Skip to main content

Plasmonic Metal Nanoparticles Decorated ZnO Nanostructures for Photoelectrochemical (PEC) Applications

  • Chapter
  • First Online:
Chemically Deposited Nanocrystalline Metal Oxide Thin Films

Abstract

Sunlight harvesting for energy generation and environmental remediation is an evolving research area which potentially opens a propitious avenue and beneficial to tackle energy and the environment issues. Conversion of sunlight into hydrogen or electricity through photoelectrochemical (PEC) cell is one of the most auspicious approaches for a feasible energy supply in which extensive development of photoelectrode is the key. Last few years witnessed the outstanding PEC performance flourished due to incorporating complexity in ZnO nanostructures and decorating them by metal nanoparticles. This chapter gives an overview of the current state of metal nanoparticles decorated ZnO nanostructures for PEC application. We discuss worthwhile role of ZnO and its key properties such as crystal structure, morphologies, and band potential beneficial from PEC viewpoint. A brief discussion on the basics of localized surface plasmon resonance (LSPR) shown by plasmonic metal nanoparticles followed by its capability towards increment in the PEC performance is displayed. Hybrids of metal nanoparticles decorated on ZnO have been utilized as photoelectrodes because of amazing features like enhanced visible light harvesting due to LSPR, higher conductivity, quicker charge transfer rate, increased photogenerated charge carrier separation, supporting band bending mechanism leading to long stability and high efficiency of PEC cell. All such features are explored in a systematic manner. A comparative section is dedicated to doped and decorated photoelectrodes for PEC studies. Rather being descriptive or thoroughgoing, this chapter talks about representative examples of novel and recent ideas to amplify PEC performance. Finally, conclusion point outs current challenges and gives an outlook.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C :

Capacitance of the space charge region

C Hel :

Capacitance of Helmholtz layer

C SCL :

Capacitance of SCL

DDW:

Double distilled water

e 0 :

Charge of electron

E c :

Conduction band

E f :

Fermi energy

E rev :

Standard reversible potential

E v :

Valence band

FRET:

Forster resonance energy transfer

IHP:

Inner Helmholtz plane

J p :

Current density under simulated light

LSPR:

Localized surface plasmon resonance

N d :

Carrier density

OHP:

Outer Helmholtz plane

PEC:

Photoelectrochemical cell

P in :

Incident power density of the illumination of simulated light (100 mW/cm2)

PIRET:

Plasmon induced resonance energy transfer

SILAR:

Successive ionic layer adsorption and reaction

V:

Bias at the electrode material

V app :

Applied bias potential

V fb :

Flat band potential

W :

Space charge region

ε :

Permittivity of ZnO

ε o :

Permittivity of the free space

χ S :

Electron affinity

Ï• m :

Work function of the metal

Ï• SB :

Schottky barrier

References

  1. Mie G (1908) Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Ann Phys 25(3):377–445

    Article  CAS  Google Scholar 

  2. Xiao FX, Liu B (2018) Plasmon-dictated photo-electrochemical water splitting for solar-to-chemical energy conversion: current status and future perspectives. Adv Mater Interfaces 5(6):1701098

    Article  CAS  Google Scholar 

  3. Zhang P, Wang T, Gong J (2015) Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv Mater 27(36):5328–5342

    Article  CAS  Google Scholar 

  4. Masson J-F (2020) Portable and field-deployed surface plasmon resonance and plasmonic sensors. Analyst 145(11):3776–3800

    Article  CAS  Google Scholar 

  5. Pradeep T, Anshup (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517(24):6441–6478

    Article  CAS  Google Scholar 

  6. Tang J, Tang D (2015) Non-enzymatic electrochemical immunoassay using noble metal nanoparticles: a review. Microchim Acta 182(13–14):2077–2089

    Article  CAS  Google Scholar 

  7. Masson J-F (2017) Surface plasmon resonance clinical biosensors for medical diagnostics. ACS Sens 2(1):16–30

    Article  CAS  Google Scholar 

  8. Catchpole K, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93(19):191113

    Article  CAS  Google Scholar 

  9. Meng X, Liu L, Ouyang S, Xu H, Wang D, Zhao N et al (2016) Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis. Adv Mater 28(32):6781–6803

    Article  CAS  Google Scholar 

  10. Atabaev TS (2018) Plasmon-enhanced solar water splitting with metal oxide nanostructures: a brief overview of recent trends. Front Mater Sci 12(3):207–213

    Article  Google Scholar 

  11. Zhou X, Liu G, Yu J, Fan W (2012) Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light. J Mater Chem 22(40):21337–21354

    Article  CAS  Google Scholar 

  12. Chen J-J, Wu JC, Wu PC, Tsai DP (2011) Plasmonic photocatalyst for H2 evolution in photocatalytic water splitting. J Phys Chem C 115(1):210–216

    Article  CAS  Google Scholar 

  13. Zheng Z, Xie W, Huang B, Dai Y (2018) Plasmon-enhanced solar water splitting on metal-semiconductor photocatalysts. Chem A Eur J 24(69):18322–18333

    Article  CAS  Google Scholar 

  14. Mascaretti L, Dutta A, Kment Š, Shalaev VM, Boltasseva A, Zbořil R et al (2019) Plasmon-enhanced photoelectrochemical water splitting for efficient renewable energy storage. Adv Mater 31(31):1805513

    Article  CAS  Google Scholar 

  15. Valenti M, Jonsson MP, Biskos G, Schmidt-Ott A, Smith WA (2016) Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting. J Mater Chem A 4(46):17891–17912

    Article  CAS  Google Scholar 

  16. Samadi M, Zirak M, Naseri A, Khorashadizade E, Moshfegh AZ (2016) Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605:2–19

    Article  CAS  Google Scholar 

  17. Chen X, Zhang Z, Chi L, Nair AK, Shangguan W, Jiang Z (2016) Recent advances in visible-light-driven photoelectrochemical water splitting: catalyst nanostructures and reaction systems. Nano Micro Lett 8(1):1–12

    Article  CAS  Google Scholar 

  18. Reddy CV, Reddy KR, Shetti NP, Shim J, Aminabhavi TM, Dionysiou DD (2020) Hetero-nanostructured metal oxide-based hybrid photocatalysts for enhanced photoelectrochemical water splitting–a review. Int J Hydrogen Energy 45(36):18331–18347

    Article  CAS  Google Scholar 

  19. Prasad M, Sharma V, Rokade A, Jadkar S (2018) Photoelectrochemical cell: a versatile device for sustainable hydrogen production. Photoelectrochem Sol Cells 30:59–119

    Article  Google Scholar 

  20. Amendola V, Pilot R, Frasconi M, Maragò OM, Iatì MA (2017) Surface plasmon resonance in gold nanoparticles: a review. J Phys Condens Matter 29(20):203002

    Article  Google Scholar 

  21. Klingshirn CF, Waag A, Hoffmann A, Geurts J (2010) Zinc oxide: from fundamental properties towards novel applications. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  22. Jagadish C, Pearton SJ (2011) Zinc oxide bulk, thin films and nanostructures: processing, properties, and applications. Elsevier, Amsterdam

    Google Scholar 

  23. Van de Krol R, Grätzel M (2012) Photoelectrochemical hydrogen production. Springer, Berlin

    Book  Google Scholar 

  24. Desai MA, Sharma V, Prasad M, Jadkar S, Saratale GD, Sartale SD (2020) Seed-layer-free deposition of well-oriented ZnO nanorods thin films by SILAR and their photoelectrochemical studies. Int J Hydrogen Energy 45(10):5783–5792

    Article  CAS  Google Scholar 

  25. Kumar R, Al-Dossary O, Kumar G, Umar A (2015) Zinc oxide nanostructures for NO 2 gas–sensor applications: a review. Nano Micro Lett 7(2):97–120

    Article  CAS  Google Scholar 

  26. Alias SS, Mohamad AA (2014) Synthesis of zinc oxide by sol-gel method for photoelectrochemical cells. Springer, Berlin

    Book  Google Scholar 

  27. Willander M (2014) Zinc oxide nanostructures: advances and applications. CRC, Boca Raton, FL

    Book  Google Scholar 

  28. Desai MA, Sartale S (2016) Zinc oxide thin films: nanoflakes to spongy balls via seed layer. Adv Sci Lett 22(4):880–883

    Article  Google Scholar 

  29. Desai MA, Sartale S (2015) Facile soft solution route to engineer hierarchical morphologies of ZnO nanostructures. Cryst Growth Des 15(10):4813–4820

    Article  CAS  Google Scholar 

  30. Desai MA, Vyas AN, Saratale GD, Sartale SD (2019) Zinc oxide superstructures: recent synthesis approaches and application for hydrogen production via photoelectrochemical water splitting. Int J Hydrogen Energy 44(4):2091–2127

    Article  CAS  Google Scholar 

  31. Yang Y, Ajmal S, Zheng X, Zhang L (2018) Efficient nanomaterials for harvesting clean fuels from electrochemical and photoelectrochemical CO2 reduction. Sustain Energy Fuels 2(3):510–537

    Article  CAS  Google Scholar 

  32. Tamirat AG, Rick J, Dubale AA, Su W-N, Hwang B-J (2016) Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Nanoscale Horizons 1(4):243–267

    Article  CAS  Google Scholar 

  33. Guo S, Zhao X, Zhang W, Wang W (2018) Optimization of electrolyte to significantly improve photoelectrochemical water splitting performance of ZnO nanowire arrays. Mater Sci Eng B 227:129–135

    Article  CAS  Google Scholar 

  34. Li X, Liu S, Fan K, Liu Z, Song B, Yu J (2018) MOF-based transparent passivation layer modified ZnO Nanorod arrays for enhanced photo-electrochemical water splitting. Adv Energy Mater 8(18):1800101

    Article  CAS  Google Scholar 

  35. Zhang W, Wang W, Shi H, Liang Y, Fu J, Zhu M (2018) Surface plasmon-driven photoelectrochemical water splitting of aligned ZnO nanorod arrays decorated with loading-controllable au nanoparticles. Sol Energy Mater Sol Cells 180:25–33

    Article  CAS  Google Scholar 

  36. Zayed M, Ahmed AM, Shaban M (2019) Synthesis and characterization of nanoporous ZnO and Pt/ZnO thin films for dye degradation and water splitting applications. Int J Hydrogen Energy 44(33):17630–17648

    Article  CAS  Google Scholar 

  37. Tang D-M, Liu G, Li F, Tan J, Liu C, Lu GQ et al (2009) Synthesis and photoelectrochemical property of urchin-like Zn/ZnO core–shell structures. J Phys Chem C 113(25):11035–11040

    Article  CAS  Google Scholar 

  38. Sun X, Li Q, Jiang J, Mao Y (2014) Morphology-tunable synthesis of ZnO nanoforest and its photoelectrochemical performance. Nanoscale 6(15):8769–8780

    Article  CAS  Google Scholar 

  39. Zhang B, Wang F, Zhu C, Li Q, Song J, Zheng M et al (2016) A facile self-assembly synthesis of hexagonal ZnO nanosheet films and their photoelectrochemical properties. Nano Micro Lett 8(2):137–142

    Article  CAS  Google Scholar 

  40. Wang X, Yao X (2014) Photo-electrochemical behaviors of hollow ZnO spheres prepared by zinc in aqueous solution. Chem Lett 43(5):595–597

    Article  CAS  Google Scholar 

  41. Roza L, Rahman MYA, Umar AA, Salleh MM (2015) Direct growth of oriented ZnO nanotubes by self-selective etching at lower temperature for photo-electrochemical (PEC) solar cell application. J Alloys Compd 618:153–158

    Article  CAS  Google Scholar 

  42. Ahn K-S, Yan Y, Shet S, Jones K, Deutsch T, Turner J et al (2008) ZnO nanocoral structures for photoelectrochemical cells. Appl Phys Lett 93(16):163117

    Article  CAS  Google Scholar 

  43. Govatsi K, Seferlis A, Neophytides S, Yannopoulos S (2018) Influence of the morphology of ZnO nanowires on the photoelectrochemical water splitting efficiency. Int J Hydrogen Energy 43(10):4866–4879

    Article  CAS  Google Scholar 

  44. Qiu Y, Yan K, Deng H, Yang S (2012) Secondary branching and nitrogen doping of ZnO Nanotetrapods: building a highly active network for Photoelectrochemical water splitting. Nano Lett 12(1):407–413

    Article  CAS  Google Scholar 

  45. Baek M, Kim D, Yong K (2017) Simple but effective way to enhance Photoelectrochemical solar-water-splitting performance of ZnO Nanorod arrays: charge-trapping Zn(OH)2 annihilation and oxygen vacancy generation by vacuum annealing. ACS Appl Mater Interfaces 9(3):2317–2325

    Article  CAS  Google Scholar 

  46. Ahn K-S, Shet S, Deutsch T, Jiang C-S, Yan Y, Al-Jassim M et al (2008) Enhancement of photoelectrochemical response by aligned nanorods in ZnO thin films. J Power Sources 176(1):387–392

    Article  CAS  Google Scholar 

  47. Hu Y, Yan X, Gu Y, Chen X, Bai Z, Kang Z et al (2015) Large-scale patterned ZnO nanorod arrays for efficient photoelectrochemical water splitting. Appl Surf Sci 339:122–127

    Article  CAS  Google Scholar 

  48. Kargar A, Sun K, Jing Y, Choi C, Jeong H, Zhou Y et al (2013) Tailoring n-ZnO/p-Si branched nanowire heterostructures for selective photoelectrochemical water oxidation or reduction. Nano Lett 13(7):3017–3022

    Article  CAS  Google Scholar 

  49. Wei Y, Ke L, Leong ES, Liu H, Liew L-L, Teng JH et al (2012) Enhanced photoelectrochemical performance of bridged ZnO nanorod arrays grown on V-grooved structure. Nanotechnology 23(36):365704

    Article  CAS  Google Scholar 

  50. Park S, Mun Y, An S, Lee WI, Lee C (2014) Enhanced photoluminescence of au-functionalized ZnO nanorods annealed in a hydrogen atmosphere. JOL 147:5–8

    CAS  Google Scholar 

  51. Peiris S, McMurtrie J, Zhu H-Y (2016) Metal nanoparticle photocatalysts: emerging processes for green organic synthesis. Cat Sci Technol 6(2):320–338

    Article  CAS  Google Scholar 

  52. Warren SC, Thimsen E (2012) Plasmonic solar water splitting. Energ Environ Sci 5(1):5133–5146

    Article  CAS  Google Scholar 

  53. Knight MW, Sobhani H, Nordlander P, Halas NJ (2011) Photodetection with active optical antennas. Science 332(6030):702–704

    Article  CAS  Google Scholar 

  54. Hou W, Cronin SB (2013) A review of surface plasmon resonance-enhanced photocatalysis. Adv Funct Mater 23(13):1612–1619

    Article  CAS  Google Scholar 

  55. Praveena R, Sameera VS, Mohiddon MA, Krishna MG (2019) Surface plasmon resonance, photoluminescence and surface enhanced Raman scattering behaviour of ag/ZnO, ZnO/ag and ZnO/ag/ZnO thin films. Phys B Condens Matter 555:118–124

    Article  CAS  Google Scholar 

  56. Wu M, Chen W-J, Shen Y-H, Huang F-Z, Li C-H, Li S-K (2014) In situ growth of matchlike ZnO/au plasmonic heterostructure for enhanced photoelectrochemical water splitting. ACS Appl Mater Interfaces 6(17):15052–15060

    Article  CAS  Google Scholar 

  57. de Melo C, Jullien M, Battie Y, En Naciri A, Ghanbaja J, Montaigne F et al (2018) Tunable localized surface Plasmon resonance and broadband visible photoresponse of cu nanoparticles/ZnO surfaces. ACS Appl Mater Interfaces 10(47):40958–40965

    Article  CAS  Google Scholar 

  58. Zhang X, Liu Y, Kang Z (2014) 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting. ACS Appl Mater Interfaces 6(6):4480–4489

    Article  CAS  Google Scholar 

  59. Zhang X, Zhao J, Wang S, Dai H, Sun X (2014) Shape-dependent localized surface plasmon enhanced photocatalytic effect of ZnO nanorods decorated with Ag. Int J Hydrogen Energy 39(16):8238–8245

    Article  CAS  Google Scholar 

  60. Mahala C, Sharma MD, Basu M (2020) Near-field and far-field Plasmonic effects of gold nanoparticles decorated on ZnO Nanosheets for enhanced solar water splitting. ACS Appl Nano Mater 3(2):1153–1165

    Article  CAS  Google Scholar 

  61. Slimi B, Assaker IB, Kriaa A, Marí B, Chtourou R (2017) One-step electrodeposition of ag-decorated ZnO nanowires. J Solid State Electrochem 21(5):1253–1261

    Article  CAS  Google Scholar 

  62. Hsu Y-K, Fu S-Y, Chen M-H, Chen Y-C, Lin Y-G (2014) Facile synthesis of Pt nanoparticles/ZnO Nanorod arrays for photoelectrochemical water splitting. Electrochim Acta 120:1–5

    Article  CAS  Google Scholar 

  63. Wang T, Jiao Z, Chen T, Li Y, Ren W, Lin S et al (2013) Vertically aligned ZnO nanowire arrays tip-grafted with silver nanoparticles for photoelectrochemical applications. Nanoscale 5(16):7552–7557

    Article  CAS  Google Scholar 

  64. Wei Y, Ke L, Kong J, Liu H, Jiao Z, Lu X et al (2012) Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photoanode decorated with ag nanoparticles. Nanotechnology 23(23):235401

    Article  CAS  Google Scholar 

  65. Kang Z, Si H, Zhang S, Wu J, Sun Y, Liao Q et al (2019) Interface engineering for modulation of charge carrier behavior in ZnO photoelectrochemical water splitting. Adv Funct Mater 29(15):1808032

    Article  CAS  Google Scholar 

  66. Clavero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photonics 8(2):95–103

    Article  CAS  Google Scholar 

  67. Zhang C, Shao M, Ning F, Xu S, Li Z, Wei M et al (2015) Au nanoparticles sensitized ZnO nanorod@ nanoplatelet core–shell arrays for enhanced photoelectrochemical water splitting. Nano Energy 12:231–239

    Article  CAS  Google Scholar 

  68. Zhao Y, Gong J, Zhang X, Kong R, Qu F (2018) Enhanced biosensing platform constructed using urchin-like ZnO-au@ CdS microspheres based on the combination of photoelectrochemical and bioetching strategies. Sens Actuators B 255:1753–1761

    Article  CAS  Google Scholar 

  69. Adam RE, Pirhashemi M, Elhag S, Liu X, Habibi-Yangjeh A, Willander M et al (2019) ZnO/ag/ag 2 WO 4 photo-electrodes with plasmonic behavior for enhanced photoelectrochemical water oxidation. RSC Adv 9(15):8271–8279

    Article  CAS  Google Scholar 

  70. Babu ES, Rani BJ, Ravi G, Yuvakkumar R, Guduru RK, Ravichandran S et al (2018) Vertically aligned cu-ZnO nanorod arrays for water splitting applications. Mater Lett 222:58–61

    Article  CAS  Google Scholar 

  71. Sun Y, Xu B, Shen Q, Hang L, Men D, Zhang T et al (2017) Rapid and efficient self-assembly of au@ZnO core–shell nanoparticle arrays with an enhanced and tunable Plasmonic absorption for photoelectrochemical hydrogen generation. ACS Appl Mater Interfaces 9(37):31897–31906

    Article  CAS  Google Scholar 

  72. Guo CX, Xie J, Yang H, Li CM (2015) Au@ CdS core–shell nanoparticles-modified ZnO nanowires photoanode for efficient Photoelectrochemical water splitting. Adv Sci 2(12):1500135

    Article  CAS  Google Scholar 

  73. Wei R-B, Kuang P-Y, Cheng H, Chen Y-B, Long J-Y, Zhang M-Y et al (2017) Plasmon-enhanced photoelectrochemical water splitting on gold nanoparticle decorated ZnO/CdS nanotube arrays. ACS Sustain Chem Eng 5(5):4249–4257

    Article  CAS  Google Scholar 

  74. Yang X, Li H, Zhang W, Sun M, Li L, Xu N et al (2017) High visible photoelectrochemical activity of ag nanoparticle-sandwiched CdS/ag/ZnO nanorods. ACS Appl Mater Interfaces 9(1):658–667

    Article  CAS  Google Scholar 

  75. Prasad M, Sharma V, Aher R, Rokade A, Ilaiyaraja P, Sudakar C et al (2017) Synergistic effect of ag plasmon-and reduced graphene oxide-embedded ZnO nanorod-based photoanodes for enhanced photoelectrochemical activity. J Mater Sci 52(23):13572–13585

    Article  CAS  Google Scholar 

  76. Li J-M, Cheng H-Y, Chiu Y-H, Hsu Y-J (2016) ZnO–Au–SnO2 Z-scheme photoanodes for remarkable photoelectrochemical water splitting. Nanoscale 8(34):15720–15729

    Article  CAS  Google Scholar 

  77. Wen P, Sun Y, Li H, Liang Z, Wu H, Zhang J et al (2020) A highly active three-dimensional Z-scheme ZnO/au/g-C3N4 photocathode for efficient photoelectrochemical water splitting. Appl Catal Environ 263:118180

    Article  CAS  Google Scholar 

  78. Xiao J, Zhang X, Li Y (2015) A ternary g-C3N4/Pt/ZnO photoanode for efficient photoelectrochemical water splitting. Int J Hydrogen Energy 40(30):9080–9087

    Article  CAS  Google Scholar 

  79. G. Fang, Z. Liu, C. Han, Q. Cai, C. Ma, Z. Tong, ZnO/In2S3/Co–Pi ternary composite photoanodes for enhanced photoelectrochemical properties, Journal of Materials Science: Materials in Electronics, 30 (2019) 18943–18949.

    Article  CAS  Google Scholar 

  80. Liu Y, Gu Y, Yan X, Kang Z, Lu S, Sun Y et al (2015) Design of sandwich-structured ZnO/ZnS/au photoanode for enhanced efficiency of photoelectrochemical water splitting. Nano Res 8(9):2891–2900

    Article  CAS  Google Scholar 

  81. Kant R, Pathak S, Dutta V (2018) Design and fabrication of sandwich-structured α-Fe2O3/au/ZnO photoanode for photoelectrochemical water splitting. Sol Energy Mater Sol Cells 178:38–45

    Article  CAS  Google Scholar 

  82. Park J, Deshmukh P, Sohn Y, Shin WG (2019) ZnO-TiO2 core-shell nanowires decorated with au nanoparticles for plasmon-enhanced photoelectrochemical water splitting. J Alloys Compd 787:1310–1319

    Article  CAS  Google Scholar 

  83. Tan HL, Abdi FF, Ng YH (2019) Heterogeneous photocatalysts: an overview of classic and modern approaches for optical, electronic, and charge dynamics evaluation. Chem Soc Rev 48(5):1255–1271

    Article  CAS  Google Scholar 

  84. Beranek R (2011) (Photo) electrochemical methods for the determination of the band edge positions of TiO2-based nanomaterials. Adv Phys Chem 2011:786759

    Article  CAS  Google Scholar 

  85. Xu XT, Pan L, Zhang X, Wang L, Zou JJ (2019) Rational design and construction of cocatalysts for semiconductor-based photo-electrochemical oxygen evolution: a comprehensive review. Adv Sci 6(2):1801505

    Article  CAS  Google Scholar 

  86. Chiu Y-H, Chang K-D, Hsu Y-J (2018) Plasmon-mediated charge dynamics and photoactivity enhancement for au-decorated ZnO nanocrystals. J Mater Chem A 6(10):4286–4296

    Article  CAS  Google Scholar 

  87. Genscher H (1966) Electrochemical behavior of semiconductors under illumination. J Electrochem Soc 113(11):1174

    Article  Google Scholar 

  88. Liu Y, Yan X, Kang Z, Li Y, Shen Y, Sun Y et al (2016) Synergistic effect of surface plasmonic particles and surface passivation layer on ZnO nanorods array for improved photoelectrochemical water splitting. Sci Rep 6:29907

    Article  CAS  Google Scholar 

  89. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570

    Article  CAS  Google Scholar 

  90. Yang X, Wolcott A, Wang G, Sobo A, Fitzmorris RC, Qian F et al (2009) Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett 9(6):2331–2336

    Article  CAS  Google Scholar 

  91. Majumder T, Dhar S, Debnath K, Mondal SP (2017) Role of S, N co-doped graphene quantum dots as a green photosensitizer with ag-doped ZnO nanorods for improved electrochemical solar energy conversion. Mater Res Bull 93:214–222

    Article  CAS  Google Scholar 

  92. Lee HJ, Shin S-H, Nam KT, Nah J, Lee MH (2016) Spontaneously polarized lithium-doped zinc oxide nanowires as photoanodes for electrical water splitting. J Mater Chem A 4(9):3223–3227

    Article  CAS  Google Scholar 

  93. Huang MC, Lin JC, Cheng SH, Weng WH (2017) Influence of Ga dopant on photoelectrochemical characteristic of Ga-doped ZnO thin films deposited by sol–gel spin-coating technique. Surf Interface Anal 49(5):434–440

    Article  CAS  Google Scholar 

  94. Zhang B, Wang Z, Huang B, Zhang X, Qin X, Li H et al (2016) Anisotropic photoelectrochemical (PEC) performances of ZnO single-crystalline photoanode: effect of internal electrostatic fields on the separation of photogenerated charge carriers during PEC water splitting. Chem Mater 28(18):6613–6620

    Article  CAS  Google Scholar 

  95. Dridi D, Bouaziz L, Karyaoui M, Litaiem Y, Chtourou R (2018) Effect of silver doping on optical and electrochemical properties of ZnO photoanode. J Mater Sci Mater Electron 29(10):8267–8278

    Article  CAS  Google Scholar 

  96. Chakma S, Moholkar VS (2015) Investigation in mechanistic issues of sonocatalysis and sonophotocatalysis using pure and doped photocatalysts. Ultrason Sonochem 22:287–299

    Article  CAS  Google Scholar 

  97. Divband B, Khatamian M, Eslamian GK, Darbandi M (2013) Synthesis of ag/ZnO nanostructures by different methods and investigation of their photocatalytic efficiency for 4-nitrophenol degradation. Appl Surf Sci 284:80–86

    Article  CAS  Google Scholar 

  98. Bakhtiargonbadi F, Esfahani H, Moakhar RS, Dabir F (2020) Fabrication of novel electrospun Al and cu doped ZnO thin films and evaluation of photoelectrical and sunlight-driven photoelectrochemical properties. Mater Chem Phys 252:123270

    Article  CAS  Google Scholar 

  99. Bouznit Y, Henni A (2020) Enhanced photoelectrochemical performance of Al-doped ZnO thin films prepared by co-spray technique. Mater Sci Semicond Process 118:105208

    Article  CAS  Google Scholar 

  100. Sharma A, Chakraborty M, Thangavel R, Udayabhanu G (2018) Hydrothermal growth of undoped and boron doped ZnO nanorods as a photoelectrode for solar water splitting applications. J Sol Gel Sci Technol 85(1):1–11

    Article  CAS  Google Scholar 

  101. Wang S, Zhang X, Li S, Fang Y, Pan L, Zou J-J (2017) C-doped ZnO ball-in-ball hollow microspheres for efficient photocatalytic and photoelectrochemical applications. J Hazard Mater 331:235–245

    Article  CAS  Google Scholar 

  102. Sahoo P, Sharma A, Padhan S, Udayabhanu G, Thangavel R (2019) UV-assisted water splitting of stable cl-doped ZnO nanorod photoanodes grown via facile sol-gel hydrothermal technique for enhanced solar energy harvesting applications. Solar Energy 193:148–163

    Article  CAS  Google Scholar 

  103. Galan Gonzalez A, Sivan AK, Hernández Ferrer J, Bowen L, Di Mario L, Martelli F et al (2020) Cobalt-doped ZnO nanorods coated with nanoscale metal-organic framework shells for water-splitting photoanodes. ACS Appl Nano Mater 3(8):7781–7788

    Article  CAS  Google Scholar 

  104. Sreedhar A, Reddy IN, Ta QTH, Cho E, Noh J-S (2019) Insight into anions and cations effect on charge carrier generation and transportation of flake-like co-doped ZnO thin films for stable PEC water splitting activity. J Electroanal Chem 855:113583

    Article  CAS  Google Scholar 

  105. Salem M, Akir S, Massoudi I, Litaiem Y, Gaidi M, Khirouni K (2017) Enhanced photoelectrochemical and optical performance of ZnO films tuned by Cr doping. Appl Phys A 123(4):243

    Article  CAS  Google Scholar 

  106. Salem M, Massoudi I, Akir S, Litaiem Y, Gaidi M, Khirouni K (2017) Photoelectrochemical and opto-electronic properties tuning of ZnO films: effect of cu doping content. J Alloys Compd 722:313–320

    Article  CAS  Google Scholar 

  107. Bandyopadhyay P, Dey A, Basu R, Nandy P, Das S (2016) Effect of cu doping in ZnO nanoparticles for increased voltage generation, storage capacity, and energy conversion efficiency in photoelectrochemical cell. Energy Sources Pt A Recov Utilization Environ Effects 38(13):1833–1839

    Article  CAS  Google Scholar 

  108. Rasouli F, Rouhollahi A, Ghahramanifard F (2019) Gradient doping of copper in ZnO nanorod photoanode by electrodeposition for enhanced charge separation in photoelectrochemical water splitting. Superlattices Microstruct 125:177–189

    Article  CAS  Google Scholar 

  109. Aboud AA, Shaban M, Revaprasadu N (2019) Effect of Cu, Ni and Pb doping on the photo-electrochemical activity of ZnO thin films. RSC Adv 9(14):7729–7736

    Article  CAS  Google Scholar 

  110. Xiao J, Hou X, Zhao L, Li Y (2016) A conductive ZnO: Ga/ZnO core-shell nanorod photoanode for photoelectrochemical water splitting. Int J Hydrogen Energy 41(33):14596–14604

    Article  CAS  Google Scholar 

  111. Alfakes B, Garlisi C, Villegas J, Al-Hagri A, Tamalampudi S, Rajput NS et al (2020) Enhanced photoelectrochemical performance of atomic layer deposited Hf-doped ZnO. Surf Coat Technol 385:125352

    Article  CAS  Google Scholar 

  112. Rouhi J, Kakooei S, Sadeghzadeh SM, Rouhi O, Karimzadeh R (2020) Highly efficient photocatalytic performance of dye-sensitized K-doped ZnO nanotapers synthesized by a facile one-step electrochemical method for quantitative hydrogen generation. J Solid State Electrochem 24:1599–1606

    Article  CAS  Google Scholar 

  113. Sahoo P, Sharma A, Padhan S, Thangavel R (2020) Visible light driven photosplitting of water using one dimensional mg doped ZnO nanorod arrays. Int J Hydrogen Energy 45:22576–22588

    Article  CAS  Google Scholar 

  114. Allami S, Ali ZDA, Li Y, Hamody H, Jawad BH, Liu L et al (2017) Photoelectrochemical performance of N-doped ZnO branched nanowire photoanodes. Heliyon 3(10):e00423

    Article  Google Scholar 

  115. Han H, Karlicky F, Pitchaimuthu S, Shin SHR, Chen A (2019) Highly ordered N-doped carbon dots photosensitizer on metal–organic framework-decorated ZnO nanotubes for improved Photoelectrochemical water splitting. Small 15(40):1902771

    Article  CAS  Google Scholar 

  116. Reddy IN, Reddy CV, Sreedhar A, Shim J, Cho M, Yoo K et al (2018) Structural, optical, and bifunctional applications: supercapacitor and photoelectrochemical water splitting of Ni-doped ZnO nanostructures. J Electroanal Chem 828:124–136

    Article  CAS  Google Scholar 

  117. Chen Y, Wang L, Wang W, Cao M (2017) Synthesis of se-doped ZnO nanoplates with enhanced photoelectrochemical and photocatalytic properties. Mater Chem Phys 199:416–423

    Article  CAS  Google Scholar 

  118. Lee SM, Shin S-H, Nah J, Lee MH (2017) Induced dipole in vanadium-doped zinc oxide nanosheets and its effects on photoelectrochemical water splitting. Nanotechnology 28(39):395403

    Article  CAS  Google Scholar 

  119. Commandeur D, McGuckin J, Chen Q (2020) Hematite coated, conductive Y doped ZnO nanorods for high efficiency solar water splitting. Nanotechnology 31(26):265403

    Article  CAS  Google Scholar 

  120. Commandeur D, Brown G, McNulty P, Dadswell C, Spencer J, Chen Q (2019) Yttrium-doped ZnO nanorod arrays for increased charge mobility and carrier density for enhanced solar water splitting. J Phys Chem C 123(30):18187–18197

    Article  CAS  Google Scholar 

  121. Desai MA, Sharma V, Prasad M, Gund G, Jadkar S, Sartale SD (2021) Photoelectrochemical performance of MWCNT–Ag–ZnO ternary hybrid: a study of Ag loading and MWCNT garnishing. J Mater Sci 56:8627–8642

    Google Scholar 

  122. Desai MA, Kulkarni A, Gund G, Sartale SD (2021) SILAR Grown K+ and Na+ Ions Preinserted MnO2 Nanostructures for Supercapacitor Applications: A Comparative Study. Energy Fuels 35:4577–4586

    Google Scholar 

Download references

Acknowledgments

Mangesh A. Desai is thankful to Council of Scientific and Industrial Research (CSIR), India for awarding senior research fellowship (SRF). Authors are thankful to University grants commission (UGC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrikrishna D. Sartale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Desai, M.A., Sartale, S.D. (2021). Plasmonic Metal Nanoparticles Decorated ZnO Nanostructures for Photoelectrochemical (PEC) Applications. In: Ezema, F.I., Lokhande, C.D., Jose, R. (eds) Chemically Deposited Nanocrystalline Metal Oxide Thin Films. Springer, Cham. https://doi.org/10.1007/978-3-030-68462-4_12

Download citation

Publish with us

Policies and ethics