Skip to main content

Vortex Identification Study of Flow Past Stationary or Oscillating Cylinder

  • Conference paper
  • First Online:
Liutex and Third Generation of Vortex Definition and Identification
  • 633 Accesses

Abstract

In this paper, vortex identifications for turbulent flow past a stationary and oscillating cylinder is performed on the three-dimensional velocity field obtained by delayed detached-eddy simulation. The Reynolds number of the flow based on the cylinder diameter is 41,750. For the oscillating case, the moving boundary and the motion of the cylinder is archived by Arbitrary Lagrangian-Eulerian method. Third generation vortex identification methods, namely Liutex vector and the Omega-Liutex method are presented to understand the coherent turbulent flow structures. Quantitative flow variables such as drag and lift coefficients, pressure on the cylinder surface are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.H.K. Williamson, Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28(1), 477–539 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  2. C.H.K. Williamson, R. Govardhan, Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36(1), 413–455 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  3. X. Ma, G.-S. Karamanos, G.E. Karniadakis, Dynamics and low-dimensionality of a turbulent near wake. J. Fluid Mech. 410, 29–65 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  4. P. Beaudan, P. Moin, Numerical experiments on the flow past a circular cylinder at sub-critical Reynolds number[R]. No. TF-62, Stanford University CA Thermosciences Div (1994)

    Google Scholar 

  5. R. Mittal, P. Moin, Suitability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows. AIAA J. 35(8), 1415–1417 (1997)

    Article  ADS  Google Scholar 

  6. A.G. Kravchenko, P. Moin, Numerical studies of flow over a circular cylinder at ReD=3900. Phys. Fluids 12(2), 403–417 (2000)

    Article  ADS  Google Scholar 

  7. P. Parnaudeau, J. Carlier, D. Heitz, et al., Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900. Phys. Fluids 20(8), 085101 (2008)

    Article  ADS  Google Scholar 

  8. D.A. Lysenko, I.S. Ertesvåg, K.E. Rian, Large-eddy simulation of the flow over a circular cylinder at Reynolds number 3900 using the OpenFOAM toolbox. Flow Turbul. Combust. 89(4), 491–518 (2012)

    Article  Google Scholar 

  9. R. Zhao, J. Liu, C. Yan, S. Fu, W. Haase, S.-H. Peng, et al., Detailed investigation of detached-eddy simulation for the flow past a circular cylinder at Re=3900[G], in Progress in Hybrid RANS-LES Modelling, (Springer, Berlin Heidelberg, 2012), pp. 401–412

    Chapter  Google Scholar 

  10. M. Breuer, A challenging test case for large eddy simulation: high Reynolds number circular cylinder flow. Int. J. Heat Fluid Flow 21(5), 648–654 (2000)

    Article  Google Scholar 

  11. A. Travin, M. Shur, M. Strelets, et al., Detached-eddy simulations past a circular cylinder[J]. Flow Turbul. Combust. 63(1–4), 293–313 (2000)

    Article  Google Scholar 

  12. T. Sarpkaya, Vortex-induced oscillations: a selective review[J]. J. Appl. Mech. 46(2), 241–258 (1979)

    Article  ADS  Google Scholar 

  13. T. Sarpkaya, H. Benaroya, T.J.A. Wei, Critical review of the intrinsic nature of VIV[C], in IUTAM Symposium on Integrated Modeling of Fully Coupled Fluid Structure Interactions Using Analysis, Computations and Experiments, (Fluid Mechanics and its Applications, Dordrecht, 2003), pp. 159–161

    Chapter  Google Scholar 

  14. P.W. Bearman, Vortex shedding from oscillating bluff bodies[J]. Annu. Rev. Fluid Mech. 16(1), 195–222 (1984)

    Article  ADS  Google Scholar 

  15. P.W. Bearman, Circular cylinder wakes and vortex-induced vibrations[J]. J. Fluid. Struct. 27(5–6), 648–658 (2011)

    Article  ADS  Google Scholar 

  16. X. Wu, F. Ge, Y. Hong, A review of recent studies on vortex-induced vibrations of long slender cylinders[J]. J. Fluid. Struct. 28, 292–308 (2012)

    Article  ADS  Google Scholar 

  17. H.M. Blackburn, R.N. Govardhan, C.H.K. Williamson, A complementary numerical and physical investigation of vortex-induced vibration[J]. J. Fluid. Struct. 15(3), 481–488 (2001)

    Article  ADS  Google Scholar 

  18. C. Evangelinos, G.E. Karniadakis, Dynamics and flow structures in the turbulent wake of rigid and flexible cylinders subject to vortex-induced vibrations[J]. J. Fluid Mech. Cambridge Univ. Press 400, 91–124 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  19. C. Evangelinos, D. Lucor, G.E. Karniadakis, DNS-derived force distribution on flexible cylinders subject to vortex-induced vibration[J]. J. Fluid. Struct. 14(3), 429–440 (2000)

    Article  ADS  Google Scholar 

  20. M.A. Tognarelli, S.T. Slocum, W.R. Frank, et al., VIV Response of a Long Flexible Cylinder in Uniform and Linearly Sheared Currents[C], in Offshore Technology Conference (Houston, TX, 2004)

    Google Scholar 

  21. Y. Constantinides, O.H. Oakley Jr., S. Holmes, Analysis of turbulent flows and VIV of truss spar risers[C], in Proceedings of 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany (2006)

    Google Scholar 

  22. S. Holmes, Y. Constantinides, O.H. Oakley Jr., Simulation of riser VIV using fully three dimensional CFD simulations[C] (2006)

    Google Scholar 

  23. R.H.J. Willden, J.M.R. Graham, Numerical prediction of viv on long flexible circular cylinders[J]. J. Fluid. Struct. 15(3), 659–669 (2001)

    Article  ADS  Google Scholar 

  24. R.H.J. Willden, J.M.R. Graham, Multi-modal Vortex-Induced Vibrations of a vertical riser pipe subject to a uniform current profile[J]. Eur. J. Mech. B Fluid. 23(1), 209–218 (2004)

    Article  Google Scholar 

  25. W. Zhao, D. Wan, Detached-eddy simulation of flow past tandem cylinders[J]. Appl. Math. Mech. 37(12), 1272–1281 (2016)

    Google Scholar 

  26. M.S. Gritskevich, A.V. Garbaruk, J. Schütze, et al., Development of DDES and IDDES formulations for the k-ω shear stress transport model[J]. Flow Turbul. Combust. 88(3), 431–449 (2012)

    Article  Google Scholar 

  27. Y. Gao, C. Liu, Rortex and comparison with eigenvalue-based vortex identification criteria[J]. Phys. Fluids 30(8), 085107 (2018)

    Article  ADS  Google Scholar 

  28. C. Liu, Y. Gao, S. Tian, et al., Rortex—A new vortex vector definition and vorticity tensor and vector decompositions[J]. Phys. Fluids 30(3), 035103 (2018)

    Article  ADS  Google Scholar 

  29. C. Liu, Y. Gao, X. Dong, et al., Third generation of vortex identification methods: Omega and Liutex/Rortex based systems[J]. J. Hydrodyn. 31(2), 205–223 (2019)

    Article  ADS  Google Scholar 

  30. X. Dong, Y. Gao, C. Liu, New normalized Rortex/vortex identification method[J]. Phys. Fluids 31(1), 011701 (2019)

    Article  ADS  Google Scholar 

  31. J. Liu, C. Liu, Modified normalized Rortex/vortex identification method[J]. Phys. Fluids 31(6), 061704 (2019)

    Article  ADS  Google Scholar 

  32. C. Liu, Y. Wang, Y. Yang, et al., New omega vortex identification method[J]. Sci. China Phys. Mechan.Astron. 59(8), 684711 (2016)

    Article  Google Scholar 

  33. G.F. Rosetti, G. Vaz, M. Hoekstra, et al., CFD calculations for free-surface-piercing low aspect ratio circular cylinder with solution verification and comparison with experiments[C]. 7 (2013)

    Google Scholar 

  34. C. Norberg, Flow around rectangular cylinders: pressure forces and wake frequencies[J]. J. Wind Eng. Ind. Aerodyn. 49(1–3), 187–196 (1993)

    Article  Google Scholar 

  35. H. Xu, X. Cai, C. Liu, Liutex (vortex) core definition and automatic identification for turbulence vortex structures[J]. J. Hydrodyn. 31(5), 857–863 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (51909160, 51879159), The National Key Research and Development Program of China (2019YFB1704200, 2019YFC0312400), Chang Jiang Scholars Program (T2014099), and Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China (2016-23/09), to which the authors are most grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Decheng Wan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, W., Wan, D. (2021). Vortex Identification Study of Flow Past Stationary or Oscillating Cylinder. In: Liu, C., Wang, Y. (eds) Liutex and Third Generation of Vortex Definition and Identification. Springer, Cham. https://doi.org/10.1007/978-3-030-70217-5_21

Download citation

Publish with us

Policies and ethics