Skip to main content

Treatment Response Evaluation of Bone Metastases Using 18F-NaF

  • Chapter
  • First Online:
Atlas of Clinical PET-CT in Treatment Response Evaluation in Oncology

Abstract

18F-NaF PET/CT plays an essential role in initial staging, detection of suspected first skeletal metastasis, the suspected progression of bony metastases, or treatment monitoring in many types of cancer, such as prostate, breast, and lung cancer. The morphology and extent of osteoblastic bone metastases, especially when widespread throughout the skeleton, pose a challenge for conventional anatomic imaging to determine tumor load and to evaluate response to therapy. Conventional bone scintigraphy (BS) has been consistently proven to be an inaccurate and insensitive imaging tool to assess response to treatment in many metastatic cancers. 18F-Fluoride PET/CT can determine and assess the whole bone tumor burden quantitatively. Furthermore, 18F-Fluoride (a bone-seeking radiotracer for diagnosis) has uptake properties similar to a therapeutic radiotracer such as 223Ra (the bone-seeking radiotracer for therapy) has the potential to precisely assess the possibility and efficacy of a treatment. In this chapter, we review the use of 18F-NaF PET/CT in prostate, breast, lung, thyroid, and renal cell cancer and discuss 18F-NaF PET/CT’s capability to monitor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin C, Bradshaw T, Perk T, Harmon S, Eickhoff J, Jallow N, et al. Repeatability of quantitative 18F-NaF PET: a multicenter study. J Nucl Med. 2016;57:1872–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Segall G, Delbeke D, Stabin MG, et al. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med. 2010;51:1813–20.

    Article  PubMed  Google Scholar 

  3. Bortot DC, Amorim BJ, Oki GC, Gapski SB, Santos AO, Lima MC, et al. 18F-fluoride PET/CT is highly effective for excluding bone metastases even in patients with equivocal bone scintigraphy. Eur J Nucl Med Mol Imaging. 2012;39:1730–6.

    Article  PubMed  Google Scholar 

  4. Shen C, Qiu Z, Han T, Luo Q. Performance of 18F-fluoride PET or PET/CT for the detection of bone metastases. A meta-analysis. Clin Nucl Med. 2015;40:103–10.

    Article  PubMed  Google Scholar 

  5. Minamimoto R, Loening A, Jamali M, Barkhodari A, Mosci C, Jackson T, et al. Prospective comparison of 99mTc-MDP Scintigraphy, combined 18F-NaF and 18F-FDG PET/CT, and whole-body MRI in patients with breast and prostate cancer. J Nucl Med. 2015;56:1862–8.

    Article  PubMed  CAS  Google Scholar 

  6. Broos W, van der Zant FM, Wondergem M, Knol RJJ. Accuracy of 18F-NaF PET/CT in bone metastasis detection and its effect on patient management in patients with breast carcinoma. Nucl Med Commun. 2018;39:325–33.

    Article  PubMed  Google Scholar 

  7. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47:287–97.

    PubMed  Google Scholar 

  8. Kruger S, Buck AK, Mottaghy FM, Hasenkamp E, Pauls S, Schumann C, et al. Detection of bone metastases in patients with lung cancer: 99mTc-MDP planar bone scintigraphy, 18F-fluoride PET or 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2009;36:1807–12.

    Article  PubMed  Google Scholar 

  9. Rao L, Zong Z, Chen Z, Wang X, Shi X, Yi C, et al. 18F-labeled NaF PET-CT in detection of bone metastases in patients with preoperative lung Cancer. Medicine. 2016;95:e3490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sharma P, Karunanithi S, Chakraborty PS, Kumar R, Seth A, Julka PK, Bal C, Kumar R. 18F-fluoride PET/CT for detection of bone metastasis in patients with renal cell carcinoma: a pilot study. Nucl Med Commun. 2014;35:1247–53.

    Article  CAS  PubMed  Google Scholar 

  11. Gerety EL, Lawrence EM, Wason J, Yan H, Hilborne S, Buscombe J, et al. Prospective study evaluating the relative sensitivity of 18F-NaF PET/CT for detecting skeletal metastases from renal cell carcinoma in comparison to multidetector CT and 99mTc-MDP bone scintigraphy, using an adaptive trial design. Ann Oncol. 2015;26:2113–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hillner BE, Siegel BA, Hanna L, Duan F, Quinn B, Shields AF. 18F-fluoride PET used for treatment monitoring of systemic cancer therapy: results from the National Oncologic PET registry. J Nucl Med. 2015;56:222–8.

    Article  PubMed  CAS  Google Scholar 

  13. Oyen W, Sundram F, Haug AR, Kairemo K, Maenpaa H, Mottaghy F, et al. Radium-223 dichloride (Ra-223) for the treatment of metastatic castration-resistant prostate cancer: optimizing clinical practice in nuclear medicine centers. J Oncol Pathol. 2015;3:1–25.

    Google Scholar 

  14. Kairemo K, Milton DR, Etchebehere E, et al. Final outcome of 223Ra-therapy and the role of 18F-fluoride-PET in response evaluation in metastatic castration-resistant prostate cancer–a single institution experience. Curr Radiopharm. 2018;11:152–7.

    Google Scholar 

  15. Etchebehere EC, Araujo JC, Fox PS, Swanston NM, Macapinlac HA, Rohren EM. Prognostic factors in patients treated with 223Ra: the role of skeletal tumor burden on baseline 18Ffluoride PET/CT in predicting overall survival. J Nucl Med. 2015;56:1177–84.

    Article  CAS  PubMed  Google Scholar 

  16. von Eyben FE, Kairemo K, Kiljunen T, Joensuu T. Planning of external beam radiotherapy for prostate cancer guided by PET/CT. Curr Radiopharm. 2015;8:19–31.

    Article  CAS  Google Scholar 

  17. Scher HI, Sawyers CL. Biology of progressive, castration resistant prostate cancer: directed therapies targeting the androgen receptor signaling axis. J Clin Oncol. 2005;23:8253–61.

    Article  CAS  PubMed  Google Scholar 

  18. Kairemo K, Joensuu T. Radium-223-dichloride in castration resistant metastatic prostate cancer-preliminary results of the response evaluation using F-18-fluoride PET/CT. Diagnostics (Basel). 2015;5:413–27.

    Article  CAS  Google Scholar 

  19. Etchebehere E, Brito AE, Rezaee A, et al. Therapy assessment of bone metastatic disease in the era of 223radium. Eur J Nucl Med Mol Imaging. 2017;44(Suppl 1):84–96.

    Article  CAS  PubMed  Google Scholar 

  20. Apolo AB, Lindenberg L, Shih JH, Mena E, Kim JW, Park JC, et al. Prospective study evaluating Na18F PET/CT in predicting clinical outcomes and survival in advanced prostate cancer. J Nucl Med. 2016;57:886–92.

    Article  CAS  PubMed  Google Scholar 

  21. Rohren EM, Etchebehere EC, Araujo JC, Hobbs BP, Swanston NM, Everding M, et al. Determination of skeletal tumor burden on 18F-fluoride PET/CT. J Nucl Med. 2015;56:1507–12.

    Article  CAS  PubMed  Google Scholar 

  22. Lindgren B, Sadik M, Kaboteh R, Hasani N, Enqvist O, Svärm L, Kahl F, Simonsen J, Poulsen M, Ohlsson M, Høilund-Carlsen P, Edenbrandt L, Trägårdh E. 3D skeletal uptake of 18F sodium fluoride in PET/CT images is associated with overall survival in patients with prostate cancer. EJNMMI Res. 2017;7:15.

    Article  CAS  Google Scholar 

  23. Parker C, Nilsson S, Heinrich D, Helle SI, O'Sullivan JM, Fossa SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–23.

    Article  CAS  PubMed  Google Scholar 

  24. Letellier A, Johnson AC, Kit NH, Savigny J, Batalla A, Parienti J, Aide N. Uptake of Radium-223 dichloride and early [18F] NaF PET response are driven by baseline [18F]NaF parameters: a pilot study in castration-resistant prostate cancer patients. Mol Imaging Biol. 2018;20:482–91.

    Article  CAS  PubMed  Google Scholar 

  25. Murray I, Chittenden SJ, Denis-Bacelar AM, Hindorf C, Parker C, Chua S, Flux GD. The potential of 223Ra and 18F-fluoride imaging to predict bone lesion response to treatment with 223Ra-dichloride in castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2017;44:1832–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Etchebehere EC, Araujo JC, Milton DR, Erwin WD, Wendt RE 3rd, Swanston NM, et al. Skeletal tumor burden on baseline 18F-fluoride PET/CT predicts bone marrow failure after 223Ra therapy. Clin Nucl Med. 2016;41:268–73.

    Article  PubMed  Google Scholar 

  27. Taube T, Elomaa I, Blomqvist C, Beneton MN, Kanis JA. Histomorphometric evidence for osteoclast-mediated bone resorption in metastatic breast cancer. Bone. 1994;15:161–6.

    Article  CAS  PubMed  Google Scholar 

  28. Brito A, Santos A, Sasse AD, Cabello C, Oliveira P, Mosci C, Souza T, Amorim B, Lima M, Ramos CD, Etchebehere E. 18F-Fluoride PET/CT tumor burden quantification predicts survival in breast cancer. Oncotarget. 2017;8:36001–11.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Azad G, Siddique MM, Taylor B, et al. Does measurement of 18F-fluoride metabolic flux improve response assessment of breast cancer bone metastases compared with standardised uptake values in 18F-fluoride PET/CT? J Nucl Med. 2018. pii: jnumed.118.208710. https://doi.org/10.2967/jnumed.118.208710.

  30. Peterson LM, O’Sullivan J, Wu QV, et al. Prospective study of serial 18F-FDG PET and 18F-fluoride (18F-NaF) PET to predict time to skeletal related events, time-to-progression, and survival in patients with bone-dominant metastatic breast cancer. J Nucl Med. 2018. pii: jnumed.118.211102. https://doi.org/10.2967/jnumed.118.211102.

  31. Rao L, Zong Z, Chen Z, et al. 18F-labeled NaF PET-CT in detection of bone metastases in patients with preoperative lung Cancer. Medicine (Baltimore). 2016;95:e3490.

    Article  CAS  Google Scholar 

  32. Lee H, Lee WW, Park SY, Kim SE. F-18 sodium fluoride positron emission tomography/computed tomography for detection of thyroid Cancer bone metastasis compared with bone scintigraphy. Korean J Radiol. 2016;17:281–8. https://doi.org/10.3348/kjr.2016.17.2.281.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ota N, Kato K, Iwano S, et al. Comparison of 18F-fluoride PET/CT, 18F-FDG PET/CT and bone scintigraphy (planar and SPECT) in detection of bone metastases of differentiated thyroid cancer: a pilot study. Br J Radiol. 2014;87:20130444.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schirrmeister H, Buck A, Guhlmann A, Reske SN. Anatomical distribution and sclerotic activity of bone metastases from thyroid cancer assessed with F-18 sodium fluoride positron emission tomography. Thyroid. 2001;11:677–83.

    Article  CAS  PubMed  Google Scholar 

  35. Gerety EL, Lawrence EM, Wason J, et al. Prospective study evaluating the relative sensitivity of 18F-NaF PET/CT for detecting skeletal metastases from renal cell carcinoma in comparison to multidetector CT and 99mTc-MDP bone scintigraphy, using an adaptive trial design. Ann Oncol. 2015;26:2113–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sharma P, Karunanithi S, Chakraborty PS, et al. 18F-fluoride PET/CT for detection of bone metastasis in patients with renal cell carcinoma: a pilot study. Nucl Med Commun. 2014;35:1247–53.

    Article  CAS  PubMed  Google Scholar 

  37. Rossleigh MA, Lovegrove FT, Reynolds PM, Byrne MJ. Serial bone scans in the assessment of response to therapy in advanced breast carcinoma. Clin Nucl Med. 1982;7:397–402.

    Article  CAS  PubMed  Google Scholar 

  38. Castello A, Macapinlac HA, Lopci E, Santos EB. Prostate-specific antigen flare induced by 223RaCl2 in patients with metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2018. [Epub ahead of print]. https://doi.org/10.1007/s00259-018-4051-y

  39. Balasubramanian Harisankar CN, Preethi R, John J. Metabolic flare phenomenon on 18 fluoride-fluorodeoxy glucose positron emission tomography-computed tomography scans in a patient with bilateral breast cancer treated with second-line chemotherapy and bevacizumab. Indian J Nucl Med. 2015;30:145–7.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wade AA, Scott JA, Kuter I, Fischman AJ. Flare response in 18F-fluoride ion PET bone scanning. AJR Am J Roentgenol. 2006;186:1783–6.

    Article  PubMed  Google Scholar 

  41. Cook G Jr, Parker C, Chua S, et al. 18F-fluoride PET: changes in uptake as a method to assess response in bone metastases from castrate-resistant prostate cancer patients treated with 223Ra-chloride (Alpharadin). EJNMMI Res. 2011;1:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Etchebehere E, Brito AE, Kairemo K, et al. Interim 18F-fluoride PET/CT is not able to predict outcome after radium-223 therapy. Radiol Bras. 2019;52(1):33–40.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yu EY, Duan F, Muzi M, et al. Castration-resistant prostate cancer bone metastasis response measured by 18F-fluoride PET after treatment with dasatinib and correlation with progression-free survival: results from American College of Radiology Imaging Network 6687. J Nucl Med. 2015;56:354–60.

    Article  CAS  PubMed  Google Scholar 

  44. Harmon SA, Perk T, Lin C, et al. Quantitative assessment of early [18F] sodium fluoride positron emission tomography/computed tomography response to treatment in men with metastatic prostate cancer to bone. J Clin Oncol. 2017;35:2829–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Harmon SA, Bergvall E, Mena E, et al. A prospective comparison of 18F-Sodium Fluoride PET/CT and PSMA-targeted 18F-DCFBC PET/CT in metastatic prostate cancer. J Nucl Med. 2018. pii: jnumed.117.207373. [Epub ahead of print]. https://doi.org/10.2967/jnumed.117.207373

  46. Sachpekidis C, Hillengass J, Goldschmidt H, Wagner B, Haberkorn U, Kopka K, Dimitrakopoulou-Strauss A. Treatment response evaluation with 18F-FDG PET/CT and 18F-NaF PET/CT in multiple myeloma patients undergoing high-dose chemotherapy and autologous stem cell transplantation. Eur J Nucl Med Mol Imaging. 2017;44:50–62.

    Article  CAS  PubMed  Google Scholar 

  47. Kairemo K, Rohren EM, Anderson PM, et al. Development of sodium fluoride PET response criteria for solid tumours (NAFCIST) in a clinical trial of radium-223 in osteosarcoma: from RECIST to PERCIST to NAFCIST. ESMO Open. 2019;0:e000439. https://doi.org/10.1136/esmoopen-2018-000439.

    Article  Google Scholar 

  48. Subbiah V, Anderson PM, Kairemo K, et al. Alpha particle Radium 223 dichloride in high-risk osteosarcoma: a phase I dose escalation trial. Clin Cancer Res. 2019. pii: clincanres.3964.2018. https://doi.org/10.1158/1078-0432.CCR-18-3964.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kairemo, K., Macapinlac, H.A. (2021). Treatment Response Evaluation of Bone Metastases Using 18F-NaF. In: Fanti, S., Gnanasegaran, G., Carrió, I. (eds) Atlas of Clinical PET-CT in Treatment Response Evaluation in Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-68858-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68858-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68857-8

  • Online ISBN: 978-3-030-68858-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics