Skip to main content

Problems of Mantle Structure and Compositions of Various Terranes of Siberian Craton

  • Conference paper
  • First Online:
Alkaline Rocks, Kimberlites and Carbonatites: Geochemistry and Genesis

Abstract

Structure of mantle keel beneath Siberian craton was determined for mantle terranes using monomineral thermobarometry and database of EPMA analyses (>80000). Geochemical features of the minerals have been determined by LA ICP MS. Mantle sections consist of 6–7 paleo-subducted slab separated by pyroxenite, eclogite and dunite lenses, disturbed by later plume melt intrusion accompanied by metasomatism and melting. The cross-sections and long transects show the differences between terranes compiled by microplates in Archean. Extended sub-meridional structures of crust tectonic terranes are not always confirmed on the mantle level. Under the Anabar and Aldan shields mantle sections are coarser and consist of 3–4 large horizons of dunites, with pyroxenite and metasomatic lenses. Suture zones between protocratons are saturated with eclogites. Pyroxenite layer at the level of 3.5–4.5 GPa appeared in Early Archean when eclogites were melted at 130 km. In Early Archean protocratons: granite-greenstone terranes–Tunguska, Markha, Berekte and Sharyzhalgai mantle lithosphere is less depleted and often metasomatized. The Daldyn and Magan granulite-orthogneiss terranes have a layered structure of ML with folds, manifested in sections from north to south from Udachnaya to Krasnopresnenskaya. Metasomatism and alkalinity of pyroxenes and the amount of phlogopite are growing from Daldyn to Alakit fields. The most productive confined to the dunite cores. In Magan terrane, the thin layering of the craton keel is replaced by depleted productive horizon at the lithosphere base. In granite-greenstone Markha eclogites (metapelitic) assume subduction of continental sediments. Gentle tilting to the west dominate of mantle structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gladkochub, D.P., Pisarevsky, S.A., Donskaya, T.V., Natapov, L.M., Mazukabzov, A.M., Stanevich, A.M., Sklyarov, E.V.: Siberian Craton and its evolution in terms of Rodinia hypothesis. Episodes 29, 169–174 (2006). https://doi.org/10.1134/S0016852112040024

    Article  Google Scholar 

  2. Smelov, A.P., Zaitsev, A.I.: The age and localization of kimberlite magmatism in the yakutian kimberlite province: constraints from isotope geochronology—an overview. In: Pearson, D. et al., (eds.) Proceedings of 10th International Kimberlite Conference. Springer, New Delhi, pp 225–234 (2013). https://doi.org/10.1007/978-81-322-1170-9_14

  3. Griffin, W.L., Ryan, C.G., Kaminsky, F.V., O’Reilly, S.Y., Natapov, L.M., Win, T.T., Kinny, P.D., Ilupin, I.P.: The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton. Tectonophysics 310, 1–35 (1999). https://doi.org/10.1016/S0040-1951(99)00156-0

    Article  Google Scholar 

  4. Ashchepkov, I.V., Vladykin, N.N., Ntaflos, T., Kostrovitsky, S.I., Prokopiev, S.A., Downes, H., Smelov, A.P., Agashev, A.M., Logvinova, A.M., Kuligin, S.S., Tychkov, N.S., Salikhov, R.F., Stegnitsky, YuB., Alymova, N.V., Vavilov, M.A., Minin, V.A., Babushkina, S.A., Ovchinnikov, YuI., Karpenko, M.A., Tolstov, A.V., Shmarov, G.P.: Layering of the lithospheric mantle beneath the Siberian Craton: modeling using thermobarometry of mantle xenolith and xenocrysts. Tectonophysics 634, 55–75 (2014). https://doi.org/10.1016/jtecto200911013

    Article  Google Scholar 

  5. Helmstaedt, H.: Crust–mantle coupling revisited: the Archean Slave craton, NWT. Canada Lithos 112(S2), 1055–1068 (2009). https://doi.org/10.1016/jepsl201104034

    Article  Google Scholar 

  6. Artemieva, I.M., Thybo, H., Cherepanova, Y.: Isopycnicity of cratonic mantle restricted to kimberlite provinces. Earth Planet. Sci. Lett. 505, 13–19 (2019). https://doi.org/10.1016/jepsl201809034

    Article  Google Scholar 

  7. Koulakov, I., Bushenkova, N.: Upper mantle structure beneath the Siberian craton and surrounding areas based on fieldal tomographic inversion of P and PP travel times. Tectonophysics 486, 81–100 (2010). https://doi.org/10.1016/jtecto201002011

    Article  Google Scholar 

  8. Rosen, O.M., Levskii, L.K., Zhuravlev, D.Z., Rotman, A.Y., Spetsius, Z.V., Makeev, A.F., Zinchuk, N.N., Manakov. A.V., Serenko, V.P.: Paleoproterozoic accretion in the northeast siberian craton: isotopic dating of the anabar collision system. Stratigrafiya Geologicheskaya Korrelyatsiya 14, 3–24 (2006). https://doi.org/10.1134/S0869593806060013

  9. Aulbach, S., Griffin, W., Pearson, N., O’Reilly, S.Y.: Nature and timing of metasomatism in the stratified mantle lithosphere beneath the central Slave craton (Canada). Chem. Geol. 352, 153–169 (2013). https://doi.org/10.1016/jchemgeo201305037

    Article  Google Scholar 

  10. Lehtonen, M.L., O’Brien, H.E., Peltonen, P., Johanson, B.S., Pakkanen, L.K.: Layered mantle at the Karelian Craton margin: P-T of mantle xenocrysts and xenoliths from the Kaavi-Kuopio kimberlites, Finland. Lithos 77, 593–608 (2004). https://doi.org/10.1016/jlithos200404026

    Article  Google Scholar 

  11. Griffin, W.L., Kobussen, A.F., Babu, E.V.S.S.K., O’Reilly, S.Y., Norris, R., Sengupta, P.: A translithospheric suture in the vanished 1-Ga lithospheric root of South India: evidence from contrasting lithosphere sections in the Dharwar Craton. Lithos 112(2), 1109–1119 (2009). https://doi.org/10.1016/jlithos200905015

    Article  Google Scholar 

  12. Batumike, J.M., Griffin, W.L., O’Reilly, S.Y.: Lithospheric mantle structure and the diamond potential of kimberlites in southern DR Congo. Lithos 112(1), 166–176 (2009). https://doi.org/10.1016/jlithos200904020

    Article  Google Scholar 

  13. Ryan, C.G., Griffin, W.L., Pearson, N.J.: Garnet geotherms: pressure-temperature data from Cr-pyrope garnet xenocrysts in volcanic rocks. J. Geophys. Res. Solid Earth 101, 5611–5625 (1996)

    Article  Google Scholar 

  14. Gaul, O.F., Griffin, W.L., O’Reilly, S.Y., Pearson, N.J.: Mapping olivine composition in the lithospheric mantle. Earth Planet Sci. Lett. 182, 223–235 (2000). https://doi.org/10.1016/S0012-821X(00)00243-0

    Article  Google Scholar 

  15. Logvinova, A.M., Taylor, L.A., Floss, C., Sobolev, N.V.: Geochemistry of multiple diamond inclusions of harzburgitic garnets as examined in situ. Int. Geol. Rev. 47, 1223–1233 (2005). https://doi.org/10.2747/0020-681447121223

    Article  Google Scholar 

  16. Lavrent’ev Yu, G., Korolyuk, V.N., Usova, L.V., Nigmatulina, E.N.: Electron probe microanalysis of rock-forming minerals with a JXA-8100 electron probe microanalyzer. Russian Geol. Geophys. 56, 1428–1436 (2015). https://doi.org/10.1016/jrgg201509005

  17. Ashchepkov, I.V.: Program of the mantle thermometers and barometers: usage for reconstructions and calibration of PT methods. Vestnik Otdelenia nauko Zemle RAN 3, NZ6008 (2011). https://doi.org/10.2205/2011NZ000138

  18. Gudmundsson, G., Wood, B.J.: Experimental tests of garnet peridotite oxygen barometry. Contrib. Mineral. Petrol. 119, 56–67 (1995). https://doi.org/10.1007/BF00310717

    Article  Google Scholar 

  19. Taylor, W.R., Kammerman, M., Hamilton, R.: New thermometer and oxygen fugacity sensor calibrations for ilmenite and chromium spinel-bearing peridotitic assemblages. In: 7th International Kimberlite Conference Extended abstracts. Cape town, pp. 891–901 (1998)

    Google Scholar 

  20. Ashchepkov, I.V., Ivanov, A.S., Kostrovitsky, S.I., Vavilov, M.A., Babushkina, S.A., Vladykin, N.V., Tychkov, N.S., Medvedev, N.S.: Mantle terranes of the Siberian craton: their interaction with plume melts based on thermobarometry and geochemistry of mantle xenocrysts. Geodyn. Tectonophys. 10(2), 197–245 (2019). https://doi.org/10.5800/GT-2019-10-2-0412

    Article  Google Scholar 

  21. Kostrovitsky, S.I., Morikiyo, T., Serov, I.V., Yakovlev, D.A., Amirzhanov, A.A.: Isotope-geochemical systematics of kimberlites and related rocks from the Siberian Platform. Russian Geol. Geophys. 48, 272–290 (2007). https://doi.org/10.1016/jrgg200702011

    Article  Google Scholar 

  22. Agashev, A.M., Ionov, D.A., Pokhilenko, N.P., Golovin, A.V., Cherepanova, Yu., Sharygin, I.S.: Metasomatism in lithospheric mantle roots: constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos 160–161, 201–215 (2013). https://doi.org/10.1016/jlithos201211014

    Article  Google Scholar 

  23. Egorov, K.N., Solov’eva, L.V., Kovach, V.P., Men’shagin Yu, V., Maslovskaya, M.N., Sekerin, A.P., Bankovskaya, E.V.: Petrological features of olivine-phlogopite lamproites of the Sayan region: evidence from Sr-Nd isotope and ICP-MS trace-element data. Geochem. Int. 44, 729–735 (2006). https://doi.org/10.1134/S0016702906070093

  24. Smelov, A.P., Andreev, A.P., Altukhova, Z.A., Babushkina, S.A., Bekrenev, K.A., Zaitsev, A.I., Izbekov, E.D., Koroleva, O.V., Mishnin, V.M., Okrugin, A.V., Oleinikov, O.B., Surnin, A.A.: Kimberlites of the Manchary pipe: a new kimberlite field in Central Yakutia. Russ. Geol. Geophys. 51, 121–126 (2010). https://doi.org/10.1016/jrgg200912012

    Article  Google Scholar 

  25. Garanin, V.K., Zvezdin, A.B., Okrugin, G.V.: Mineralogy of oxide minerals from kimberlites of the Morkoka pipe in connection with the assessment of its diamond content (Yakutian diamondiferous province). Bulletin of the Moscow University Series 4. Geology 4, 39–46 (1998)

    Google Scholar 

  26. Shatsky, V.S., Zedgenizov, D.A., Ragozin, A.L., Kalinina, V.V.: Diamondiferous subcontinental lithospheric mantle of the northeastern Siberian Craton: Evidence from mineral inclusions in alluvial diamonds. Gondwana Res. 28, 106–120 (2015). https://doi.org/10.1016/jgr201403018

    Article  Google Scholar 

  27. Tolstov, A.V., Minin, V.A., Vasilenko, V.B., Kuznetsova, L.G., Razumov, A.N.: A new body of highly diamondiferous kimberlites in the Nakyn field of the Yakutian kimberlite province. Russ. Geol. Geophys. 50, 162–173 (2009). https://doi.org/10.1016/jrgg200800901

    Article  Google Scholar 

  28. Spetsius, Z.V.: Petrology of highly aluminous xenoliths from kimberlites of Yakutia. Lithos 77, 525–538 (2004)

    Article  Google Scholar 

  29. Ashchepkov, I.V., Logvinova, A.M., Ntaflos, T., Vladykin, N.V., Downes, H.: Alakit and Daldyn kimberlite fields, Siberia, Russia: Two types of mantle sub-terranes beneath central Yakutia? Geosci. Front. 8, 671–692 (2017). https://doi.org/10.1016/jgsf201608004

    Article  Google Scholar 

  30. Ashchepkov, I.V., Vladykin, N.V., Ntaflos, T., Downes, H., Mitchell, R., Smelov, A.P., Alymova, N.V., Kostrovitsky, S.I., Rotman, A.Y., Smarov, G.P., Makovchuk, I.V., Stegnitsky, Y.B., Nigmatulina, E.N., Khmelnikova, O.S.: Regularities and mechanism of formation of the mantle lithosphere structure beneath the Siberian Craton in comparison with other cratons. Gondwana Res. 23, 4–24 (2013). https://doi.org/10.1016/jgr201203009

  31. Ashchepkov, I.V., Ntaflos, T., Kuligin, S.S., Malygina, L.V., Mityukhin, S.I., Vladykin, N.V., Palessky, S.V., Khmelnikova, O.S.: Deep seated xenoliths in Udachnaya pipe from the brown breccia. In: Pearson, D. et al., (eds.) Proceedings of 10th International Kimberlite Conference. Springer, New Delhi, pp. 59–73 (2013). https://doi.org/10.1007/978-81-322-1170-9_5

  32. Ashchepkov, I.V., Alymova, N.V., Logvinova, A.M., Vladykin, N.V., Kuligin, S.S., Mityukhin, S.I., Downes, H., Stegnitsky, Y.B., Prokopiev, S.A., Salikhov, R.F., Palessky, S.V., Khmelnikova, O.S.: Picroilmenites in Yakutian kimberlites: Variations and genetic models. Solid Earth 5, 915–938 (2014). https://doi.org/10.5194/se-5-915-2014

    Article  Google Scholar 

  33. Ashchepkov, I.V., Logvinova, A.M., Reimers, L.F., Ntaflos, T., Khmel’nikova, O.S.: The Sytykanskaya kimberlite pipe: evidence from deep-seated xenoliths and xenocrysts for the evolution of the mantle beneath Alakit Yakutia. Russia Geosci. Front. 6, 687–714 (2013). https://doi.org/10.1016/jgsf201408005

    Article  Google Scholar 

  34. Ashchepkov, I.V., Ntaflos, T., Logvinova, A.M., Spetsius, Z.V., Vladykin, N.V.: Monomineral universal clinopyroxene and garnet barometers for peridotitic, eclogitic and basaltic systems. Geosci. Front. 8, 775–795 (2017a). https://doi.org/10.1016/jgsf201606012

  35. Ashchepkov, I.V., Ntaflos, T., Spetsius, Z.V., Salikhov, R.F., Downes, H.: Interaction between protokimberlite melts and mantle lithosphere: Evidence from mantle xenoliths from the Dalnyaya kimberlite pipe, Yakutia (Russia). Geosci. Front. 8, 693–710 (2017b). https://doi.org/10.1016/jgsf201605008

    Article  Google Scholar 

  36. Ashchepkov, I.V., Pokhilenko, N.P., Vladykin, N.V., Logvinova, A.M., Kostrovitsky, S.I., Afanasiev, V.P., Pokhilenko, L.N., Kuligin, S.S., Malygina, L.V., Alymova, N.V., Khmelnikova, O.S., Palessky, S.V., Nikolaeva, I.V., Karpenko, M.A., Stagnitsky, Y.B.: Structure and evolution of the lithospheric mantle beneath Siberian craton, thermobarometric study. Tectonophysics 485, 17–41 (2010). https://doi.org/10.1016/jtecto200911013

    Article  Google Scholar 

  37. Sobolev, N.V.: Deep-seated inclusions in kimberlites and the problem of the composi-tion of the upper mantle American Geophysscal Union, p. 422. Washington, DC (1977)

    Google Scholar 

  38. Pokhilenko, N.P., Pearson, D.G., Boyd, F.R., Sobolev, N.V.: Megacrystalline dunites: sources of Siberian diamonds Carnegie Institute Washington Yearbook 90, 11–18 (1991)

    Google Scholar 

  39. Pokhilenko, L.N., Mal’kovets, V.G., Kuz’min, D.V., Pokhilenko, N.P.: New data on the mineralogy of megacrystalline pyrope peridotite from the Udachnaya kimberlite pipe, Siberian Craton, Yakutian diamondiferous province Doklady. Earth Sci. 454, 179–184 (2014). https://doi.org/10.1134/S1028334X14020159

  40. Pokhilenko, N.P., Sobolev, N.V., Kuligin, S.S., Shimizu, N.: Peculiarities of distribution of pyroxenite paragenesis garnets in Yakutian kimberlites and some aspects of the evolution of the Siberian craton lithospheric mantle. In: Proceedings of the VII International Kimberlite Conference The PH Nixon volume, pp. 690–707 (1999)

    Google Scholar 

  41. Pokhilenko, N.P., Agashev, A.M., Litasov, K.D., Pokhilenko, L.N.: Carbonatite metasomatism of peridotite lithospheric mantle: implications for diamond formation and carbonatite-kimberlite magmatism. Russ. Geol. Geophys. 56, 280–295 (2015). https://doi.org/10.1016/jrgg201501020

    Article  Google Scholar 

  42. Jagoutz, E., Lowry, D., Mattey, D., Kudrjavtseva, G.: Diamondiferous eclogites from Siberia: Remnants of Archean oceanic crust. Geochim. Cosmochim. Acta 58, 5195–5207 (1994). https://doi.org/10.1016/0016-7037(94)90304-2

    Article  Google Scholar 

  43. Bascou, J., Doucet, L.S., Saumet, S., Ionov, D.A., Ashchepkov, I.V., Golovin, A.V.: Seismic velocities, anisotropy and deformation in Siberian cratonic mantle: EBSD data on xenoliths from the Udachnaya kimberlite. Earth Planet. Sci. Lett. 304, 71–84 (2011). https://doi.org/10.1016/jepsl201101016

  44. Ionov, D.A., Doucet, L.S., Xu, Y., Golovin, A.V., Oleinikov, O.B.: Reworking of archean mantle in the NE Siberian craton by carbonatite and silicate melt metasomatism: evidence from a carbonate-bearing, dunite-to-websterite xenolith suite from the Obnazhennaya kimberlite Geochimica et Cosmochimica. Acta 224, 132–153 (2018). https://doi.org/10.1016/jgca201712028

  45. Boyd, F.R., Pokhilenko, N.P., Pearson, D.G., Mertzman, S.A., Sobolev, N.V., Finger, L.W.: Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contrib. Mineral Petrol 128, 228–246 (1997). https://doi.org/10.1007/s004100050305

    Article  Google Scholar 

  46. Ionov, D.A., Doucet, L.S., Ashchepkov, I.V.: Composition of the Lithospheric Mantle in the Siberian Craton: new Constraints from Fresh Peridotites in the Udachnaya-East Kimberlite. J. Petrol. 51, 2177–2210 (2010). https://doi.org/10.1093/petrology/egq053

    Article  Google Scholar 

  47. Doucet, L.S., Ionov, D.A., Golovin, A.V., Pokhilenko, N.P.: Depth, degrees and tectonic settings of mantle melting during craton formation: inferences from major and trace element compositions of spinel harzburgite xenoliths from the Udachnaya kimberlite, central Siberia. Earth Planet. Sci. Lett. 359360, 206–218 (2012). https://doi.org/10.1016/jepsl201210001

  48. Brey, G.P., Kohler, T.: Geothermobarometry in four-phase lherzolites II New thermobarometers, and practical assessment of existing thermobarometers. J. Petrol. 31, 1353–1378 (1990). https://doi.org/10.1093/petrology/3161353

    Article  Google Scholar 

  49. McGregor I.D.: The system MgO-SiO2-Al2O3: solubility of Al2O3 in enstatite for spinel and garnet peridotite compositions. Am. Mineral. 59, 110–119 (1974). http://www.minsocam.org/ammin/AM59/AM59_110.pdf

  50. Nimis, P., Taylor, W.: Single clinopyroxene thermobarometry for garnet peridotites Part I Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib. Mineral. Petrol. 139, 541–554 (2000). https://doi.org/10.1007/s004100000156

    Article  Google Scholar 

  51. O’Neill, H.S.T.C., Wood, B.J.: An experimental study of Fe-Mg-partitioning between garnet and olivine and its calibration as a geothermometer. Contrib. Mineral. Petrol. 70, 59–70 (1979)

    Google Scholar 

  52. Krogh, E.J.: The garnet-clinopyroxene Fe-Mg geothermometers: a reinterpretation of existing experimental data. Contrib. Mineral. Petrol. 99, 44–48 (1988). https://doi.org/10.1007/BF00399364

    Article  Google Scholar 

  53. O’Neill, H.S.C., Wall, V.J.: The olivine orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s upper mantle. J. Petrol. 8, 1169–1191 (1987). https://doi.org/10.1093/petrology/28.6.1169

  54. Pernet-Fisher, J.F., Howarth, G.H., Liu, Y., Barry, P.H., Carmody, L., Valley, J.W., Bodnar, R.J., Spetsius, Z.V., Taylor, L.A.: Komsomolskaya diamondiferous eclogites: evidence for oceanic crustal protoliths. Contrib. Mineral. Petrol. 167, 981 (2014). https://doi.org/10.1007/s00410-014-0981-y

    Article  Google Scholar 

  55. Sobolev, N.V., Pustyntsev, V.I., Kuznetsova, I.K., Khar’kiv, A.D.: New data on the mineralogy of the diamond-bearing eclogites from the “Mir” pipe (Yakutia). Int. Geol. Rev. 12, 657–659 (1970)

    Article  Google Scholar 

  56. Spetsius, Z.V., Serenko, V.P.: Composition of the Continental Mantle and Low Crust Beneath the Siberian Platform, p. 271. Nauka, Moscow (1990)

    Google Scholar 

  57. Riches, A.J.V., Liu, Y., Day, J.M.D., Spetsius, Z.V., Taylor, L.A.: Subducted oceanic crust as diamond hosts revealed by garnets of mantle xenoliths from Nyurbinskaya, Siberia. Lithos 120, 368–378 (2010). https://doi.org/10.1016/jlithos201009006

    Article  Google Scholar 

  58. Spetsius, Z.V., Taylor, L.A., Valley, J.W., Ivanov, A.S., Banzeruk, V.I.: Diamondiferous xenoliths from crustal subduction: Garnet oxygen isotopes from the Nyurbinskaya pipe, Yakutia. Eur. J. Mineral. 20, 375–385 (2008). https://doi.org/10.1127/0935-1221/2008/0020-1828

    Article  Google Scholar 

  59. Ashchepkov, I., Medvedev, N., Vladykin, N., Ivanov, A., Downes, H.: Thermobarometry and geochemistry of mantle xenoliths from Zapolyarnaya pipe, Upper Muna field, Yakutia: implications for mantle layering, interaction with plume melts and diamond grade. Minerals 10(9), 740 (2020). https://doi.org/10.3390/min10090755

    Article  Google Scholar 

  60. Nimis, P., Kuzmin, D.V., Malkovets, V.: Error sources in single-clinopyroxene thermobarometry and a mantle geotherm for the Novinka kimberlite. Yakutia. Am. Mineral. 101(10), 2222–2232 (2016). https://doi.org/10.2138/am-2016-5540

    Article  Google Scholar 

  61. Dymshits, A.M., Sharygin, I.S., Malkovets, V.G., Yakovlev, I.V., Gibsher, A.A., Alifirova, T.A., Vorobei, S.S., Potapov, S.V., Garanin, V.K.: Thermal state, thickness, and composition of the lithospheric mantle beneath the upper muna kimberlite field (siberian craton) constrained by clinopyroxene xenocrysts and comparison with daldyn and mirny fields. Minerals 10, 549 (2020). https://doi.org/10.3390/min10060549

    Article  Google Scholar 

  62. Sun, J., Tappe, S., Kostrovitsky, S.I., Liu, C-Z., Skuzovatov, S.Y., Wu, F-Y.: Mantle sources of kimberlites through time: a U-Pb and Lu-Hf isotope study of zircon megacrysts from the Siberian diamond fields. Chem. Geol. 479, 228–240 (2018). https://doi.org/10.1016/jchemgeo201801013

  63. Kornilova, V.P., Spetsius, Z.V., Pomazanskiy, B.S.: Petrographic-mineralogical peculiarities and feasibility of kimberlite pipes Lorik and Svetlana diamond grade re-estimation (West Ukukit field, Yakutia). Reg. Geol. Metal. 68, 92–99 (2016)

    Google Scholar 

  64. Egorov KN, Kiselev AI, Men’shagin YuV, Minaeva YuA (2010) Lamproite and kimberlite of the Sayany area: Composition, sources, and diamond potential. Doklady Earth Sci. https://doi.org/10.1134/S1028334X10120251

  65. Zaitsev, A.I., Smelov, A.P.: Isotope geochronology of kimberlite formation rocks of Yakut province. Institute of Diamond and Noble Metals Geology, Siberian Branch of Russian Academy of Sciences, p. 105

    Google Scholar 

  66. Ashchepkov, I.V., Kuligin, S.S., Vladykin, N.V., Downes, H., Vavilov, M.A., Nigmatulina, E.N., Babushkina, S.A., Tychkov, N.S., Khmelnikova, O.S.: Comparison of mantle lithosphere beneath early Triassic kimberlite fields in Siberian craton reconstructed from deep-seated xenocrysts. Geosci. Front. 7, 639–662 (2016). https://doi.org/10.1016/jgsf201506004

    Article  Google Scholar 

  67. Griffin, W.L., Natapov, L.M., O’Reilly, S.Y., van Achterbergh, E., Cherenkova, A.F., Cherenkov, V.G.: The Kharamai kimberlite field, Siberia: modification of the lithospheric mantle by the Siberian Trap event. Lithos 81, 167–187 (2005). https://doi.org/10.1016/jlithos200410001

    Article  Google Scholar 

  68. Afanasiev, V.P., Ashchepkov, I.V., Verzhak, V.V., O’ Brien, H., Palessky, S.V.: PT conditions and trace element variations of picroilmenites and pyropes from the Arkhangelsk region. J. Asian Earth Sci. 7071, 45–63 (2013). https://doi.org/10.1016/jjseaes201303002

  69. Sobolev, N.V., Logvinova, A.M., Nikolenko, E.I., Lobanov, S.S.: Mineralogical criteria for the diamond potential of Upper Triassic placers on the northeastern margin of the Siberian Platform. Russ. Geol. Geophys. 54, 903–916 (2013). https://doi.org/10.1016/jlithos201607030

    Article  Google Scholar 

  70. Taylor, L.A., Gregory, A., Keller, S.R., Remley, D.A., Anand, M., Wiesli, R., Valley, J., Sobolev, N.V.: Petrogenesis of group A eclogites and websterites: evidence from the Obnazhennaya kimberlite, Yakutia. Contrib. Mineral. Petrol. 145, 424–443 (2003). https://doi.org/10.1007/s00410-003-0465-y

    Article  Google Scholar 

  71. Ionov, D.A., Doucet, L.S., Carlson, R.W., Golovin, A.V., Korsakov, A.V.: Post-Archean formation of the lithospheric mantle in the central Siberian craton: Re–Os and PGE study of peridotite xenoliths from the Udachnaya kimberlite. Geochim. Cosmochim. Acta 165, 466–483 (2015). https://doi.org/10.1016/jgca201506035

    Article  Google Scholar 

  72. Solov’eva, L.V., Kalashnikova, T.V., Kostrovitsky, S.I., Ivanov, A.V., Matsuk, S.S., Suvorova, L.F.: Metasomatic and magmatic processes in the mantle lithosphere of the Birekte terrain of the Siberian craton and their effect on the lithosphere evolution. Geodyn. Tectonophys. 6(3), 311–344

    Google Scholar 

  73. Boyd, F.R., Nixon, P.H.: Ultramafic nodules from the Kimberley pipes. South Africa Geochim. Cosmochim. Acta 42, 1367–1382 (1978). https://doi.org/10.1016/0016-7037(78)90042-X

    Article  Google Scholar 

  74. Dawson, J.B.: Kimberlites and their Xenoliths. Springer-Verlag, Berlin, New York (1980)

    Book  Google Scholar 

  75. Lazarov, M., Brey, G.P., Weyer, S.: Evolution of the South African mantle−A case study of garnet peridotites from the Finsch diamond mine (Kaapvaal craton); part 1: inter-mineral trace element and isotopic equilibrium. Lithos 154, 193–209 (2012). https://doi.org/10.1016/jlithos201207013

    Article  Google Scholar 

  76. Stachel, T., Viljoen, K.S., McDade, P., Harris, J.W.: Diamondiferous lithospheric roots along the western margin of the Kalahari Craton the peridotitic inclusion suite in diamonds from Orapa and Jwaneng. Contrib. Mineral. Petrol 147, 32–47 (2004). https://doi.org/10.1007/s00410-003-0535-1

    Article  Google Scholar 

  77. Manning, C.E.: The chemistry of subduction-zone fluids. Earth Planet Sci. Lett. 223, 1–16 (2004). https://doi.org/10.1016/j.epsl.2004.04.030

    Article  Google Scholar 

  78. Evensen, N.M., Hamilton, P.J., Onions, R.K.: Rare-earth abundances in chondritic meteorites. Geochim. Cosmochim. Acta 42, 1199–1212 (1979). https://doi.org/10.1016/0016-7037(78)90114-X

    Article  Google Scholar 

  79. McDonough, W.F., Sun, S.S.: The composition of the earth. Chem. Geol. 120, 223–253 (1995). https://doi.org/10.1016/0009-2541(94)00140-4

  80. Grakhanov, A.S., Zarubin, R.A., Bogush, I.N., Yadrenkin, A.B.: Discovery of upper triassic diamond placers in the olenek bay of the laptev sea. Otechestvennaya Geol. 1, 53–61 (2009)

    Google Scholar 

  81. Pavlenkova, N.I.: Seismic structure of the upper mantle along the long-range PNE profiles−rheological implication. Tectonophysics 508, 85–95 (2011). https://doi.org/10.1016/jtecto201011007

    Article  Google Scholar 

  82. Kuskov, O.L., Kronrod, V.A., Prokofyev, A.A., Pavlenkova, N.I.: Thermo-chemical structure of the lithospheric mantle underneath the Siberian craton inferred from long-range seismic profiles. Tectonophysics 615–616, 154–166 (2014). https://doi.org/10.1016/jtecto201401006

    Article  Google Scholar 

  83. McKenzie, D., Priestley, K.: The influence of lithospheric thickness variations on continental evolution. Lithos 102, 1–11 (2008). https://doi.org/10.1016/jlithos200705005

    Article  Google Scholar 

  84. Gladkochub, D.P., Donskay, T.V., Stanevich, A.M., Pisarevsky, S.A., Zhang, S., Motov, Z.L., Mazukabzov, A.M., Li, H.: U-Pb detrital zircon geochronology and provenance of Neoproterozoic sedimentary rocks in southern Siberia: new insights into breakup of Rodinia and opening of Paleo-Asian Ocean. Gondwana Res. 65, 1–16 (2019). https://doi.org/10.1016/j.gr.2018.07.007

    Article  Google Scholar 

  85. Van Hunen, J., van den Berg, A.P.: Plate tectonics on the early Earth: Limitations imposed by strength and buoyancy of subducted lithosphere. Lithos 103, 217–235 (2008). https://doi.org/10.1016/jlithos200709016

    Article  Google Scholar 

  86. Smelov, A.P., Kotov, A.B., Sal’nikova, E.B., Kovach, V.P., Beryozkin, V.I., Kravchenko, A.A., Dobretsov, V.N., Velikoslavinskii, S.D., Yakovlev, S.Z.: Age and duration of the formation of the billyakh tectonic melange zone, anabar shield. Petrology 30, 286–301 (2012). https://doi.org/10.1134/S0869591112030058

  87. Malkovets, V.G., Griffin, W.L., O’Reilly, S.Y., Wood, B.J.: Diamond, subcalcic garnet, and mantle metasomatism: kimberlite sampling patterns define the link. Geology 35, 339–342 (2007). https://doi.org/10.1130/G23092A1

    Article  Google Scholar 

  88. Koreshkova, M., Yu, Downes H., Nikitina, L.P., Vladykin, N.V., Larionov, A.N., Sergeev, S.A.: Trace element and age characteristics of zircons in granulite xenoliths from the Udachnaya kimberlite pipe, Siberia. Precambr. Res. 168, 197–212 (2009). https://doi.org/10.1016/jprecamres200809007

    Article  Google Scholar 

  89. Parkinson, I.J., Pearce, J.A.: Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. J. Petrol. 39, 1577–1618 (1998). https://doi.org/10.1093/petroj/3991577

    Article  Google Scholar 

  90. O’Reilly, S.Y., Zhang, M., Griffin, W.L., Begg, G., Hronsky, J.: Ultradeep continental roots and their oceanic remnants: a solution to the geochemical “mantle reservoir” problem? Lithos 112, 1043–1054 (2009)

    Article  Google Scholar 

  91. Griffin, W.L., O’Reilly, S.Y., Abe, N., Aulbach, S., Davies, R.M., Pearson, N.J., Doyle, B.J., Kivi, K.: The origin and evolution of the Archean lithospheric mantle. Precambr. Res. 127, 19–41 (2003). https://doi.org/10.1016/S0301-9268(03)00180-3

  92. Pearson, D.G.: The age of continental roots. Lithos 48, 171–194 (1999). https://doi.org/10.1016/S0024-4937(99)00026-2

    Article  Google Scholar 

  93. Pearson, D.G., Snyder, G.A., Shirey, S.B., Taylor, L.A., Carlson, R.W., Sobolev, N.V.: Archaean Re-Os age for Siberian eclogites and constraints on Archaean tectonics. Nature 374, 711–713 (1995). https://doi.org/10.1038/374711a0

    Article  Google Scholar 

  94. Santosh, M., Maruyama, S., Yamamoto, A.: The making and breaking of supercontinents: Some speculations based on superplumes, super downwelling and the role of tectosphere. Gondwana Res. 15, 324–341 (2009). https://doi.org/10.1016/jgr200811004

    Article  Google Scholar 

  95. Perchuk, A.L., Safonov, O.G., Smit, C.A., van Reenen, D.D., Zakharov, V.S., Gerya, T.V.: Precambrian ultra-hot orogenic factory: making and reworking of continental crust. Tectonophysics 746, 572–586 (2018)

    Article  Google Scholar 

  96. Gerya, T.: Precambrian geodynamics: concepts and models Gondwana Research 25, 442–463 (2014). https://doi.org/10.1016/jgr201211008

    Article  Google Scholar 

  97. Smith, C.B., Pearson, D.G., Bulanova, G.P., Beard, A.D., Carlson, R.W., Wittig, N., Sims, K., Chimuka, L., Muchemwa, E.: Extremely depleted lithospheric mantle and diamonds beneath the southern Zimbabwe Craton. Lithos 112, 1120–1132 (2009). https://doi.org/10.1016/jlithos200905013

  98. Snyder, D.B.: Stacked uppermost mantle layers within the Slave craton of NW Canada as defined by anisotropic seismic discontinuities. Tectonics 27, TC4006 (2008). https://doi.org/10.1029/2007TC002132

  99. Condie, K.C.: Supercontinents and superplume events: distinguishing signals in the geologic record. Phys. Earth Planet. Inter. 146, 319–332 (2004). https://doi.org/10.1016/jpepi200304002

    Article  Google Scholar 

  100. Herzberg, C.: Geodynamic Information in Peridotite Petrology. J. Petrol. 45, 2507–2530 (2004). https://doi.org/10.1093/petrology/egh039

    Article  Google Scholar 

  101. Nimis, P., Zanetti, A., Dencker, I., Sobolev, N.V.: Major and trace element composition of chromian diopsides from the Zagadochnaya kimberlite (Yakutia, Russia): Metasomatic processes, thermobarometry and diamond potential. Lithos 112, 397–412 (2009). https://doi.org/10.1016/jlithos200903038

    Article  Google Scholar 

  102. Pernet-Fisher, J.F., Howarth, G.H., Pearson, D.G., Woodland, S., Barry, P.H., Pokhilenko, N.P., Pokhilenko, L.N., Agashev, A.M., Taylor, L.A.: Plume impingement on the Siberian SCLM: evidence from Re-Os isotope systematics. Lithos 218, 141–154 (2015). https://doi.org/10.1016/jlithos201501010

    Article  Google Scholar 

  103. Roden, M.F., Patiño-Douce, A.E., Jagoutz, E., Laz’ko, E.E.: High pressure petrogenesis of Mg-rich garnet pyroxenites from Mir kimberlite. Russia Lithos 90(1–2), 77–91 (2006). https://doi.org/10.1016/jlithos200601005

    Article  Google Scholar 

  104. Ernst, W.G.: Earth’s thermal evolution, mantle convection, and Hadean onset of plate tectonics. J. Asian Earth Sci. 145, 1334–1348 (2017). https://doi.org/10.1016/jjseaes201705037

    Article  Google Scholar 

  105. Pollack, H.N., Chapman, D.S.: On the regional variation of heat flow, geotherms and lithospheric thickness. Tectonophysics 38, 279–296 (1977)

    Google Scholar 

  106. Wyllie, P.J., Ryabchikov, I.D.: Volatile components, magmas and critical fluids in upwelling mantle. J. Petrol. 41, 1195–1206 (2000). https://doi.org/10.1093/petrology/4171195

    Article  Google Scholar 

  107. Foley, S.F., Yaxley, G.M., Rosenthal, A., Buhre, S., Kiseeva, E.S., Rapp, R.P., Jacob, D.E.: The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 112(S1), 274–283 (2009). https://doi.org/10.1016/jlithos200903020

    Article  Google Scholar 

  108. Korolev, N.M., Melnik, A.E., Li, X.-H., Skublov, S.G.: The oxygen isotope composition of mantle eclogites as a proxy of their origin and evolution: a review. Earth Sci. Rev. 185, 288–300 (2018)

    Article  Google Scholar 

  109. Agee, C.B.: Crystal-liquid density inversions in terrestrial and lunar magmas. Phys. Earth Planet. Inter. 107, 63–74 (1998). https://doi.org/10.1016/S0031-9201(97)00124-6

    Article  Google Scholar 

  110. Karato, S.: Rheology of the Earth’s mantle: a historical review. Gondwana Res. 18, 17–45 (2010). https://doi.org/10.1016/jgr201003004

    Article  Google Scholar 

  111. Tappe, S., Foley, S.F., Jenner, G.A., Heaman, L.M., Kjarsgaard, B.A., Romer, R.L., Stracke, A., Joyce, N., Hoefs, J.: Genesis of ultramafic lamprophyres and carbonatites at AillikBay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic craton. J. Petrol. 47, 1261–1315 (2006). https://doi.org/10.1093/petrology/egl008

    Article  Google Scholar 

Download references

Acknowledgements

The research was done with the financial support of RFBR, grant project No. 19-05-00788, 20-05-00261, as well as the Integration Project of the Research Center of the Russian Academy of Sciences, Block 1.4. and by the state order of IGM SB RAS. and the study was performed by the governmental assignment in terms of Project IX. 129.1.4., RNF-21-17-00015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Ashchepkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ashchepkov, I.V., Vladykin, N.V., Ivanov, A., Babushkina, S., Vavilov, M., Medvedev, N. (2021). Problems of Mantle Structure and Compositions of Various Terranes of Siberian Craton. In: Vladykin, N. (eds) Alkaline Rocks, Kimberlites and Carbonatites: Geochemistry and Genesis. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-69670-2_2

Download citation

Publish with us

Policies and ethics