Skip to main content

Mathematical Modeling of the Electromagnetic Processes of the Corona’s Formation During the Operation of Electric Power Facilities

  • Chapter
  • First Online:
Control of Overhead Power Lines with Unmanned Aerial Vehicles (UAVs)

Abstract

The chapter is devoted to the physical causes of the corona discharge in the elements of the electric power system. The most significant negative consequences of a corona discharge are the loss of electricity, as well as a decrease of its quality due to the appearance of higher harmonics. The cause of this discharge is the presence of an electric field with a significant gradient. Therefore, the section simulates electric fields in the presence of rods with rounded vertices and in the presence of curved interface surfaces. Conclusions are drawn on the influence of the geometry of rods with rounded vertices at the level of maximum electric field strength. A combined technique of mathematical modeling of electric field amplification on the rounded vertices of very long cylindrical rods is given. The calculation of the amplification of the electric field at the tops of long cylindrical rods is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, X., Heng, W., Yu, Z., Li, S., Zhu, J., Yan, K.: Comparison of styrene removal in air by positive and negative DC corona discharges. Int. J. Environ. Sci. Technol. 10, 1377–1382 (2013). https://doi.org/10.1007/s13762-012-0175-y

    Article  Google Scholar 

  2. Zaitsev, I.O., Kuchanskyy, V.V.: Corona discharge problem in extra high voltage transmission line. In: Zaporozhets, A., Artemchuk, V. (eds.) Systems, Decision and Control in Energy II. Studies in Systems, Decision and Control, pp. 3–30. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69189-9_1

    Article  Google Scholar 

  3. Yawootti, A., Intra, P., Tippayawong, N., Rattanadecho, P.: An experimental study of relative humidity and air flow effects on positive and negative corona discharges in a corona-needle charger. J. Electrostat. 77, 116–122 (2015). https://doi.org/10.1016/j.elstat.2015.07.011

    Article  Google Scholar 

  4. Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Principles of construction of systems for diagnosing the energy equipment. In: Diagnostic Systems For Energy Equipments. Studies in Systems, Decision and Control, pp. 1–22. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44443-3_1

    Article  Google Scholar 

  5. Wu, C., Xie, S., Qi, F., Li, B., Wan, J., He, J.: Effect of corona discharges on the inception of positive upward leader-streamer system. Int. J. Mod. Phys. B 27(28), 1350165 (2013). https://doi.org/10.1142/S0217979213501658

    Article  Google Scholar 

  6. Rezinkina, M.M., Rezinkin, O.L., Svetlichnaya, E.E.: Electric field in the vicinity of long thin conducting rods. Tech. Phys. 60, 1277–1283 (2015). https://doi.org/10.1134/S1063784215090182

    Article  Google Scholar 

  7. Thang, T.H., Baba, Y., Nagaoka, N., Ametani, A., Takami, J., Okabe, S., Rakov, V.A.: FDTD simulation of lightning surges on overhead wires in the presence of corona discharge. IEEE Trans. Electromag. Comp. 54(6), 1234–1243. https://doi.org/10.1109/TEMC.2012.2198919

  8. He, W., Chen, X., Wan, B., Lan, L., Fu, W., Guo, H., Wen, X.: Characteristics of alternating current corona discharge pulses and its radio interference level in a coaxial wire-cylinder gap. IEEE Trans. Plasma Sci. 46(3), 598–605 (2018). https://doi.org/10.1109/TPS.2018.2801388

    Article  Google Scholar 

  9. Kuchanskyy, V., Zaitsev, I.O.: Corona discharge power losses measurement systems in extra high voltage transmissions lines. In: 2020 IEEE 7th International Conference on Energy Smart Systems (ESS), 2020, Kyiv, Ukraine, pp. 48–53. https://doi.org/10.1109/ess50319.2020.9160088

  10. Rezinkina, M., Rezinkin, O., D’Alessandro, F., Danyliuk, A., Guchenko, A., Lytvynenko, S.: Experimental and modelling study of the dependence of corona discharge on electrode geometry and ambient electric field. J. Electrostat. 87, 79–85 (2017). https://doi.org/10.1016/j.elstat.2017.03.008

    Article  Google Scholar 

  11. Rezinkina, M.: Modelling of electric field strength amplification at the tips of thin conductive rods arrays. Progress Electromag. Res. M 88, 111–119 (2020). https://doi.org/10.2528/PIERM19102702

    Article  Google Scholar 

  12. Fews, A.P., Wilding, R.J., Keitch, P.A., Holden, N.K., Henshaw, D.L.: Modification of atmospheric DC fields by space charge from high-voltage power lines. Atmos. Res. 63(3–4), 271–279 (2002). https://doi.org/10.1016/S0169-8095(02)00041-8

    Article  Google Scholar 

  13. Cooray, V.: Charge and voltage characteristics of corona discharges in a coaxial geometry. IEEE Trans. Dielectr. Electr. Insul. 7(6), 734–743 (2000). https://doi.org/10.1109/94.891983

    Article  Google Scholar 

  14. Rezinkina, M., Rezinkin, O., Sokol, Y., Lytvynenko, S.: Mathematical modelling of the electric field in systems with conductive rods for lightning protection. In: 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS), 10–14 Sept. 2018, Kharkiv, Ukraine, pp. 89–92. https://doi.org/10.1109/IEPS.2018.8559504

  15. Sokol, Ye.I., Rezinkina, M.M., Sosina, E.V., Gryb, O.G.: Numerical computation of electric fields in presence of curvilinear interface between conductive and non-conductive media. Electr. Eng. Electromech. 1, 42–47 (2016). https://doi.org/10.20998/2074-272X.2016.1.08

  16. Rezinkina, M.M.: Simulation of electric fields in the presence of rods with rounded upper ends. Tech. Phys. 60, 337–343 (2015). https://doi.org/10.1134/S1063784215030238

    Article  Google Scholar 

  17. Rezinkina, M., Rezinkin, O., Chalise, S., Gupta, H., Bean, C.: Statistical modeling of the process of lightning attachment to extended objects. In: 2010 International Conference on High Voltage Engineering and Application, 11–14 Oct. 2010, New Orleans, LA, USA. https://doi.org/10.1109/ICHVE.2010.5640852

  18. Rezinkina, M.M., Rezinkin, O.L., Svetlichnaya, E.E., Sosina, E.V.: Combined calculation of electric field increase in the vicinity of tops of thin conducting rods. Tech. Electrodyn. 3, 10–16 (2015)

    Google Scholar 

  19. Rezynkinam, M.M., Scherba, A.A., Grinchenko, V.S., Rezynkina, K.O.: Calculation choice of parameters of electromagnetic screens of complicated three-dimensional configuration. Tech. Electrodyn. 1, 10–16 (2012)

    Google Scholar 

  20. Green, N.G., Ramos, A., Morgan, H.: Numerical solution of the dielectrophoretic and travelling wave forces for interdigitated electrode arrays using the finite element method. J. Electrostat. 56(2), 235–254 (2002). https://doi.org/10.1016/S0304-3886(02)00069-4

    Article  Google Scholar 

  21. Oxborrow, M.: Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators. IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007). https://doi.org/10.1109/TMTT.2007.897850

    Article  Google Scholar 

  22. Thomas, J.W.: Numerical Partial Differential Equations: Finite Difference Methods (vol. 22). Springer Science & Business Media (2013)

    Google Scholar 

  23. Li, R., Chen, Z., Wu, W.: Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods. CRC Press (2000)

    Google Scholar 

  24. Yu, W., Mittra, R.: A conformal FDTD algorithm for modeling perfectly conducting objects with curve-shaped surfaces and edges. Microwave Opt. Technol. Lett. 27(2), 136–138 (2000). https://doi.org/10.1002/1098-2760(20001020)27:2%3C136::AID-MOP16%3E3.0.CO;2-Q

    Article  Google Scholar 

  25. Yu, W., Mittra, R.: A conformal finite difference time domain technique for modeling curved dielectric surfaces. IEEE Microwave Wirel. Compon. Lett. 11(1), 25–27 (2001). https://doi.org/10.1109/7260.905957

    Article  Google Scholar 

  26. Gaillard, N., Pinzelli, L., Gros-Jean, M.: In situ electric field simulation in metal/insulator/metal capacitors. Appl. Phys. Lett. 89, 133506 (2006). https://doi.org/10.1063/1.2357891

    Article  Google Scholar 

  27. Kafafy, R., Lin, T., Wang, J.: Three-dimensional immersed finite element methods for electric field simulation in composite materials. Numer. Methods Eng. 64(7), 940–972 (2005). https://doi.org/10.1002/nme.1401

    Article  MathSciNet  MATH  Google Scholar 

  28. Kong, X., Qie, X., Zhao, Y.: Characteristics of downward leader in a positive cloud-to-ground lightning flash observed by high-speed video camera and electric field changes. Geophys. Res. Lett. 35(5), L05816 (2008). https://doi.org/10.1029/2007GL032764

    Article  Google Scholar 

  29. Eymard, R., Gallouet, T., Herbin, R.: Finite volume methods. Handbook Numer. Anal. 7, 713–1018 (2000). https://doi.org/10.1016/S1570-8659(00)07005-8

    Article  MathSciNet  MATH  Google Scholar 

  30. Hugonin, J.P., Lalanne, P.: Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization. J. Opt. Soc. Am. A 22(9), 1844–1849 (2005). https://doi.org/10.1364/JOSAA.22.001844

    Article  MathSciNet  Google Scholar 

  31. Basu, U., Chopra, A.K.: Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation. Comput. Methods Appl. Mech. Eng. 192(11–12), 1337–1375 (2003). https://doi.org/10.1016/S0045-7825(02)00642-4

    Article  MATH  Google Scholar 

  32. Rep’ev, A.G., Repin, P.B.: Dynamics of the optical emission from a high-voltage diffuse discharge in a rod-plane electrode system in atmospheric-pressure air. Plasma Phys. Rep. 32, 72–78 (2006). https://doi.org/10.1134/S1063780X06010077

  33. Rep’ev, A.G., Repin, P.B., Pokrovskii, V.S.: Microstructure of the current channel of an atmospheric-pressure diffuse discharge in a rod-plane air gap. Tech. Phys. 52, 52–58 (2007). https://doi.org/10.1134/S1063784207010094

  34. Mauseth, F., Nysveen, A., Isdstad, E.: Charging of dielectric barriers in rod-plane gaps. In: Proceedings of the 2004 IEEE International Conference on Solid Dielectrics, 2004. ICSD 2004, 5–9 July 2004, Toulouse, France, pp. 447–451. https://doi.org/10.1109/ICSD.2004.1350387

  35. Cooray, V.: Lightning Protection. The Institution of Engineering and Technology (2009)

    Google Scholar 

  36. Singh, J.P., Lele, P.P., Nettesheim, F., Wagner, N.J., Furst, E.M.: One- and two-dimensional assembly of colloidal ellipsoids in AC electric fields. Phys. Rev. E 79(5), 050401(R) (2009). https://doi.org/10.1103/PhysRevE.79.050401

    Article  Google Scholar 

  37. Taflove, A., Hagness, S.C.: Computational electrodynamics: the finite-difference time-domain method. Artech house (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur O. Zaporozhets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rezinkina, M.M., Sokol, Y.I., Zaporozhets, A.O., Gryb, O.G., Karpaliuk, I.T., Shvets, S.V. (2021). Mathematical Modeling of the Electromagnetic Processes of the Corona’s Formation During the Operation of Electric Power Facilities. In: Sokol, Y.I., Zaporozhets, A.O. (eds) Control of Overhead Power Lines with Unmanned Aerial Vehicles (UAVs). Studies in Systems, Decision and Control, vol 359. Springer, Cham. https://doi.org/10.1007/978-3-030-69752-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69752-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69751-8

  • Online ISBN: 978-3-030-69752-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics