Skip to main content

Nanomaterials and Human Health: An Overview

  • Chapter
  • First Online:
Nanotoxicology and Nanoecotoxicology Vol. 2

Abstract

With the advent of nanotechnology in commercial products, the risk of exposure of nanomaterials to humans and the environment is increasing at an accelerating rate. The impact of nanomaterials on humans is complex and not yet fully understood. A comprehensive understanding of the adverse effect of long-term exposure to nanomaterials on humans is warranted, and a balance between benefits and risks is required before nanomaterials are unleashed in large quantities as a part of commercial products. Most data on the consequences of nanomaterial exposure are obtained using in vitro and in vivo studies using animal models. The risk to human health is implied by these studies. In this chapter, the possible methods of exposure of humans to nanomaterials, the effect of some frequently used nanomaterials on human cells, and animal models are discussed. The primary methods of exposure to nanomaterials include oral, dermal, intravenous, and inhalation. The route of exposure can cause variation in the adverse effect on the human health. Nanomaterials elicit different negative effects/damage repair pathways depending on the type of cell, and the toxicity may vary vastly based on the type of nanomaterial. Also, the psychochemical parameters of nanomaterials such as size, shape, functionalization, and defects as well as the gender of the person can significantly alter the adverse effect on biological entities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aschberger K, Micheletti C, Sokull-Klüttgen B, Christensen FM (2011) Analysis of currently available data for characterizing the risk of engineered nanomaterials to the environment and human health—lessons learned from four case studies. Environ Int 37(6):1143–1156

    Article  CAS  Google Scholar 

  • Avouris P, Appenzeller J, Martel R, Wind SJ (2003) Carbon nanotube electronics. Proc IEEE 91(11):1772–1784

    Article  CAS  Google Scholar 

  • Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9(6):674–679

    Article  CAS  Google Scholar 

  • Chen K, Gao W, Emaminejad S, Kiriya D, Ota H, Nyein HY, Takei K, Javey A (2016) Printed carbon nanotube electronics and sensor systems. Adv Mater 28(22):4397–4414

    Article  CAS  Google Scholar 

  • Chng EL, Pumera M (2013) The toxicity of graphene oxides: dependence on the oxidative methods used. Chem Eur J 19(25):8227–8235

    Article  CAS  Google Scholar 

  • Decan N, Wu D, Williams A, Bernatchez S, Johnston M, Hill M, Halappanavar S (2016) Characterization of in vitro genotoxic, cytotoxic and transcriptomic responses following exposures to amorphous silica of different sizes. Mutat Res Genet Toxicol Environ Mutagen 796:8–22

    Article  CAS  Google Scholar 

  • Demir E, Castranova V (2016) Genotoxic effects of synthetic amorphous silica nanoparticles in the mouse lymphoma assay. Toxicol Rep 3:807–815

    Article  CAS  Google Scholar 

  • Demir E, Akça H, Turna F, Aksakal S, Burgucu D, Kaya B, Tokgün O, Vales G, Creus A, Marcos R (2015) Genotoxic and cell-transforming effects of titanium dioxide nanoparticles. Environ Res 136:300–308

    Article  CAS  Google Scholar 

  • Dugershaw BB, Aengenheister L, Hansen SSK, Hougaard KS, Buerki-Thurnherr T (2020) Recent insights on indirect mechanisms in developmental toxicity of nanomaterials. Part Fibre Toxicol 17(1):1–22

    Article  Google Scholar 

  • El Mahdy MM, Eldin TA, Aly HS, Mohammed FF, Shaalan MI (2015) Evaluation of hepatotoxic and genotoxic potential of silver nanoparticles in albino rats. Exp Toxicol Pathol 67(1):21–29

    Article  CAS  Google Scholar 

  • Ema M, Okuda H, Gamo M, Honda K (2017) A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reprod Toxicol 67:149–164

    Article  CAS  Google Scholar 

  • Fontana C, Kirsch A, Seidel C, Marpeaux L, Darne C, Gaté L, Remy A, Guichard Y (2017) In vitro cell transformation induced by synthetic amorphous silica nanoparticles. Mutat Res Genet Toxicol Environ Mutagen 823:22–27

    Article  CAS  Google Scholar 

  • Fransman W, Buist H, Kuijpers E, Walser T, Meyer D, Zondervan-van den Beuken E, Westerhout J, Klein Entink RH, Brouwer DH (2017) Comparative human health impact assessment of engineered nanomaterials in the framework of life cycle assessment. Risk Anal 37(7):1358–1374

    Article  Google Scholar 

  • Fröschl T, Hörmann U, Kubiak P, Kučerová G, Pfanzelt M, Weiss CK, Behm RJ, Hüsing N, Kaiser U, Landfester K, Wohlfahrt-Mehrens M (2012) High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis. Chem Soc Rev 41(15):5313–5360

    Article  CAS  Google Scholar 

  • Fruijtier-Pölloth C (2012) The toxicological mode of action and the safety of synthetic amorphous silica—a nanostructured material. Toxicology 294(2–3):61–79

    Article  CAS  Google Scholar 

  • Gaillet S, Rouanet JM (2015) Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms—a review. Food Chem Toxicol 77:58–63

    Article  CAS  Google Scholar 

  • Ganguly P, Breen A, Pillai SC (2018) Toxicity of nanomaterials: exposure, pathways, assessment, and recent advances. ACS Biomater Sci Eng 4:2237–2275

    Article  CAS  Google Scholar 

  • Hanot-Roy M, Tubeuf E, Guilbert A, Bado-Nilles A, Vigneron P, Trouiller B, Braun A, Lacroix G (2016) Oxidative stress pathways involved in cytotoxicity and genotoxicity of titanium dioxide (TiO2) nanoparticles on cells constitutive of alveolo-capillary barrier in vitro. Toxicol in Vitro 33:125–135

    Article  CAS  Google Scholar 

  • Hashemi E, Akhavan O, Shamsara M, Daliri M, Dashtizad M, Farmany A (2016) Synthesis and cyto-genotoxicity evaluation of graphene on mice spermatogonial stem cells. Colloids Surf B: Biointerfaces 146:770–776

    Article  CAS  Google Scholar 

  • Jain A, Ranjan S, Dasgupta N, Ramalingam C (2018) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr 58(2):297–317

    Article  CAS  Google Scholar 

  • Judy JD, Unrine JM, Bertsch PM (2010) Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ Sci Technol 45(2):776–781

    Article  CAS  Google Scholar 

  • Kah M (2015) Nanopesticides and nano-fertilizers: emerging contaminants or opportunities for risk mitigation? Front Chem 3:64

    Article  Google Scholar 

  • Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235

    Article  CAS  Google Scholar 

  • Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano-and micrometer size. Toxicol Lett 188(2):112–118

    Article  CAS  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227

    Article  CAS  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Lead JR, Batley GE, Alvarez PJ, Croteau MN, Handy RD, McLaughlin MJ, Judy JD, Schirmer K (2018) Nanomaterials in the environment: behavior, fate, bioavailability, and effects—an updated review. Environ Toxicol Chem 37:2029–2063

    Article  CAS  Google Scholar 

  • Li N, Georas S, Alexis N, Fritz P, Xia T, Williams MA, Horner E, Nel A (2016) A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. J Allergy Clin Immunol 138(2):386–396

    Article  CAS  Google Scholar 

  • Liao HY, Chung YT, Lai CH, Wang SL, Chiang HC, Li LA, Tsou TC, Li WF, Lee HL, Wu WT, Lin MH (2014) Six-month follow-up study of health markers of nanomaterials among workers handling engineered nanomaterials. Nanotoxicology 8(Suppl 1):100–110

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  Google Scholar 

  • Martirosyan A, Schneider YJ (2014) Engineered nanomaterials in food: implications for food safety and consumer health. Int J Environ Res Public Health 11(6):5720–5750

    Article  Google Scholar 

  • Mebert AM, Baglole CJ, Desimone MF, Maysinger D (2017) Nanoengineered silica: properties, applications and toxicity. Food Chem Toxicol 109:753–770

    Article  CAS  Google Scholar 

  • Merwe DVD, Pickrell JA (2018) Toxicity of nanomaterials. In: Veterinary toxicology. Academic, Cambridge, MA, pp 319–326

    Google Scholar 

  • Miethling-Graff R, Rumpker R, Richter M, Verano-Braga T, Kjeldsen F, Brewer J, Hoyland J, Rubahn HG, Erdmann H (2014) Exposure to silver nanoparticles induces size-and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol in Vitro 28(7):1280–1289

    Article  CAS  Google Scholar 

  • Mihalchik AL, Ding W, Porter DW, McLoughlin C, Schwegler-Berry D, Sisler JD, Stefaniak AB, Snyder-Talkington BN, Cruz-Silva R, Terrones M, Tsuruoka S (2015) Effects of nitrogen-doped multi-walled carbon nanotubes compared to pristine multi-walled carbon nanotubes on human small airway epithelial cells. Toxicology 333:25–36

    Article  CAS  Google Scholar 

  • Öner D, Ghosh M, Bové H, Moisse M, Boeckx B, Duca RC, Poels K, Luyts K, Putzeys E, Van Landuydt K, Vanoirbeek JA (2018) Differences in MWCNT-and SWCNT-induced DNA methylation alterations in association with the nuclear deposition. Part Fibre Toxicol 15(1):11

    Article  CAS  Google Scholar 

  • Orecchioni M, Bedognetti D, Sgarrella F, Marincola FM, Bianco A, Delogu LG (2014) Impact of carbon nanotubes and graphene on immune cells. J Transl Med 12(1):138

    Article  CAS  Google Scholar 

  • Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10(2):124–127

    Article  CAS  Google Scholar 

  • Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14(9):1109

    Article  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498

    Article  CAS  Google Scholar 

  • Rittinghausen S, Hackbarth A, Creutzenberg O, Ernst H, Heinrich U, Leonhardt A, Schaudien D (2014) The carcinogenic effect of various multi-walled carbon nanotubes (MWCNTs) after intraperitoneal injection in rats. Part Fibre Toxicol 11(1):59

    Article  CAS  Google Scholar 

  • Sharma M, Nikota J, Halappanavar S, Castranova V, Rothen-Rutishauser B, Clippinger AJ (2016) Predicting pulmonary fibrosis in humans after exposure to multi-walled carbon nanotubes (MWCNTs). Arch Toxicol 90(7):1605–1622

    Article  CAS  Google Scholar 

  • Smolkova B, El Yamani N, Collins AR, Gutleb AC, Dusinska M (2015) Nanoparticles in food. Epigenetic changes induced by nanomaterials and possible impact on health. Food Chem Toxicol 77:64–73

    Article  CAS  Google Scholar 

  • Stoccoro A, Karlsson HL, Coppedè F, Migliore L (2013) Epigenetic effects of nano-sized materials. Toxicology 313(1):3–14

    Article  CAS  Google Scholar 

  • Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69(22):8784–8789. https://doi.org/10.1158/0008-5472

    Article  Google Scholar 

  • Van Berlo D, Wilhelmi V, Boots AW, Hullmann M, Kuhlbusch TA, Bast A, Schins RP, Albrecht C (2014) Apoptotic, inflammatory, and fibrogenic effects of two different types of multi-walled carbon nanotubes in mouse lung. Arch Toxicol 88(9):1725–1737

    Article  CAS  Google Scholar 

  • Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gao Y, Li B, Sun J, Li Y (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168(2):176–185

    Article  CAS  Google Scholar 

  • Weir A, Westerhoff P, Fabricius L, Hristovski K, Von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46(4):2242–2250

    Article  CAS  Google Scholar 

  • Yuan X, Zhang X, Sun L, Wei Y, Wei X (2019) Cellular toxicity and immunological effects of carbon-based nanomaterials. Part Fibre Toxicol 1:16–18

    Google Scholar 

  • Zhang Q, Huang JQ, Qian WZ, Zhang YY, Wei F (2013) The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9(8):1237–1265

    Article  CAS  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–91

    Article  CAS  Google Scholar 

  • Zijno A, De Angelis I, De Berardis B, Andreoli C, Russo MT, Pietraforte D, Scorza G, Degan P, Ponti J, Rossi F, Barone F (2015) Different mechanisms are involved in oxidative DNA damage and genotoxicity induction by ZnO and TiO2 nanoparticles in human colon carcinoma cells. Toxicol in Vitro 29(7):1503–1512

    Article  CAS  Google Scholar 

  • Zurutuza A, Marinelli C (2014) Challenges and opportunities in graphene commercialization. Nat Nanotechnol 9(10):730

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhana Abedin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abedin, F., Asmatulu, E., Andalib, M.N. (2021). Nanomaterials and Human Health: An Overview. In: Kumar, V., Guleria, P., Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Nanotoxicology and Nanoecotoxicology Vol. 2 . Environmental Chemistry for a Sustainable World, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-030-69492-0_7

Download citation

Publish with us

Policies and ethics