Skip to main content

Computational Models: 3D Printing, Materials and Structures

  • Chapter
  • First Online:
Fused Deposition Modeling Based 3D Printing

Abstract

A comprehensive understanding of the 3D printing method—microstructure—material properties relationship of 3D printed parts is currently limited. In fused filament fabrication (fused deposition modeling/FDM) 3D printing technology, parts are fabricated by deposition of material layer upon layer. The printing process has a vital influence on the final quality of printed parts. Also, processing parameters control the microstructure of 3D printed components and thus, the parameters in-turn affect the component’s material properties. Experimental evaluation of this relationship is challenging, and an alternative solution is computational modeling. The computational models based on multi-physics provide deeper insights into the relationship of process-structure-property of printed parts. This chapter explores different computational models available for modeling the FDM process, computational material models for 3D printed parts and models for characterizing part’s material behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sun Q, Rizvi GM, Bellehumeur CT, Gu P (2008) Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp J 14(2):72–80

    Article  Google Scholar 

  2. Coogan TJ, Kazmer DO (2017) Bond and part strength in fused deposition modeling. Rapid Prototyp J 23(2):414–422

    Article  Google Scholar 

  3. Bellehumeur C, Li L, Sun Q, Gu P (2004) Modeling of bond formation between polymer filaments in the fused deposition modeling process. J Manuf Process 6(2):170–178

    Article  Google Scholar 

  4. Das A, McIlroy C, Bortner MJ (2020) Advances in modeling transport phenomena in material–extrusion additive manufacturing: coupling momentum, heat, and mass transfer. Progress Addit Manuf. https://doi.org/10.1007/s40964-020-00137-3

    Article  Google Scholar 

  5. Gurrala PK, Regalla SP (2014) Part strength evolution with bonding between filaments in fused deposition modelling: this paper studies how coalescence of filaments contributes to the strength of final FDM part. Virtual Phys Prototyp 9(3):141–149

    Article  Google Scholar 

  6. Coogan TJ, Kazmer DO (2017) Healing simulation for bond strength prediction of FDM. Rapid Prototyp J 23(3):551–561

    Article  Google Scholar 

  7. Tymrak BM, Kreiger M, Pearce JM (2014) Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater Des 58:242–246

    Article  Google Scholar 

  8. Huang B, Singamneni S (2015) Raster angle mechanics in fused deposition modelling. J Compos Mater 49(3):363–383

    Article  Google Scholar 

  9. Cantrell JT, Rohde S, Damiani D, Gurnani R, DiSandro L, Anton J, Young A, Jerez A, Steinbach D, Kroese C, Ifju PG (2017) Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Rapid Prototyp J 23(4):811–824

    Article  Google Scholar 

  10. Somireddy M, Czekanski A (2020) Anisotropic material behavior of 3D printed composite structures–material extrusion additive manufacturing. Mater Des 195:108953

    Article  Google Scholar 

  11. Rajpurohit SR, Dave HK (2019) Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer. Int J Adv Manuf Technol 101(5–8):1525–1536

    Article  Google Scholar 

  12. Rezayat H, Zhou W, Siriruk A, Penumadu D, Babu SS (2015) Structure–mechanical property relationship in fused deposition modelling. Mater Sci Technol 31(8):895–903

    Article  Google Scholar 

  13. Somireddy M, Singh CV, Czekanski A (2019) Analysis of the material behavior of 3D printed laminates via FFF. Exp Mech 59(6):871–881

    Article  Google Scholar 

  14. Ning F, Cong W, Hu Y, Wang H (2017) Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: effects of process parameters on tensile properties. J Compos Mater 51(4):451–462

    Article  Google Scholar 

  15. Li L, Sun Q, Bellehumeur C, Gu P (2002) Composite modeling and analysis for fabrication of FDM prototypes with locally controlled properties. J Manuf Process 4(2):129–141

    Article  Google Scholar 

  16. Somireddy M, Czekanski A, Singh CV (2018) Development of constitutive material model of 3D printed structure via FDM. Mater Today Commun 15:143–152

    Article  Google Scholar 

  17. Nasirov A, Gupta A, Hasanov S, Fidan I (2020) Three-scale asymptotic homogenization of short fiber reinforced additively manufactured polymer composites. Compos B Eng 202:108269

    Article  Google Scholar 

  18. Somireddy M, Singh CV, Czekanski A (2020) Mechanical behaviour of 3D printed composite parts with short carbon fiber reinforcements. Eng Fail Anal 107:104232

    Article  Google Scholar 

  19. Turner BN, Strong R, Gold SA (2014) A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp J 20(3):192–204

    Google Scholar 

  20. Turner BN, Gold SA (2015) A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyp J 21(3):250–261

    Google Scholar 

  21. McIlroy C, Graham RS (2018) Modelling flow-enhanced crystallisation during fused filament fabrication of semi-crystalline polymer melts. Addit Manuf 24:323–340

    Google Scholar 

  22. Bellini A, Güçeri S, Bertoldi M (2004) Liquefier dynamics in fused deposition. J Manuf Sci Eng Trans ASME 126:237–246

    Article  Google Scholar 

  23. Ramanath HS, Chua CK, Leong KF, Shah KD (2008) Melt flow behaviour of poly-ε-caprolactone in fused deposition modelling. J Mater Sci-Mater Med 19(7):2541–2550

    Article  Google Scholar 

  24. Serdeczny MP, Comminal R, Mollah MT, Pedersen DB, Spangenberg J (2020) Numerical modeling of the polymer flow through the hot-end in filament-based material extrusion additive manufacturing. Addit Manuf 36:101454

    Google Scholar 

  25. Xia H, Lu J, Dabiri S, Tryggvason G (2018) Fully resolved numerical simulations of fused deposition modeling. Part I: fluid flow. Rapid Prototyp J 24(2):463–476

    Google Scholar 

  26. Comminal R, Serdeczny MP, Pedersen DB, Spangenberg J (2019) Motion planning and numerical simulation of material deposition at corners in extrusion additive manufacturing. Addit Manuf 29:100753

    Google Scholar 

  27. Serdeczny MP, Comminal R, Pedersen DB, Spangenberg J (2018) Experimental validation of a numerical model for the strand shape in material extrusion additive manufacturing. Addit Manuf 24:145–153

    Google Scholar 

  28. Xia H, Lu J, Tryggvason G (2018) Fully resolved numerical simulations of fused deposition modeling. Part II–solidification, residual stresses and modeling of the nozzle. Rapid Prototyp J 24(6):973–987

    Google Scholar 

  29. Phan DD, Swain ZR, Mackay ME (2018) Rheological and heat transfer effects in fused filament fabrication. J Rheol 62(5):1097–1107

    Article  Google Scholar 

  30. Zhang Y, Chou YK (2006) Three-dimensional finite element analysis simulations of the fused deposition modelling process. Proc Inst Mech Eng B J Eng Manuf 220(10):1663–1671

    Article  Google Scholar 

  31. Zhang Y, Chou K (2008) A parametric study of part distortions in fused deposition modelling using three-dimensional finite element analysis. Proc Inst Mech Eng B J Eng Manuf 222(8):959–968

    Article  Google Scholar 

  32. Zhou Y, Nyberg T, Xiong G, Liu D (2016) Temperature analysis in the fused deposition modeling process. In: 2016 3rd international conference on information science and control engineering (ICISCE) IEEE, pp 678–682

    Google Scholar 

  33. Zhou X, Hsieh SJ, Sun Y (2017) Experimental and numerical investigation of the thermal behaviour of polylactic acid during the fused deposition process. Virtual Phys Prototyp 12(3):221–233

    Article  Google Scholar 

  34. Parandoush P, Lin D (2017) A review on additive manufacturing of polymer-fiber composites. Compos Struct 182:36–53

    Article  Google Scholar 

  35. Rodríguez JF, Thomas JP, Renaud JE (2003) Mechanical behavior of acrylonitrile butadiene styrene fused deposition materials modeling. Rapid Prototyp J 9(4):219–230

    Article  Google Scholar 

  36. Somireddy M, Czekanski A (2017) Mechanical characterization of additively manufactured parts by FE modeling of mesostructure. J Manuf Mater Process 1(2):18

    Google Scholar 

  37. Chen R, Kaplan AF, Senesky DG (2020) Closed-form orthotropic constitutive model for aligned square array mesostructure. Addit Manuf 36:101463

    Google Scholar 

  38. Yuan Z, Fish J (2008) Toward realization of computational homogenization in practice. Int J Numer Meth Eng 73(3):361–380

    Article  MathSciNet  Google Scholar 

  39. Xia Z, Zhang Y, Ellyin F (2003) A unified periodical boundary conditions for representative volume elements of composites and applications. Int J Solids Struct 40(8):1907–1921

    Article  Google Scholar 

  40. Anoop MS, Senthil P (2019) Homogenisation of elastic properties in FDM components using microscale RVE numerical analysis. J Braz Soc Mech Sci Eng 41(12):540

    Article  Google Scholar 

  41. Calneryte D, Barauskas R, Milasiene D, Maskeliunas R, Neciunas A, Ostreika A, Patasius M, Krisciunas A (2018) Multi-scale finite element modeling of 3D printed structures subjected to mechanical loads. Rapid Prototyp J 24(1):177–187

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhukar Somireddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prajapati, A.R., Rajpurohit, S.R., Somireddy, M. (2021). Computational Models: 3D Printing, Materials and Structures. In: Dave, H.K., Davim, J.P. (eds) Fused Deposition Modeling Based 3D Printing. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-030-68024-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68024-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68023-7

  • Online ISBN: 978-3-030-68024-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics