralization and subchondral bone defect repair application. Colloids Surf B 123:236–245

    Article  Google Scholar 

  229. Köse GT, Korkusuz F, Korkusuz PE, Purali N, Özkul A, Hasırcı V (2003) Bone generation on PHBV matrices: an in vitro study. Biomaterials 24(27):4999–5007

    Article  Google Scholar 

  230. Duan B, Wang M (2010) Customized Ca–P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. J Roy Soc Interface 7(suppl_5):S615–S629

    Google Scholar 

  231. de Almeida Neto GR, Barcelos MV, Ribeiro ME, Folly MM, Rodríguez RJ (2019) Formulation and characterization of a novel PHBV nanocomposite for bone defect filling and infection treatment. Mater Sci Eng C 104:

    Article  Google Scholar 

  232. Wang C, Zhao Q, Wang M (2017) Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering. Biofabrication 9(2):

    Article  Google Scholar 

  233. Lu S, McGough MA, Shiels SM, Zienkiewicz KJ, Merkel AR, Vanderburgh JP, Nyman JS, Sterling JA, Tennent DJ, Wenke JC, Guelcher SA (2018) Settable polymer/ceramic composite bone grafts stabilize weight-bearing tibial plateau slot defects and integrate with host bone in an ovine model. Biomaterials 179:29–45

    Article  Google Scholar 

  234. Shu X, Feng J, Feng J, Huang X, Li L, Shi Q (2017) Combined delivery of bone morphogenetic protein-2 and insulin-like growth factor-1 from nano-poly (γ-glutamic acid)/β-tricalcium phosphate-based calcium phosphate cement and its effect on bone regeneration in vitro. J Biomater Appl 32(5):547–560

    Article  Google Scholar 

  235. Su J, Xu H, Sun J, Gong X, Zhao H (2013) Dual delivery of BMP-2 and bFGF from a new nano-composite scaffold, loaded with vascular stents for large-size mandibular defect regeneration. Int J Mol Sci 14(6):12714–12728

    Article  Google Scholar 

  236. Zhang X, Geven MA, Wang X, Qin L, Grijpma DW, Peijs T, Eglin D, Guillaume O, Gautrot JE (2018) A drug eluting poly (trimethylene carbonate)/poly (lactic acid)-reinforced nanocomposite for the functional delivery of osteogenic molecules. Int J Nanomed 13:5701

    Article  Google Scholar 

  237. Nazemi K, Azadpour P, Moztarzadeh F, Urbanska AM, Mozafari M (2015) Tissue-engineered chitosan/bioactive glass bone scaffolds integrated with PLGA nanoparticles: a therapeutic design for on-demand drug delivery. Mater Lett 138:16–20

    Article  Google Scholar 

  238. Asadian-Ardakani V, Saber-Samandari S, Saber-Samandari S (2016) The effect of hydroxyapatite in biopolymer-based scaffolds on release of naproxen sodium. J Biomed Mater Res Part A 104(12):2992–3003

    Article  Google Scholar 

  239. Ji M, Li H, Guo H, Xie A, Wang S, Huang F, Li S, Shen Y, He J (2016) A novel porous aspirin-loaded (GO/CTS-HA) n nanocomposite films: synthesis and multifunction for bone tissue engineering. Carbohyd Polym 153:124–132

    Article  Google Scholar 

  240. Hu Y, Ma S, Yang Z, Zhou W, Du Z, Huang J, Yi H, Wang C (2016) Facile fabrication of poly (L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates. Colloids Surf B 140:382–391

    Article  Google Scholar 

  241. Wu H, Lei P, Liu G, Zhang YS, Yang J, Zhang L, Xie J, Niu W, Liu H, Ruan J, Hu Y (2017) Reconstruction of Large-scale Defects with a Novel Hybrid Scaffold Made from Poly (L-lactic acid)/Nanohydroxyapatite/Alendronate-loaded Chitosan Microsphere: in vitro and in vivo Studies. Scientific reports 7(1):1–4

    Google Scholar 

  242. Wang Y, Cui W, Zhao X, Wen S, Sun Y, Han J, Zhang H (2019) Bone remodeling-inspired dual delivery electrospun nanofibers for promoting bone regeneration. Nanoscale 11(1):60–71

    Google Scholar 

  243. Farokhi M, Mottaghitalab F, Ai J, Shokrgozar MA (2013) Sustained release of platelet-derived growth factor and vascular endothelial growth factor from silk/calcium phosphate/PLGA based nanocomposite scaffold. Int J Pharm 454(1):216–225

    Google Scholar 

  244. El-Fiqi A, Kim JH, Kim HW (2015) Osteoinductive fibrous scaffolds of biopolymer/mesoporous bioactive glass nanocarriers with excellent bioactivity and long-term delivery of osteogenic drug. ACS Appl Mater Interfaces 7(2):1140–1152

    Google Scholar 

  245. Kuttappan S, Mathew D, Jo JI, Tanaka R, Menon D, Ishimoto T, Nakano T, Nair SV, Nair MB, Tabata Y (2018) Dual release of growth factor from nanocomposite fibrous scaffold promotes vascularisation and bone regeneration in rat critical sized calvarial defect. Acta Biomater 78:36–47

    Google Scholar 

  246. Krishnan AG, Biswas R, Menon D, Nair MB (2020) Biodegradable nanocomposite fibrous scaffold mediated local delivery of vancomycin for the treatment of MRSA infected experimental osteomyelitis. Biomater Sci 8(9):2653–2665

    Google Scholar 

  247. Farokhi M, Mottaghitalab F, Shokrgozar MA, Ai J, Hadjati J, Azami M (2014) Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor. Mater Sci Eng C 35:401–410

    Google Scholar 

  248. Amjadian S, Seyedjafari E, Zeynali B, Shabani I (2016) The synergistic effect of nano-hydroxyapatite and dexamethasone in the fibrous delivery system of gelatin and poly (l-lactide) on the osteogenesis of mesenchymal stem cells. Int J Pharm 507(1–2):1

    Google Scholar 

Download references

Acknowledgements

This study was supported by a fellowship awarded to K.L. (DST/INSPIRE Fellowship/2018/IF180184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Selvamurugan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lavanya, K., Swetha, S., Selvamurugan, N. (2022). Biopolymers/Ceramic-Based Nanocomposite Scaffolds for Drug Delivery in Bone Tissue Engineering. In: Hasnain, M.S., Nayak, A.K., Alkahtani, S. (eds) Polymeric and Natural Composites. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-70266-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70266-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70265-6

  • Online ISBN: 978-3-030-70266-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics