Skip to main content

Overview of Terahertz 3D Imaging Technology

  • Conference paper
  • First Online:
Artificial Intelligence for Communications and Networks (AICON 2020)

Abstract

Terahertz three-dimensional imaging system can realize the detection and imaging of near-field targets with high frame rate and high resolution, and can provide more comprehensive information about the three-dimensional geometric distribution structure of the target and the imaging scene. It is suitable for the current high real-time requirements Security inspection, seeker terminal guidance, military reconnaissance and other fields. The high-resolution three-dimensional imaging technology of radar targets in the terahertz band is of great significance to the development of radar technology and the application of radar imaging. In this paper, the research background and significance of the terahertz near-field imaging technology, radar three-dimensional imaging technology, the development status of terahertz radar system and terahertz radar imaging algorithm are reviewed, and the existing problems of terahertz near-field imaging technology are summarized and prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cooper, K.B., Dengler, R.J., Llombart, N., et al.: THz Imaging Radar for Standoff Personnel Screening. IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011)

    Article  Google Scholar 

  2. Cooper, K.B., Dengler, R.J., Llombart, N., et al.: Fast, high-resolution terahertz radar imaging at 25 meters. In: Proceedinds of SPIE, pp. 76710Y-1–76710Y-8, Orlando (2010).

    Google Scholar 

  3. Xin, Z., Chao, L.: The development of terahertz technology and its application in radar and communication systems (I). J. Microw. 26(6), 1–6 (2010)

    Google Scholar 

  4. Graham, L.C.: Synthetic interferometer radar for topographic mapping. Proc. IEEE 62(6), 763–768 (1974)

    Article  Google Scholar 

  5. Li, Z., Bao, Z., Li, H., et al.: Image autocoregistration and insar interferogram estimation using joint subspace projection. IEEE Trans. Geosci. Remote Sens. 44(2), 288–297 (2006)

    Article  Google Scholar 

  6. Pan, Z., Liu, B., Zhang, Q.: Phase unwrapping and elevation inversion of three-baseline millimeter wave InSAR. J. Infrared Millime. Waves 32(5), 474–480 (2013)

    Google Scholar 

  7. Automatic, imaging: IEEE Trans. Image Process. 5(9), 1335–1345 (1996)

    Article  Google Scholar 

  8. Stagliano, D., Giusti, E., Lischi, S., et al.: 3D InISAR-based target reconstruction algorithm by using a multi-channel ground-based radar demonstrator. In: International Radar Conference, Lille, France (2014)

    Google Scholar 

  9. Martorella, M., Stagliano, D., Salvetti, F., et al.: 3D interferometric ISAR imaging of noncooperative targets. IEEE Trans. Aerosp. Electron. Syst. 50(4), 3102–3114 (2014)

    Article  Google Scholar 

  10. Liang, H., He, M., Li, N., et al.: The research of near-field in ISAR imaging diagnosis. In: International Conference on Microwave and Millimeter Wave Technology, Nanjing, China, pp. 1773–1775 (2008)

    Google Scholar 

  11. Soumekh, M.: Reconnaissance with ultra wideband UHF synthetic aperture radar. IEEE Signal Process. Mag. 12(4), 21–40 (1995)

    Article  Google Scholar 

  12. Soumekh, M.: Reconnaissance with slant plane circular SAR imaging. IEEE Trans. Image Process. 5(8), 1252–1265 (1996)

    Article  Google Scholar 

  13. Frölind, P., Gustavsson, A., Lundberg, M., et al.: Circular-aperture VHF-band synthetic aperture radar for detection of vehicles in forest concealment. IEEE Trans. Geosci. Remote Sens. 50(4), 1329–1339 (2012)

    Article  Google Scholar 

  14. Reigber, A., Moreira, A., Papathanassiou, K.P.: First demonstration of airborne SAR tomography using multibaseline L-band data. IEEE Trans. Geosci. Remote Sens. 38(5), 2142–2152 (2000)

    Article  Google Scholar 

  15. Fornaro, G., Serafino, F.: Spaceborne 3D SAR tomography: experiments with ERS Data. In: IEEE International Geoscience and Remote Sensing Symposium, pp. 1240–1243 (2004)

    Google Scholar 

  16. Giret, R., Jeuland, H., Enert, P.: A study of a 3D-SAR concept for a millimeter-wave imaging radar onboard an UAV. In: 2004 European Radar Conference, Amsterdam, pp. 201–204 (2004)

    Google Scholar 

  17. Weib, M., Ender, J.H.G.: A 3D imaging radar for small unmanned airplanes-ARTINO. In: European Radar Conference 2005 (EURAD 2005), Paris, pp. 209–212 (2005)

    Google Scholar 

  18. Weiß, M., Gilles, M.: Initial ARTINO radar experiments. In: EUSAR 2010, Aachen, Germany, pp. 1–4 (2010)

    Google Scholar 

  19. Kefei, L.: Single-stimulus three-dimensional SAR experimental system and imaging technology research. University of Electronic Science and Technology of China, ChengDu, China (2010)

    Google Scholar 

  20. Dengler, R.J., Cooper, K.B., Chattopadhyay, G., et al.: 600 Ghz imaging radar with 2 Cm range resolution, pp. 1371–1374 (2007)

    Google Scholar 

  21. Chattopadhyay, G., Cooper, K.B., Dengler, R., et al.: A 600 Ghz imaging radar for contraband detection (2008)

    Google Scholar 

  22. Cooper, K.B., Dengler, R.J., Chattopadhyay, G., et al.: A high-resolution imaging radar at 580 Ghz. IEEE Microwave Wirel. Compon. Lett. 18(1), 64–66 (2008)

    Article  Google Scholar 

  23. Cooper, K.B.: Performance of a 340 Ghz radar transceiver array for standoffsecurity imaging. In: International Conference on Infrared, Millimeter, and Terahertz Waves (2014)

    Google Scholar 

  24. Reck, T., Jung-Kubiak, C., Siles, J.V., et al.: A silicon micromachined eight-pixel transceiver array for submillimeter-wave radar. IEEE Trans. Terahertz Sci. Technol. 5(2), 197–206 (2015)

    Article  Google Scholar 

  25. Chattopadhyay, G., Reck, T., Lee, C., et al.: Micromachined packaging for Terahertz systems. Proc. IEEE 105(6), 1139–1150 (2017)

    Article  Google Scholar 

  26. Sheen, D.M., Mcmakin, D.L., Barber, J., et al.: Active Imaging at 350 Ghz for security applications. In: Proceedings of SPIE - The International Society for Optical Engineering, pp. 6948–69480M (2008)

    Google Scholar 

  27. Sheen, D.M., Severtsen, R.H., Mcmakin, D.L., et al.: Standoff concealed weapon detection using a 350-Ghz radar imaging system. In: Proceedings of SPIE – The International Society for Optical Engineering, vol. 7670, no. 1, pp. 115–118 (2010)

    Google Scholar 

  28. Essen, H., Wahlen, A., Sommer, R., et al.: Development of a 220-GHz experimental radar. In: 2008 German Microwave Conference, Hamburg, pp. 1–4 (2008)

    Google Scholar 

  29. Essen, H., Wahlen, A., Sommer, R., et al.: High-bandwidth 220 GHz experimental radar. Electron. Lett. 43(20), 1114–1116 (2007)

    Article  Google Scholar 

  30. Ahmed, S., Schiessl, A., Gumbmann, F., et al.: Advanced microwave imaging. IEEE Microwave Mag. 13(6), 26–43 (2012)

    Article  Google Scholar 

  31. Ahmed, S.S., Genghammer, A., Schiessl, A., et al.: Fully electronic active E-band personnel imager with 2 m2 aperture based on a multistatic architecture. IEEE Trans. Microw. Theory Tech. 61(1), 651–657 (2013)

    Article  Google Scholar 

  32. Gao, X., Li, C., Gu, S., et al.: Design, analysis and measurement of a millimeter wave antenna suitable for stand off imaging at checkpoints. J. Infrared Millim. Terahertz Waves 32(11), 1314–1327 (2011)

    Article  Google Scholar 

  33. Gu, S.M., Li, C., Gao, X., et al.: Terahertz aperture synthesized imaging with fan-beam scanning for personnel screening. IEEE Trans. Microw. Theory Tech. 60(121), 3877–3885 (2012)

    Article  Google Scholar 

  34. Gu, S., Li, C., Gao, X., et al.: Terahertz aperture synthesized imaging with fan-beam scanning for personnel screening. IEEE Trans. Microwave Theory Tech. Mtt 60(12), 3877–3885 (2012)

    Article  Google Scholar 

  35. Liu, W., Li, C., Sun, Z., et al.: A Fast Three-Dimensional Image Reconstruction with large depth of focus under the illumination of terahertz gaussian beams by using wavenumber scaling algorithm. IEEE Trans. Terahertz Sci. Technol. 5(6), 967–977 (2015)

    Article  Google Scholar 

  36. Li, C., Gu, S., Gao, X., et al.: Image reconstruction of targets illuminated by terahertz gaussian beam with phase shift migration technique. In: International Conference on Infrared, Millimeter, and Terahertz Waves, pp. 1–2 (2013)

    Google Scholar 

  37. Sun, Z., Li, C., Gao, X., et al.: Minimum-entropy-based adaptive focusing algorithm for image reconstruction of terahertz single-frequency holography with improved depth of focus. IEEE Trans. Geosci. Remote Sens. 35(7), 8–93 (2015)

    Google Scholar 

  38. Gu, S., Li, C., Gao, X., et al.: Three-dimensional image reconstruction of targets under the illumination of terahertz gaussian beam-theory and experiment. IEEE Trans. Geosci. Remote Sens. 51(4), 2241–2249 (2013)

    Article  Google Scholar 

  39. Zhang, B., Pi, Y., Li, J.: Terahertz imaging radar with inverse aperture synthesis techniques: system structure, signal processing, and experiment results. IEEE Sens. J. 15(1), 290–299 (2015)

    Article  Google Scholar 

  40. Liu, T., Pi, Y., Yang, X.: Wide-angle CSAR imaging based on the adaptive subaperture partition method in the Terahertz Band. IEEE Trans. Terahertz Sci. Technol. 8(2), 165–173 (2018)

    Article  Google Scholar 

  41. Yang, X., Pi, Y., Liu, T., et al.: Three-dimensional imaging of space debris with space-based terahertz radar. IEEE Sens. J. 18(3), 1063–1072 (2018)

    Article  Google Scholar 

  42. Gao, J., Deng, B., Qin, Y., et al.: Efficient terahertz wide-angle NUFFT-based inverse synthetic aperture imaging considering spherical wavefront. Sensors 16(12), 2120 (2016)

    Article  Google Scholar 

  43. Jiang, Y., Deng, B., Qin, Y., et al.: Experimental results of concealed object imaging using terahertz radar. In: 8th International Workshop on Electromagnetics:Applications and Student Innovation Competition, iWEM 2017, London, United Kingdom, pp. 16–17 (2017)

    Google Scholar 

  44. Yang, Q., Deng, B., Wang, H., et al.: ISAR imaging of rough surface targets based on a terahertz radar system. In: 2017 Asia-Pacific Electromagnetic Week, 6th Asia-Pacific Conference on Antennas and Propagation, Xi'an, China (2017)

    Google Scholar 

  45. Cheng, B., Lu, B., Gao, J.K., et al.: Standoff 3-D imaging with 4Tx-16Rx MIMO-based radar at 340 GHz. In: 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Cancun, Mexico, pp. 1–2 (2017)

    Google Scholar 

  46. Cui, Z., Gao, J., Lu, B., et al.: Real-time 3-D imaging system with 340GHz sparse MIMO array J. Infrared Millim. Waves 36(1), 102–106 (2017)

    Google Scholar 

  47. Sheen, D.M., Mcmakin, D.L., Hall, T.E., et al.: Real-Time Wideband Cylindrical Holographic Surveillance System (1999)

    Google Scholar 

  48. Ahmed, S.S., Genghammer, A., Schiessl, A., et al.: Fully electronic – band personnel imager of 2 M aperture based on a multistatic architecture. IEEE Trans. Microw. Theory Tech. 61(1), 651–657 (2013)

    Article  Google Scholar 

  49. Ahmed, S.S., Schiessl, A., Schmidt, L.P.: Novel fully electronic active real-time millimeter-wave imaging system based on a planar multistatic sparse array. In: IEEE MTT-S International Microwave Symposium Digest. IEEE MTT-S International Microwave Symposium 1 (2011)

    Google Scholar 

  50. Cui, Z., Gao, J., Lu, B., et al.: Real-time 3-D imaging system with 340GHz sparse MIMO array. J. Infrared Millim. Waves 36(1), 102–106 (2017)

    Google Scholar 

  51. Qiong, W.: Implementation of GPU-based terahertz MIMO array imaging algorithm. Xidian University (2019)

    Google Scholar 

  52. Wen, J.: Research on terahertz radar imaging of human hidden targets and its speckle and polarization characteristics. China Academy of Engineering Physics (2019)

    Google Scholar 

  53. Sheen, D.M., Mcmakin, D.L., Severtsen, R.H.: Concealed explosive detection on personnel using a wideband holographic millimeter-wave imaging system. In: Proceedings of SPIE - The International Society for Optical Engineering (1996)

    Google Scholar 

  54. Bertl, S., Detlefsen, J.: Effects of a reflecting background on the results of active Mmw Sar imaging of concealed objects. IEEE Trans. Geosci. Remote Sens. 49(10), 3745–3752 (2011)

    Article  Google Scholar 

  55. Qiao, L., Wang, Y., Zhao, Z., Chen, Z.: Exact reconstruction for near-field three-dimensional planar millimeter-wave holographic imaging. J. Infrared Millim. Terahertz Waves 36(12), 1221–1236 (2015). https://doi.org/10.1007/s10762-015-0207-z

    Article  Google Scholar 

  56. Sun, Z., Li, C., Gu, S., et al.: Fast three-dimensional image reconstruction of targets under the illumination of terahertz gaussian beams with enhanced phase-shift migration to improve computation efficiency. IEEE Trans. Terahertz Sci. Technol. 4(4), 479–489 (2014)

    Article  Google Scholar 

  57. Wang, Y.: Research on cylindrical three-dimensional imaging algorithm of terahertz radar. University of Electronic Science and Technology of China (2016)

    Google Scholar 

  58. Jiang, Y.: Research on three-dimensional imaging technology of terahertz array radar. National University of Defense Technology (2018)

    Google Scholar 

  59. Ge, J., Jie, L., Wen, J., Binbin, C., Jianxiong, Z., Jian, Z.: Holographic radar imaging algorithm based on the concept of range Doppler. J. Infrared Millim. Waves 36(03), 367–375 (2017)

    Google Scholar 

  60. Geng, S., Jiang, Z., Cheng, Z., et al.: Research on FM-CW SAR range-Doppler imaging algorithm. J. Electron. Inf. Technol. (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haohao Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, H., Qu, W. (2021). Overview of Terahertz 3D Imaging Technology. In: Shi, S., Ye, L., Zhang, Y. (eds) Artificial Intelligence for Communications and Networks. AICON 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 356. Springer, Cham. https://doi.org/10.1007/978-3-030-69066-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69066-3_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69065-6

  • Online ISBN: 978-3-030-69066-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics