Skip to main content

An Essay on Periodic Tables

  • Chapter
  • First Online:
150 Years of the Periodic Table

Part of the book series: Perspectives on the History of Chemistry ((PHC))

  • 1234 Accesses

Abstract

After a compact history of the PT, from Döbereiner’s triads to the theoretical predictions up to element 172, a number of particular issues is discussed: Why may Z = 172 be a limit for stable electron shells? What are the expected stability limits of the nuclear isotopes? When are formally empty atomic orbitals used in molecular electronic structures? What is ‘Secondary Periodicity’? When do the elements (Ir, Pt, Au), at the end of a bond, simulate (N, O, I), respectively? Some new suggestions for alternative PTs are commented upon. As a local connection, Johan Gadolin’s 1794 analysis of the Ytterby mineral is mentioned.

This chapter has been reproduced with permission from Ref. [1]. https://doi.org/10.1515/pac-2019-0801. Copyright 2019 IUPAC and De Gruyter.

A collection of invited papers based on presentations at “Mendeleev 150”: 4th International Conference on the Periodic Table endorsed by IUPAC, Saint Petersburg (Russia), 26–28 July 2019.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For more information on triads, see Chapter 3 of this volume—Ed.

  2. 2.

    Other chapters in this volume treat in greater detail Beguyer de Chancourtois (5), Newlands (6), Meyer (8 and 9), Mendeleev (2), and the discovery of predicted elements (10)—Ed.

  3. 3.

    Chapter 12 of this volume recounts the discovery of the noble gas elements—Ed.

  4. 4.

    That is, Seaborg chose names for the actinides by analogy to the lanthanides’ names—Ed.

  5. 5.

    The very compact size of the 5g shell would make these elements ‘superlanthanides’.

  6. 6.

    See Chapter 16 of the present volume for further information on the Madelung rule and related topics—Ed.

References

  1. Pyykkö P (2019) An essay on periodic tables. Pure Appl Chem 91:1959–1967

    Google Scholar 

  2. Kaji M (2002) D I Mendeleev’s concept of chemical elements and the principles of chemistry. Bull Hist Chem 27:4–16

    CAS  Google Scholar 

  3. Haba H (2019) A new period in superheavy-element hunting. Nature Chem 11:10–13

    Article  CAS  Google Scholar 

  4. Pyykkö P (2016) Is the periodic table all right (“PT OK”)? Eur Phys J, Web of Conf 131:01001-1–01001-6

    Google Scholar 

  5. Pyykkö P (2011) A suggested periodic table up to Z ≤ 172, based on Dirac-Fock calculations on atoms and ions. Phys Chem Chem Phys 13:161–168

    Article  PubMed  Google Scholar 

  6. Aleksandrov IA, Plunien G, Shabaev VM (2019) Locally-constant field approximation in studies of electron-positron pair production in strong external fields. Phys Rev D 99:016020-1–016020-12

    Google Scholar 

  7. Pyykkö P (2012) The physics behind chemistry and the periodic table. Chem Rev 112:371–384

    Article  PubMed  CAS  Google Scholar 

  8. Indelicato P, Bieroń J, Jönsson P (2011) Are MCDF calculations 101% correct in the super-heavy elements range? Theor Chem Acc 129:495–505

    Article  CAS  Google Scholar 

  9. Fricke B, Greiner W, Waber JT (1971) The continuation of the periodic table up to Z = 172. The chemistry of superheavy elements. Theor Chim Acta 21:235–260

    Article  CAS  Google Scholar 

  10. Desclaux JP (1973) Relativistic Dirac-Fock expectation values for atoms with Z = 1 to Z = 120. At Data Nucl Data Tables 12:311–406

    Article  CAS  Google Scholar 

  11. Eliav E, Fritzsche S, Kaldor U (2015) Electronic structure theory of the superheavy elements. Nucl Phys A 944:518–550

    Article  CAS  Google Scholar 

  12. Porsev SG, Safronova MS, Safronova UI, Dzuba VA, Flambaum VV (2018) Nobelium energy levels and hyperfine-structure constants. Phys Rev A 98:052512-1–052512-6

    Google Scholar 

  13. Fermi E (1928) Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Z Phys 48:73–79 (an English abstract is available in (1928) Nature 121:502)

    Google Scholar 

  14. Dognon JP, Pyykkö P (2017) Chemistry of the 5g elements: relativistic calculations on hexafluorides. Angew Chem Int Ed 56:10132–10134

    Article  CAS  Google Scholar 

  15. Gordin MD (2018) A Well-ordered thing: Dmitrii Mendeleev and the shadow of the periodic table, rev edn. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  16. Scerri ER (2007) The periodic table: its story and its significance. Oxford University Press, Oxford

    Google Scholar 

  17. Eliav E, Kaldor U, Ishikawa Y, Pyykkö P (1996) Element 118: the first rare gas with an electron affinity. Phys Rev Lett 77:5350–5352

    Article  CAS  PubMed  Google Scholar 

  18. Wu X, Zhao L, Jin J, Pan S, Li W, Jin X, Wang G, Zhou M, Frenking G (2018) Observation of alkaline earth complexes M(CO)8 (M = Ca, Sr, or Ba) that mimic transition metals. Science 361:912–916

    Article  CAS  PubMed  Google Scholar 

  19. Biron EV (1915) Secondary periodicity. Zh Russk Fiz-Khim Obshch 47:964–988. See p 975

    Google Scholar 

  20. Pyykkö P (1979) Interpretation of secondary periodicity in the periodic table. J Chem Res Synop 380–381

    Google Scholar 

  21. Pyykkö P (1979) Dirac-Fock one-centre calculations part 8. The 1Σ states of ScH, YH, LaH, AcH, TmH, LuH and LrH. Phys Scr (Sweden) 20:647

    Google Scholar 

  22. Shchukarev SA (1977) New Understanding of DI Mendeleev’s system. 1. Periodicity in stratigraphy of atomic electron shells in the system and concept of kainosymmetry. (1977) J Gen Chem (USSR) 47:227–238 (Russian language version available at (1977) Zh Obshch Khim 47:246–259)

    Google Scholar 

  23. Imyanitov NS (2011) The periodic law. Formulations, equations, graphic representations. Russian J Inorg Chem 56:2183–2200

    Article  CAS  Google Scholar 

  24. Sidgwick NV (1933) The covalent link in chemistry. Cornell University Press, Ithaca, NY, p 189

    Google Scholar 

  25. Pyykkö P (1988) Relativistic effects in structural chemistry. Chem Rev 88:563–594. See pp 578–580, 585. The later literature would require its own review

    Google Scholar 

  26. Jansen M (2008) The chemistry of gold as an anion. Chem Soc Rev 37:1824–1835

    Article  CAS  Google Scholar 

  27. Pyykkö P (2002) Relativity, gold, closed-shell interactions, and CsAu∙NH3. Angew Chem Int Ed 41:3573–3578 (German language version available at (2002) Ang Chem 114:3723–3728)

    Google Scholar 

  28. Karpov A, Nuss J, Wedig U, Jansen M (2003) Cs2Pt: A platinide (–II) exhibiting complete charge separation. Angew Chem Int Ed 42:4818–4821 (German language version available at (2003) Angew Chem 115:4966–4969)

    Google Scholar 

  29. Patzschke M, Pyykkö P (2004) Darmstadtium carbonyl and carbide resemble platinum carbonyl and carbide. Chem Comm 1982–1983

    Google Scholar 

  30. Gagliardi L, Pyykkö P (2004) Theoretical search for very short metal-actinide bonds: NUIr and isoelectronic systems. Angew Chem Int Ed 43:1573–1576 (also available at (2004) Angew Chem 116:1599–1602)

    Google Scholar 

  31. Santos M, Marçalo J, Pires de Matos A, Gibson JK, Haire RG (2006) Actinide-transition metal heteronuclear ions and their oxides: {IrUO}+ as an analogue to uranyl. Eur J Inorg Chem 3346–3349

    Google Scholar 

  32. Giuliani SA, Matheson Z, Nazarewicz W, Olsen E, Reinhard PG, Sadhukhan J, Schuetrumpf B, Schunk N, Schwerdtfeger P (2019) Colloquium: Superheavy elements: Oganesson and beyond. Rev Mod Phys 91:011001-1–011001-12

    Google Scholar 

  33. Dong X, Oganov AR, Goncharov AF, Stavrou E, Lobanov S, Saleh G, Qian GR, Zhu Q, Gatti C, Deringer VL, Dronskowski RA, Zhou XF, Prakapenka VB, Konopkova Z, Popov IA, Boldyrev AI, Wang HT (2017) A stable compound of helium and sodium at high pressue. Nature Chem 9:440–445

    Article  CAS  Google Scholar 

  34. Sato TK, Asai M, Borschevsky A, Stora T, Sato N, Kameya Y, Tsukada K, Düllmann ChE, Eberhardt K, Eliav E, Ichikawa S, Kaldor U, Kratz JV, Miyashita S, Nagame Y, Ooe K, Osa A, Renisch D, Runke J, Schädel M, Thörle-Pospiech P, Toyoshima A, Trautmann N (2015) Measurement of the first ionization potential of lawrencium, element 103. Nature 520:209–211

    Article  CAS  PubMed  Google Scholar 

  35. Xu WH, Pyykkö P (2016) Is the chemistry of lawrencium peculiar? Phys Chem Chem Phys 18:17351–17355

    Article  CAS  PubMed  Google Scholar 

  36. Abegg R (1904) Die Valenz und das periodische System. Versuch einer Theorie der Molekularverbindungen. Z Anorg Chem 39:330–380. See p 344

    Google Scholar 

  37. Xu WH, Jin X, Chen MH, Pyykkö P, Zhou MF, Li J (2012) Rare-earth monocarbonyls MCO: comprehensive infrared observations and a transparent theoretical interpretation for M = Sc; Y; La-Lu. Chem Sci 3:1548–1554

    Article  CAS  Google Scholar 

  38. Scerri ER (2019) Five ideas in chemical education that must die. Found Chem 21:61–69

    Article  Google Scholar 

  39. Madelung E (1936) Die mathematischen Hilfsmittel des Physikers, 3rd edn. Springer, Berlin, p 359

    Book  Google Scholar 

  40. Janet C (2010) La classification hélicoidale des éléments chimiques. Impr. Dép. de l’Oise, Beauvais

    Google Scholar 

  41. Stewart PJ (2010) Charles Janet: unrecognized genius of the periodic system. Found Chem 12:5–15

    Article  Google Scholar 

  42. Allen LC, Knight ET (2002) The Löwdin challenge: Origin of the n + ℓ, n (Madelung) rule for filling the orbital configurations of the periodic table. Int J Quantum Chem 90:80–88 (quote for the first version of the Madelung rule)

    Google Scholar 

  43. Sommerfeld A (1926) Electronic structure of the atom and the quantum theory. Mem Proc Manchester Lit Phil Soc 70:141–151

    CAS  Google Scholar 

  44. Fock VA (1936) Zur Theorie des Wasserstoffatoms. Z Phys 98:145–154

    Article  Google Scholar 

  45. Ostrovsky VN (1981) Dynamic symmetry of atomic potential. J Phys B 14:4425–4439

    Article  CAS  Google Scholar 

  46. Pašteka LF, Eliav E, Borschevsky A, Kaldor U, Schwerdtfeger P (2017) Relativistic coupled cluster calculations with variational quantum electrodynamics resolve the discrepancy between experiment and theory concerning the electron affinity and ionization potential of gold. Phys Rev Lett 118:023002-1–023002-5

    Google Scholar 

  47. Goeppert Mayer M (1941) Rare-earth and transuranic elements. Phys Rev 60:184–187

    Article  CAS  Google Scholar 

  48. Sommerfeld A (1951) Atombau und Spektrallinien, vol 2: Wellenmechanischer Ergänzungsband (4th edn). F Vieweg & Sohn, Braunschweig, p 698. See Chapter 10, Section 4, equation 6

    Google Scholar 

  49. Gombás P (1956) Statistische Behandlung des Atoms. Handbuch der Physik 36:109–231. See p 181

    Google Scholar 

  50. Landau LD, Lifshitz EM (1956) Quantum mechanics. Non-relativistic theory (2nd edn). Pergamon Press, Oxford. See §70, 73

    Google Scholar 

  51. Iwanenko D, Larin S (1953) Theory of the periodic system of the elements. US Atomic Energy Commission, Technical Information Service, Washington DC (original article in Russian at (1953) Dokl Akad Nauk SSSR 88:45)

    Google Scholar 

  52. Klechkovskii VM (1951) Gruppy v posledovatel’nom zapolnenii elektronnykh konfiguratzii atomov [(n + ℓ) groups in successive filling of atomic electron configurations]. Dokl Akad Nauk SSSR 80:603–606

    CAS  Google Scholar 

  53. Klechkovskii VM (1962) Justification of the rule for successive filling on (n + ℓ) groups. Soviet Phys J Exp Theor Phys 14:334–335 (for the original Russian article, see (1962) Zh Eksp Teor Fiz 41:465–466)

    Google Scholar 

  54. Essén H (1982) Periodic table of the elements and the Thomas-Fermi atom. Int J Quantum Chem 21:717–726

    Article  Google Scholar 

  55. Löwdin PO (1969) Some comments on the periodic system of the elements. Int J Quantum Chem Symp 3:331–334

    Article  Google Scholar 

  56. Demkov YN, Ostrovsky VN (1971) Intrinsic symmetry of the Maxwell ‘fish-eye’ problem and the Fock group for the hydrogen atom. Soviet Phys J Exp Theor Phys 13:1083–1087 (for the original Russian article, see (1971) Zh Eksp Teor Fiz 60:2011–2018)

    Google Scholar 

  57. Demkov YN, Ostrovsky VN (1972) n + ℓ Filling rule in the periodic system and focusing potentials. Soviet Phys J Exp Theor Phys 35:66–69 (for the original Russian article, see (1972) Zh Eksp Teor Fiz 62:125–132)

    Google Scholar 

  58. Odabasi H (1973) Some evidence about the dynamical group SO (4, 2) symmetries of the periodic table of elements. Int J Quantum Chem Symp 7:23–33

    Article  CAS  Google Scholar 

  59. Katriel J, Jørgensen CK (1982) Possible broken supersymmetry behind the periodic table. Chem Phys Lett 87:315–319

    Article  CAS  Google Scholar 

  60. Kitagawara Y, Barut AO (1983) Period doubling in the n + l filling rule and dynamical symmetry of the Demkov-Ostrovsky atomic model. J Phys B 16:3305–3327

    Article  CAS  Google Scholar 

  61. Novaro O (1989) Group theoretical aspects of the periodic table of the elements. J Mol Struct: THEOCHEM 199:103–118

    Article  Google Scholar 

  62. Kibler M (1989) The periodic system of chemical elements: old and new developments. J Mol Struct: THEOCHEM 187:83–93

    Article  Google Scholar 

  63. Ostrovsky VN (2001) What and how physics contributes to understanding the periodic law. Found Chem 3:145–181

    Article  CAS  Google Scholar 

  64. Ostrovsky VN (2003) Physical explanation of the periodic table. Ann N Y Acad Sci 988:182–192

    Article  CAS  PubMed  Google Scholar 

  65. Wang SG, Schwarz WHE (2009) Icon of chemistry: the periodic system of chemical elements in the new century. Angew Chem Int Ed 48:3404–3415 (the original German article is available at (2009) Angew Chem 121:3456–3467)

    Google Scholar 

  66. Schwarz WHE, Rich RL (2010) Theoretical basis and correct explanation of the periodic system: review and update. J Chem Educ 87:435–443

    Article  CAS  Google Scholar 

  67. Schwarz WHE (2010) The full story of the electron configurations of the transition elements. J Chem Educ 87:444–448

    Article  CAS  Google Scholar 

  68. Leal W, Restrepo G (2019) Formal structure of periodic system of elements. Proc Roy Soc A 475:20180581-1–20180581-20

    Google Scholar 

  69. Gadolin J (1794) Undersökning av en svart tung stenart ifrån Ytterby stenbrott i Roslagen. Kungl Svenska Vetenskapsak Handl 15:137–155 (German version available at (1796) Crell’s Ann 313–329)

    Google Scholar 

  70. Pyykkö P, Orama O (1996) What did Johan Gadolin actually do? In: Evans CH (ed) Episodes from the history of the rare earth elements. Kluwer, Dordrecht, pp 1–12

    Google Scholar 

  71. Pyykkö P (2015) Magically magnetic gadolinium. Nature Chem 7:680–680

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pekka Pyykkö .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pyykkö, P. (2021). An Essay on Periodic Tables. In: Giunta, C.J., Mainz, V.V., Girolami, G.S. (eds) 150 Years of the Periodic Table. Perspectives on the History of Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-67910-1_17

Download citation

Publish with us

Policies and ethics