Skip to main content

Microfluidic Technologies for Head and Neck Cancer: From Single-Cell Analysis to Tumor-on-a-Chip

  • Chapter
  • First Online:
Early Detection and Treatment of Head & Neck Cancers

Abstract

Emerging microfluidic technologies involving miniaturization for high throughput and integration with various on-line detection modalities hold intriguing advantages for cancer diagnosis, tumor microenvironment modeling, and drug evaluation. This book chapter overviews recent advances in diagnosis and therapy for head and neck cancer using microfluidic-based techniques. The basic working principles and experimental results of key microfluidic platforms for head and neck cancer biomarker analysis, cancer cell detection at single-cell levels, and tumor-on-chip model reconstruction for therapeutic assessment and drug evaluation are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vigneswaran N, Williams MD. Epidemiological trends in head and neck cancer and aids in diagnosis. Oral Maxillofac Surg Clin North Am. 2014;26:123–41.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jemal A, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  3. Sabaila A, Fauconnier A, Huchon C. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;43:66–7.

    CAS  Google Scholar 

  4. Pires FR, et al. Oral squamous cell carcinoma: clinicopathological features from 346 cases from a single Oral pathology service during an 8-year period. J Appl Oral Sci. 2017;21:460–7.

    Article  Google Scholar 

  5. Noguti J, et al. Metastasis from oral cancer: an overview. Cancer Genomics Proteomics. 2012;9:329–36.

    CAS  PubMed  Google Scholar 

  6. Akbulut N, Altan A. Early detection and multidisciplinary approach to oral cancer patients. Prevention, detection and management of oral cancer (ed. Sundaresan, S.) 13 (IntechOpen, 2018).

    Google Scholar 

  7. Yakob M, Fuentes L, Wang MB, Abemayor E, Wong DTW. Salivary biomarkers for detection of oral squamous cell carcinoma: current state and recent advances. Curr Oral Heal Rep. 2014;1:133–41.

    Article  Google Scholar 

  8. Rivera C. Essentials of oral cancer. Int J Clin Exp Pathol. 2015;8:11884–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cognetti DM, Weber RS, Lai SY. Head and neck cancer: an evolving treatment paradigm. Cancer. 2008;113:1911–32.

    Article  PubMed  Google Scholar 

  10. Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014;507:181–9.

    Article  CAS  PubMed  Google Scholar 

  11. Ahn J, Sei Y, Jeon N, Kim Y. Tumor microenvironment on a chip: the progress and future perspective. Bioengineering. 2017;4:64.

    Article  PubMed Central  CAS  Google Scholar 

  12. Mark D, Haeberle S, Roth G, Von Stetten F, Zengerle R. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev. 2010;39:1153–82. https://doi.org/10.1039/b820557b.

  13. Ren K, Zhou J, Wu H. Materials for microfluidic chip fabrication. Acc Chem Res. 2013;46:2396–406.

    Article  CAS  PubMed  Google Scholar 

  14. Ashley JF, Cramer NB, Davis RH, Bowman CN. Soft-lithography fabrication of microfluidic features using thiol-ene formulations. Lab Chip. 2011;11:2772–8.

    Article  CAS  PubMed  Google Scholar 

  15. Zips S, et al. Direct stereolithographic 3D printing of microfluidic structures on polymer substrates for printed electronics. Adv Mater Technol. 2019;4:1–5.

    Article  CAS  Google Scholar 

  16. Coluccio ML, et al. Microfluidic platforms for cell cultures and investigations. Microelectron Eng. 2019;208:14–28.

    Article  CAS  Google Scholar 

  17. Duncombe TA, Tentori AM, Herr AE. Microfluidics: reframing biological enquiry. Nat Rev Mol Cell Biol. 2015;16:554–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tehranirokh M, Kouzani AZ, Francis PS, Kanwar JR. Microfluidic devices for cell cultivation and proliferation. Biomicrofluidics. 2013;7:1–32.

    Article  CAS  Google Scholar 

  19. Wang X, Liu Z, Pang Y. Concentration gradient generation methods based on microfluidic systems. RSC Adv. 2017;7:29966–84.

    Article  CAS  Google Scholar 

  20. Kim SH, Lee GH, Park JY, Lee SH. Microplatforms for gradient field generation of various properties and biological applications. J Lab Autom. 2015;20:82–95.

    Article  CAS  PubMed  Google Scholar 

  21. Luka G, et al. Microfluidics integrated biosensors: a leading technology towards lab-on-A-chip and sensing applications. Sensors (Switzerland). 2015;15:30011–31.

    Article  CAS  Google Scholar 

  22. Eze N, Lo Y-C, Burtness B. Biomarker driven treatment of head and neck squamous cell cancer. Cancers Head Neck. 2017;2:1–12.

    Article  Google Scholar 

  23. Ferrari D, et al. Role of plasma EBV DNA levels in predicting recurrence of nasopharyngeal carcinoma in a western population. BMC Cancer. 2012;12:208.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pandya D, Nagarajappa AK, Reddy S, Bhasin M. Lab-on-a-Chip-oral cancer diagnosis at your door step. J Int Oral Heal. 2015;7:122–8.

    Google Scholar 

  25. Thomas GR, Nadiminti H, Regalado J. Molecular predictors of clinical outcome in patients with head and neck squamous cell carcinoma. Int J Exp Pathol. 2005;86:347–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hayes B, Murphy C, Crawley A, O’Kennedy R. Developments in point-of-care diagnostic technology for cancer detection. Diagnostics. 2018;8:39.

    Article  PubMed Central  CAS  Google Scholar 

  27. Rackus DG, Shamsi MH, Wheeler AR. Electrochemistry, biosensors and microfluidics: a convergence of fields. Chem Soc Rev. 2015;44:5320–40.

    Article  CAS  PubMed  Google Scholar 

  28. Mauk MG, Ziober BL, Chen Z, Thompson JA, Bau HH. Lab-on-a-chip technologies for oral-based cancer screening and diagnostics: capabilities, issues, and prospects. Ann N Y Acad Sci. 2007;1098:467–75.

    Article  CAS  PubMed  Google Scholar 

  29. Soares AC, et al. Microfluidic-based genosensor to detect human papillomavirus (HPV16) for head and neck cancer. ACS Appl Mater Interfaces. 2018;10:36757–63.

    Article  CAS  PubMed  Google Scholar 

  30. Weigum SE, et al. Nano-Bio-Chip sensor platform for examination of oral exfoliative cytology. Cancer Prev Res. 2010;3:518–28.

    Article  CAS  Google Scholar 

  31. Malhotra R, et al. Ultrasensitive detection of cancer biomarkers in the clinic using a nanostructured microfluidic array. Anal Chem. 2012;84:6249–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang A, Wang CP, Tu M, Wong DTW. Oral biofluid biomarker research: current status and emerging frontiers. Diagnostics. 2016;6:PMC5192520.

    Article  CAS  Google Scholar 

  33. Herr AE, et al. Microfluidic immunoassays as rapid saliva-based clinical diagnostics. Proc Natl Acad Sci. 2007;104:5268–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaczor-Urbanowicz KE, et al. Emerging technologies for salivaomics in cancer detection. J Cell Mol Med. 2017;21:640–7.

    Article  CAS  PubMed  Google Scholar 

  35. Khan R, Khurshid Z, Yahya Ibrahim Asiri F. Advancing Point-of-Care (PoC) testing using human saliva as liquid biopsy. Diagnostics. 2017;7:39.

    Article  PubMed Central  CAS  Google Scholar 

  36. Zilberman Y, Sonkusale SR. Biosensors and bioelectronics microfluidic optoelectronic sensor for salivary diagnostics of stomach cancer. Biosens Bioelectron. 2015;67:465–71.

    Article  CAS  PubMed  Google Scholar 

  37. Herr AE, et al. Integrated microfluidic platform for oral diagnostics. Ann N Y Acad Sci. 2007;1098:362–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gau V, Wong D. Oral Fluid Nanosensor Test (OFNASET) with advanced electrochemical-based molecular analysis platform. Ann N Y Acad Sci. 2007;1098:401–10.

    Article  CAS  PubMed  Google Scholar 

  39. Wang Z, et al. A microfluidic chip-based fluorescent biosensor for the sensitive and specific detection of label-free single-base mismatch via magnetic beads-based ‘sandwich’ hybridization strategy. Electrophoresis. 2013;34:2177–84.

    Article  CAS  PubMed  Google Scholar 

  40. Lin YH, et al. Detection of anti-p53 autoantibodies in saliva using microfluidic chips for the rapid screening of oral cancer. RSC Adv. 2018;8:15513–21.

    Article  CAS  PubMed Central  Google Scholar 

  41. López-Verdín S, et al. Molecular markers of anticancer drug resistance in head and neck squamous cell carcinoma: a literature review. Cancers (Basel). 2018;10:1–15.

