Skip to main content

Part of the book series: Research Topics in Aerospace ((RTA))

Abstract

The complex effect of nanoparticles on an epoxy-based and anhydride cured DGEBA/Boehmite nanocomposite with different particle concentrations is considered in this chapter. A combination of X-ray scattering, calorimetry (fast scanning and temperature modulated calorimetry) and dielectric spectroscopy was employed to characterize the structure, vitrification kinetics and the molecular dynamics of the nanocomposites. Firstly, the unfilled polymer was found to be intrinsically heterogeneous, showing regions with different crosslinking density, indicated by two separate dynamic glass transitions. Moreover, the glass transition temperature decreases with increasing nanoparticle concentration, as a result of changes in the crosslinking density. In addition, it was shown that the incorporation of nanoparticles can result in simultaneous increase in the number of mobile segments for low nanoparticle concentrations and on the other hand, for higher loading degrees the number of mobile segments decreases, due to the formation of an immobilized interphase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamovsky S, Minakov A, Schick C (2003) Scanning microcalorimetry at high cooling rate. Thermochim Acta 403(1):55–63. https://doi.org/10.1016/s0040-6031(03)00182-5

    Article  CAS  Google Scholar 

  2. Angell CA (1997) Entropy and fragility in supercooling liquids. J Res Natl Inst Stand Technol 102:171

    Google Scholar 

  3. Bansal A, Yang H, Li C, Cho K, Benicewicz BC, Kumar SK, Schadler LS (2005) Quantitative equivalence between polymer nanocomposites and thin polymer films. Nature Mater 4(9):693–698. https://doi.org/10.1038/nmat1447

    Article  CAS  Google Scholar 

  4. Bera O, Pilić B, Pavličević J, Jovičić M, Holló B, Szécsényi KM, Špirkova M (2011) Preparation and thermal properties of polystyrene/silica nanocomposites. Thermochim Acta 515(1–2):1–5. https://doi.org/10.1016/j.tca.2010.12.006

    Article  CAS  Google Scholar 

  5. Bogue R (2011) Nanocomposites: a review of technology and applications. Assembl Autom 31(2):106–112. https://doi.org/10.1108/01445151111117683

    Article  Google Scholar 

  6. Böhning M, Goering H, Fritz A, Brzezinka KW, Turky G, Schönhals A, Schartel B (2005) Dielectric study of molecular mobility in poly(propylene-graft-maleic anhydride)/Clay Nanocomposites. Macromolecules 38(7):2764–2774. https://doi.org/10.1021/ma048315c

    Article  CAS  Google Scholar 

  7. Butta E, Livi A, Levita G, Rolla PA (1995) Dielectric analysis of an epoxy resin during cross-linking. J Polym Sci Part B Polym Phys 33(16):2253–2261. https://doi.org/10.1002/polb.1995.090331610

    Article  CAS  Google Scholar 

  8. Cheng S, Carroll B, Lu W, Fan F, Carrillo JMY, Martin H, Holt AP, Kang NG, Bocharova V, Mays JW, Sumpter BG, Dadmun M, Sokolov AP (2017) Interfacial properties of polymer nanocomposites: role of chain rigidity and dynamic heterogeneity length scale. Macromolecules 50(6):2397–2406. https://doi.org/10.1021/acs.macromol.6b02816

    Article  CAS  Google Scholar 

  9. Ciprari D, Jacob K, Tannenbaum R (2006) Characterization of Polymer nanocomposite interphase and its impact on mechanical properties. Macromolecules 39(19):6565–6573. https://doi.org/10.1021/ma0602270

    Article  CAS  Google Scholar 

  10. Duchet J, Pascault JP (2003) Do epoxy-amine networks become inhomogeneous at the nanometric scale? J Polym Sci Part B Polym Phys 41(20):2422–2432. https://doi.org/10.1002/polb.10585

    Article  CAS  Google Scholar 

  11. Dušek K, Pleštil J, Lednický F, Luňák S (1978) Are cured epoxy resins inhomogeneous? Polymer 19(4):393–397. https://doi.org/10.1016/0032-3861(78)90243-4

    Article  Google Scholar 

  12. Fankhänel J, Silbernagl D, Khorasani MGZ, Daum B, Kempe A, Sturm H, Rolfes R (2016) Mechanical properties of boehmite evaluated by atomic force microscopy experiments and molecular dynamic finite element simulations. J Nanomater 2016:1–13. https://doi.org/10.1155/2016/5017213

    Article  CAS  Google Scholar 

  13. Feng J, Berger KR, Douglas EP (2004) Water vapor transport in liquid crystalline and non-liquid crystalline epoxies. J Mater Sci 39(10):3413–3423. https://doi.org/10.1023/b:jmsc.0000026944.85440.f3

  14. Filik J, Ashton AW, Chang PCY, Chater PA, Day SJ, Drakopoulos M, Gerring MW, Hart ML, Magdysyuk OV, Michalik S, Smith A, Tang CC, Terrill NJ, Wharmby MT, Wilhelm H (2017) Processing two-dimensional X-ray diffraction and small-angle scattering data inDAWN 2. J Appl Crystallograp 50(3):959–966. https://doi.org/10.1107/s1600576717004708

    Article  CAS  Google Scholar 

  15. Fragiadakis D, Pissis P (2007) Glass transition and segmental dynamics in poly(dimethylsiloxane)/silica nanocomposites studied by various techniques. J Non Cryst Solids 353(47–51):4344–4352. https://doi.org/10.1016/j.jnoncrysol.2007.05.183

    Article  CAS  Google Scholar 

  16. Fragiadakis D, Pissis P, Bokobza L (2005) Glass transition and molecular dynamics in poly(dimethylsiloxane)/silica nanocomposites. Polymer 46(16):6001–6008. https://doi.org/10.1016/j.polymer.2005.05.080

    Article  CAS  Google Scholar 

  17. Fulcher GS (1997) Analysis of recent measurements of the viscosity of glasses. J Res (NIST JRES) 102(2):171

    Google Scholar 

  18. Füllbrandt M, Purohit PJ, Schönhals A (2013) Combined FTIR and dielectric investigation of poly(vinyl acetate) adsorbed on silica particles. Macromolecules 46(11):4626–4632. https://doi.org/10.1021/ma400461p

    Article  CAS  Google Scholar 

  19. Giusca C, Baibarac M, Lefrant S, Chauvet O, Baltog I, Devenyi A, Manaila R (2002) C60–polymer nanocomposites: evidence for interface interaction. Carbon 40(9):1565–1574. https://doi.org/10.1016/s0008-6223(02)00024-6

    Article  CAS  Google Scholar 

  20. Havriliak S, Negami S (1966) A complex plane analysis of \(\alpha \)-dispersions in some polymer systems. J Polym Sci Part C Polym Symp 14(1):99–117. https://doi.org/10.1002/polc.5070140111

    Article  Google Scholar 

  21. van Herwaarden S, Iervolino E, van Herwaarden F, Wijffels T, Leenaers A, Mathot V (2011) Design, performance and analysis of thermal lag of the UFS1 twin-calorimeter chip for fast scanning calorimetry using the mettler-toledo flash DSC 1. Thermochim Acta 522(1–2):46–52. https://doi.org/10.1016/j.tca.2011.05.025

    Article  CAS  Google Scholar 

  22. Holt AP, Bocharova V, Cheng S, Kisliuk AM, White BT, Saito T, Uhrig D, Mahalik JP, Kumar R, Imel AE, Etampawala T, Martin H, Sikes N, Sumpter BG, Dadmun MD, Sokolov AP (2016) Controlling interfacial dynamics: covalent bonding versus physical adsorption in polymer nanocomposites. ACS Nano 10(7):6843–6852. https://doi.org/10.1021/acsnano.6b02501

    Article  CAS  Google Scholar 

  23. Jux M, Fankhänel J, Daum B, Mahrholz T, Sinapius M, Rolfes R (2018) Mechanical properties of epoxy/boehmite nanocomposites in dependency of mass fraction and surface modification—an experimental and numerical approach. Polymer 141:34–45. https://doi.org/10.1016/j.polymer.2018.02.059

    Article  CAS  Google Scholar 

  24. Jux M, Finke B, Mahrholz T, Sinapius M, Kwade A, Schilde C (2017) Effects of Al(OH)O nanoparticle agglomerate size in epoxy resin on tension, bending, and fracture properties. J Nanoparticle Res 19(4). https://doi.org/10.1007/s11051-017-3831-9

  25. Keenan JD, Seferis JC, Quinlivan JT (1979) Effects of moisture and stoichiometry on the dynamic mechanical properties of a high-performance structural epoxy. J Appl Polym Sci 24(12):2375–2387. https://doi.org/10.1002/app.1979.070241206

    Article  CAS  Google Scholar 

  26. Khorasani MGZ, Silbernagl D, Szymoniak P, Hodoroaba VD, Sturm H (2019) The effect of boehmite nanoparticles (\(\gamma \)-AlOOH) on nanomechanical and thermomechanical properties correlated to crosslinking density of epoxy. Polymer 164:174–182. https://doi.org/10.1016/j.polymer.2018.12.054

    Article  CAS  Google Scholar 

  27. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Mechanical properties of nylon 6-clay hybrid. J Mater Res 8(5):1185–1189. https://doi.org/10.1557/jmr.1993.1185

    Article  CAS  Google Scholar 

  28. Kreibich UT, Schmid R (1975) Inhomogeneities in epoxy resin networks. J Polym Sci Polym Symp 53(1):177–185. https://doi.org/10.1002/polc.5070530122

    Article  CAS  Google Scholar 

  29. Kumar S, Adams W (1987) Structural studies of epoxy resins, acetylene terminated resins and polycarbonate. Polymer 28(9):1497–1504. https://doi.org/10.1016/0032-3861(87)90349-1

    Article  CAS  Google Scholar 

  30. Kumar SK, Benicewicz BC, Vaia RA, Winey KI (2017) 50th anniversary perspective: are polymer nanocomposites practical for applications? Macromolecules 50(3):714–731. https://doi.org/10.1021/acs.macromol.6b02330

    Article  CAS  Google Scholar 

  31. Leng J, Kang N, Wang DY, Falkenhagen J, Thünemann AF, Schönhals A (2017) Structure-property relationships of nanocomposites based on polylactide and layered double hydroxides—comparison of MgAl and NiAl LDH as Nanofiller. Macromol Chem Phys 218(20)232–1700. https://doi.org/10.1002/macp.201700232

  32. Leng J, Kang N, Wang DY, Wurm A, Schick C, Schönhals A (2017) Crystallization behavior of nanocomposites based on poly(l-lactide) and MgAl layered double hydroxides—unbiased determination of the rigid amorphous phases due to the crystals and the nanofiller. Polymer 108:257–264. https://doi.org/10.1016/j.polymer.2016.11.065

    Article  CAS  Google Scholar 

  33. Leng J, Purohit PJ, Kang N, Wang DY, Falkenhagen J, Emmerling F, Thünemann AF, Schönhals A (2015) Structure–property relationships of nanocomposites based on polylactide and MgAl layered double hydroxides. Eur Polym J 68:338–354. https://doi.org/10.1016/j.eurpolymj.2015.05.008

  34. Lipatov Y, Privalko V (1972) Glass transition in filled polymer systems. Polym Sci USSR 14(7):1843–1848. https://doi.org/10.1016/0032-3950(72)90286-9

  35. Mangion MBM, Johari GP (1990) Relaxations of thermosets. III. Sub-Tg dielectric relaxations of bisphenol-A–based epoxide cured with different cross-linking agents. J Polym Sci Part B Polym Phys 28(1):71–83. https://doi.org/10.1002/polb.1990.090280106

  36. Mathot V, Pyda M, Pijpers T, Poel GV, van de Kerkhof E, van Herwaarden S, van Herwaarden F, Leenaers A (2011) The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): first findings on polymers. Thermochim Acta 522(1–2):36–45. https://doi.org/10.1016/j.tca.2011.02.031

    Article  CAS  Google Scholar 

  37. Minakov A, Adamovsky S, Schick C (2005) Non-adiabatic thin-film (chip) nanocalorimetry. Thermochim Acta 432(2):177–185. https://doi.org/10.1016/j.tca.2005.01.073

    Article  CAS  Google Scholar 

  38. Ochi M, Okazaki M, Shimbo M (1982) Mechanical relaxation mechanism of epoxide resins cured with aliphatic diamines. J Polym Sci Polym Phys Edition 20(4):689–699. https://doi.org/10.1002/pol.1982.180200411

    Article  CAS  Google Scholar 

  39. Ochi M, Yoshizumi M, Shimbo M (1987) Mechanical and dielectric relaxations of epoxide resins containing the spiro-ring structure. II. Effect of the introduction of methoxy branches on low-temperature relaxations of epoxide resins. J Polym Sci Part B Polym Phys 25(9):1817–1827. https://doi.org/10.1002/polb.1987.090250903

  40. Papageorgiou GZ, Terzopoulou Z, Bikiaris D, Triantafyllidis KS, Diamanti E, Gournis D, Klonos P, Giannoulidis E, Pissis P (2014) Evaluation of the formed interface in biodegradable poly(l-lactic acid)/graphene oxide nanocomposites and the effect of nanofillers on mechanical and thermal properties. Thermochim Acta 597:48–57. https://doi.org/10.1016/j.tca.2014.10.007

    Article  CAS  Google Scholar 

  41. Papon A, Saalwächter K, Schäer K, Guy L, Lequeux F, Montes H (2011) Low-Field NMR investigations of nanocomposites: polymer dynamics and network effects. Macromolecules 44(4):913–922. https://doi.org/10.1021/ma102486x

    Article  CAS  Google Scholar 

  42. Pauw BR, Smith AJ, Snow T, Terrill NJ, Thünemann AF (2017) The modular small-angle X-ray scattering data correction sequence. J Appl Crystallograp 50(6):1800–1811. https://doi.org/10.1107/s1600576717015096

    Article  CAS  Google Scholar 

  43. Privalko V, Lipatov Y, Kercha Y (1970) Calorimetric study of the phase boundary effect on oligo-ethylene glycol adipate (OEGA) properties. Polym Sci USSR 12(6):1520–1529. https://doi.org/10.1016/0032-3950(70)90084-5

  44. Purohit PJ, Wang DY, Wurm A, Schick C, Schönhals A (2014) Comparison of thermal and dielectric spectroscopy for nanocomposites based on polypropylene and layered double hydroxide – proof of interfaces. Eur Polym J 55:48–56. https://doi.org/10.1016/j.eurpolymj.2014.03.005

    Article  CAS  Google Scholar 

  45. Rittigstein P, Priestley RD, Broadbelt LJ, Torkelson JM (2007) Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nature Mater 6(4):278–282. https://doi.org/10.1038/nmat1870

    Article  CAS  Google Scholar 

  46. Saalwächter K, Heuer A (2006) Chain dynamics in elastomers as investigated by proton multiple-quantum NMR. Macromolecules 39(9):3291–3303. https://doi.org/10.1021/ma052567b

    Article  CAS  Google Scholar 

  47. Sargsyan A, Tonoyan A, Davtyan S, Schick C (2007) The amount of immobilized polymer in PMMA SiO2 nanocomposites determined from calorimetric data. Eur Polym J 43(8):3113–3127. https://doi.org/10.1016/j.eurpolymj.2007.05.011

    Article  CAS  Google Scholar 

  48. Schawe JE (2012) Practical aspects of the flash DSC 1: sample preparation for measurements of polymers. Mettler Toledo Thermal Anal User Com 36:17–24

    Google Scholar 

  49. Schawe JEK (2013) Influence of processing conditions on polymer crystallization measured by fast scanning DSC. J Thermal Anal Calorim 116(3):1165–1173. https://doi.org/10.1007/s10973-013-3563-8

    Article  CAS  Google Scholar 

  50. Schick C (2002) Temperature modulated differential scanning calorimetry (TMDSC)— basics and applications to polymers. In: Applications to polymers and plastics. Elsevier, pp 713–810. https://doi.org/10.1016/s1573-4374(02)80019-x

  51. Schönhals A, Kremer F (2003) Broadband Dielectric Measurement Techniques (\(10^{-6}\) Hz to \(10^{12}\) Hz). Berlin Heidelberg, Springer, pp 35–57. https://doi.org/10.1007/978-3-642-56120-7

  52. Sheppard NF, Senturia SD (1989) Dielectric properties of bisphenol-a epoxy resins. J Polym Sci Part B Polym Phys 27(4):753–762. https://doi.org/10.1002/polb.1989.090270403

    Article  CAS  Google Scholar 

  53. Szymoniak P, Li Z, Wang DY, Schönhals A (2019) Dielectric and flash DSC investigations on an epoxy based nanocomposite system with MgAl layered double hydroxide as nanofiller. Thermochim Acta 677:151–161. https://doi.org/10.1016/j.tca.2019.01.010

    Article  CAS  Google Scholar 

  54. Szymoniak P, Pauw BR, Qu X, Schönhals A (2020) Competition of nanoparticle-induced mobilization and immobilization effects on segmental dynamics of an epoxy-based nanocomposite. Soft Matter 16(23):5406–5421. https://doi.org/10.1039/d0sm00744g

    Article  CAS  Google Scholar 

  55. Tammann G, Hesse G (1926) The dependancy of viscosity on temperature in hypothermic liquids. Z Anorg Allg Chem 245(4):245

    Article  Google Scholar 

  56. Trutschel ML, Mordvinkin A, Furtado F, Willner L, Saalwächter K (2018) Time-domain NMR observation of entangled polymer dynamics: Focus on all tube-model regimes, chain center, and matrix effects. Macromolecules 51(11):4108–4117. https://doi.org/10.1021/acs.macromol.8b00443

    Article  CAS  Google Scholar 

  57. Vaia RA, Giannelis EP (2001) Polymer nanocomposites: status and opportunities. MRS Bull 26(5):394–401. https://doi.org/10.1557/mrs2001.93

    Article  CAS  Google Scholar 

  58. Vogel H (1921) The temperature dependence law of the viscosity of fluids. Phys Z 22:645

    CAS  Google Scholar 

  59. Wilson KS, Allen AJ, Washburn NR, Antonucci JM (2007) Interphase effects in dental nanocomposites investigated by small-angle neutron scattering. J Biomed Mater Res Part A 81A(1):113–123. https://doi.org/10.1002/jbm.a.30975

    Article  CAS  Google Scholar 

  60. Wübbenhorst M, van Turnhout J (2000) Conduction-free dielectric loss \(\rm d\mathit{\epsilon /\rm d}\ln f -\) a powerful tool for the analysis of strong (Ion) conducting dielectric materials. Dielectric Newsletter

    Google Scholar 

  61. Wurm A, Ismail M, Kretzschmar B, Pospiech D, Schick C (2010) Retarded crystallization in polyamide/layered silicates nanocomposites caused by an immobilized interphase. Macromolecules 43(3):1480–1487. https://doi.org/10.1021/ma902175r

    Article  CAS  Google Scholar 

  62. Xia H, Song M (2005) Characteristic length of dynamic glass transition based on polymer/clay intercalated nanocomposites. Thermochim Acta 429(1):1–5. https://doi.org/10.1016/j.tca.2004.09.028

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulina Szymoniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Szymoniak, P., Qu, X., Schönhals, A., Sturm, H. (2021). Characterization of Polymer Nanocomposites. In: Sinapius, M., Ziegmann, G. (eds) Acting Principles of Nano-Scaled Matrix Additives for Composite Structures. Research Topics in Aerospace. Springer, Cham. https://doi.org/10.1007/978-3-030-68523-2_4

Download citation

Publish with us

Policies and ethics