    Article  CAS  Google Scholar 

  42. Canning M, et al. Heterogeneity of the head and neck squamous cell carcinoma immune landscape and its impact on immunotherapy. Front Cell Dev Biol. 2019;7:1–19.

    Article  Google Scholar 

  43. Reese JB, et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell. 2018;123:4757–63.

    Google Scholar 

  44. He CK, Chen YW, Wang SH, Hsu CH. Hydrodynamic shuttling for deterministic high-efficiency multiple single-cell capture in a microfluidic chip. Lab Chip. 2019;19:1370–7.

    Article  CAS  PubMed  Google Scholar 

  45. Runge J, et al. Evaluation of single-cell biomechanics as potential marker for oral squamous cell carcinomas: a pilot study. Oral Dis. 2014;20:120–7.

    Article  Google Scholar 

  46. Weigum SE, Floriano PN, Christodoulides N, McDevitt JT. Cell-based sensor for analysis of EGFR biomarker expression in oral cancer. Lab Chip. 2007;7:995–1003.

    Article  CAS  PubMed  Google Scholar 

  47. Abram TJ, et al. Development of a cytology-based multivariate analytical risk index for oral cancer. Oral Oncol. 2019;92:6–11.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Abram TJ, et al. Cytology-on-a-chip’ based sensors for monitoring of potentially malignant oral lesions. Oral Oncol. 2016;60:103–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mulhall HJ, et al. Cancer, pre-cancer and normal oral cells distinguished by dielectrophoresis. Anal Bioanal Chem. 2011;401:2455–63.

    Article  CAS  PubMed  Google Scholar 

  50. Broche LM, et al. Early detection of oral cancer – is dielectrophoresis the answer? Oral Oncol. 2007;43:199–203.

    Google Scholar 

  51. Adekanmbi EO, Srivastava SK. Dielectrophoretic applications for disease diagnostics using lab-on-a-chip platforms. Lab Chip. 2016;16:2148–67.

    Article  CAS  PubMed  Google Scholar 

  52. Cheung KC, et al. Microfluidic impedance-based flow cytometry. Cytom Part A. 2010;77:648–66.

    Article  CAS  Google Scholar 

  53. Yang L, Arias LR, Lane TS, Yancey MD, Mamouni J. Real-time electrical impedance-based measurement to distinguish oral cancer cells and non-cancer oral epithelial cells. Anal Bioanal Chem. 2011;399:1823–33.

    Article  CAS  PubMed  Google Scholar 

  54. Tsai HF, Peng SW, Wu CY, Chang HF, Cheng JY. Electrotaxis of oral squamous cell carcinoma cells in a multiple-electric-field chip with uniform flow field. Biomicrofluidics. 2012;6:34116.

    Article  PubMed  CAS  Google Scholar 

  55. Perumal V, et al. Circulating tumour cells (CTC), head and neck cancer and radiotherapy; future perspectives. Cancers (Basel). 2019;11:1–25.

    Article  CAS  Google Scholar 

  56. Maremanda NG, et al. Quick chip assay using locked nucleic acid modified epithelial cell adhesion molecule and nucleolin aptamers for the capture of circulating tumor cells. Biomicrofluidics. 2015;9:1–20.

    Article  CAS  Google Scholar 

  57. Kulasinghe A, Zhou J, Kenny L, Papautsky I, Punyadeera C. Capture of circulating tumour cell clusters using straight microfluidic chips. Cancers (Basel). 2019;11:1–11.

    Article  Google Scholar 

  58. Kulasinghe A, et al. Enrichment of circulating head and neck tumour cells using spiral microfluidic technology. Sci Rep. 2017;7:1–10.

    Article  CAS  Google Scholar 

  59. Liu T, et al. A microfluidic device for characterizing the invasion of cancer cells in 3-D matrix. Electrophoresis. 2009;30:4285–91.

    Article  CAS  PubMed  Google Scholar 

  60. Li X, et al. Downregulation of miR-218-5p promotes invasion of oral squamous cell carcinoma cells via activation of CD44-ROCK signaling. Biomed Pharmacother. 2018;106:646–54.

    Article  CAS  PubMed  Google Scholar 

  61. Li J, et al. Carcinoma-associated fibroblasts lead the invasion of salivary gland adenoid cystic carcinoma cells by creating an invasive track. PLoS One. 2016;11:1–15.

    Google Scholar 

  62. Chen YC, et al. Single-cell migration chip for chemotaxis-based microfluidic selection of heterogeneous cell populations. Sci Rep. 2015;5:1–13.

    Google Scholar 

  63. Kim HS, et al. Endothelial-derived interleukin-6 induces cancer stem cell motility by generating a chemotactic gradient towards blood vessels. Oncotarget. 2017;8:100339–52.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ayuso JM, et al. Study of the chemotactic response of multicellular spheroids in a microfluidic device. PLoS One. 2015;10:1–16.

    Article  Google Scholar 

  65. Tan CP, et al. Parylene peel-off arrays to probe the role of cell-cell interactions in tumour angiogenesis. Integr Biol. 2009;1:587–94.

    Article  CAS  Google Scholar 

  66. Liu L, et al. Biomimetic tumor-induced angiogenesis and anti-angiogenic therapy in a microfluidic model. RSC Adv. 2016;6:35248–56.

    Article  CAS  Google Scholar 

  67. Kochanek SJ, Close DA, Johnston PA. High content screening characterization of head and neck squamous cell carcinoma multicellular tumor spheroid cultures generated in 384-well ultra-low attachment plates to screen for better cancer drug leads. Assay Drug Dev Technol. 2019;17:17–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tanaka N, et al. Head and neck cancer organoids established by modification of the CTOS method can be used to predict in vivo drug sensitivity. Oral Oncol. 2018;87:49–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ong LJY, et al. A 3D printed microfluidic perfusion device for multicellular spheroid cultures. Biofabrication. 2017;9:45005.

    Article  CAS  Google Scholar 

  70. Al-samadi A, et al. In vitro humanized 3D microfluidic chip for testing personalized immunotherapeutics for head and neck cancer patients. Exp Cell Res. 2019;383:111508.

    Article  CAS  PubMed  Google Scholar 

  71. Jin D, et al. Application of a microfluidic-based perivascular tumor model for testing drug sensitivity in head and neck cancers and toxicity in endothelium. RSC Adv. 2016;6:29598–607.

    Article  CAS  Google Scholar 

  72. Hsieh CC, Huang S, Bin W, C P, Shieh DB, Lee GB. A microfluidic cell culture platform for real-time cellular imaging. Biomed Microdevices. 2009;11:903–13.

    Article  PubMed  Google Scholar 

  73. Bower R, et al. Maintenance of head and neck tumor on-chip: gateway to personalized treatment? Futur. Sci. OA. 2017;3:FSO174.

    Article  CAS  Google Scholar 

  74. Cheah R, et al. Measuring the response of human head and neck squamous cell carcinoma to irradiation in a microfluidic model allowing customized therapy. Int J Oncol. 2017;51:1227–38.

    Article  CAS  PubMed  Google Scholar 

  75. Hattersley SM, et al. A microfluidic system for testing the responses of head and neck squamous cell carcinoma tissue biopsies to treatment with chemotherapy drugs. Ann Biomed Eng. 2012;40:1277–88.

    Article  PubMed  Google Scholar 

  76. Kennedy R, et al. A patient tumour-on-a-chip system for personalised investigation of radiotherapy based treatment regimens. Sci Rep. 2019;9:1–10.

    Article  Google Scholar 

  77. Tanweer F, Green VL, Stafford ND, Greenman J. Application of microfluidic systems in management of head and neck squamous cell carcinoma. Head Neck. 2014;36:1391.

    Google Scholar 

  78. Riley A, et al. A novel microfluidic device capable of maintaining functional thyroid carcinoma specimens ex vivo provides a new drug screening platform. BMC Cancer. 2019;19:1–13.

    Article  Google Scholar 

  79. Sylvester D, Hattersley SM, Stafford ND, Haswell SJ. Development of microfluidic-based analytical methodology for studying the effects of chemotherapy agents on cancer tissue. Curr Anal Chem. 2012;9:2–8.

    Article  Google Scholar 

  80. Sylvester D, Hattersley S, Haswell S. Development of microfluidic based devices for studying tumour biology and evaluating treatment response in head and neck cancer biopsies. 14th Int Conf Miniaturized Syst Chem Life Sci. 2010:1472–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, Y., Wang, H. (2021). Microfluidic Technologies for Head and Neck Cancer: From Single-Cell Analysis to Tumor-on-a-Chip. In: El Assal, R., Gaudilliere, D., Connelly, S.T. (eds) Early Detection and Treatment of Head & Neck Cancers. Springer, Cham. https://doi.org/10.1007/978-3-030-69859-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69859-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69858-4

  • Online ISBN: 978-3-030-69859-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics