Skip to main content

The Discovery of the Elements in the Periodic Table

  • Chapter
  • First Online:
The Periodic Table I

Part of the book series: Structure and Bonding ((STRUCTURE,volume 181))

Abstract

The 150th anniversary of the publication of The Principles of Chemistry by Mendeleev has been declared “The International Year of the Periodic Table” by the United Nations and is being marked by a multitude of events around the world. There is no doubt that the Periodic Table occupies an iconic position not only for chemistry but more generally as a symbol of scientific endeavour. The proposal of a Periodic Table could not have happened without an understanding of what is required for a substance to be defined as a chemical element and the discovery of sufficient elements to provide a reasonably large sample to attempt to find an ordered pattern. This chapter traces how the first metals were discovered approximately 7,000 years ago and proved to be sufficiently useful to initiate the copper, bronze and iron ages. This journey initially was based on practical considerations but eventually developed into recognised methods of careful and controlled experimentation, observation and theoretical thinking which we now associate with the Scientific Revolution. The practical and conceptual progress made internationally resulted in the discovery and purification of 98 elements which occur naturally on earth and organised them in a logical order in a Periodic Table, which is recognisable by chemists throughout the world. Furthermore, an understanding of the fundamental nature of elements in terms of atoms, whose properties are governed by quantum mechanical principles, led to the synthesis and characterisation of elements not found on earth. Indeed, one in six of the elements in the current Periodic Table is man-made and were made in high technology laboratories since 1940.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scerri ER (2007) The periodic table. Oxford University Press, Oxford

    Google Scholar 

  2. van Spronsen JW (1969) The periodic system of chemical elements – a history of the first hundred years. Elsevier, Amsterdam

    Google Scholar 

  3. Scerri ER (2016) A tale of seven scientists and a new philosophy of science. Oxford University Press, New York

    Google Scholar 

  4. Scerri ER, Worrall J (2001) Stud Hist Philos Sci Part A 32:407–452

    Google Scholar 

  5. Kaji M, Kragh H, Pallo G (2015) Early responses to the periodic table. Oxford University Press, New York

    Google Scholar 

  6. Scerri ER (2019) Chem Int 41:16–20

    Google Scholar 

  7. Scerri ER, Parsons W (2018) In: Scerri E, Restrepo G (eds) Mendeleev to oganesson. Oxford University Press, New York

    Google Scholar 

  8. Scerri ER (2019) Looking backwards and forwards at the development of the periodic table. Chem Int 41:16

    CAS  Google Scholar 

  9. deMilt C (1951) J Chem Edu 28:42

    Google Scholar 

  10. Ihde AJ (1961) J Chem Educ 38:83

    Google Scholar 

  11. Edwards PP, Raithby PR, Long NC, Cheetham AJC (2015) The new chemistry of the elements. Phil Trans R Soc A 373:2014–40190

    Google Scholar 

  12. Popular accounts celebrating the 150th Anniversary of the Periodic Table have already appeared in Chemistry World January 2019 and Chemical and Engineering News,7th January 2019

    Google Scholar 

  13. Johnson DA, Williams AF (2019) Chimia 3:144. Gives a clear account of the historical developments leading to the periodic table

    Google Scholar 

  14. Mingos DMP (2019) Chimia 3:152

    Google Scholar 

  15. Piguet C (2019) Chimia 3:165

    Google Scholar 

  16. Türler A (2019) Chimia 3:173

    Google Scholar 

  17. Helm L, Merback AE (2019) Chimia 3:179

    Google Scholar 

  18. Freisinger E, Sigel RKO (2019) Chimia 3:185

    Google Scholar 

  19. Alberto R, Abram U (2019) Chimia 3:207

    Google Scholar 

  20. Mingos DMP (1998) Essential trends in inorganic chemistry. Oxford University Press, Oxford. UK gives a general introduction to the periodic table and common trends associated with columns and rows of elements

    Google Scholar 

  21. Alternative representations of the periodic table are discussed in reference [1] pp 277–286, and images of many of them are available at https://en.wikipedia.org/wiki/Alternative_periodic_tables

  22. Holmes R (2009) The age of wonder. Harper Press, London

    Google Scholar 

  23. Lothar Meyer J (1864) Die Modernen Theorien der Chemie und ihre Bedeutung für die Chemische Statik. Maruschke & Behrendt, Breslau

    Google Scholar 

  24. Mendeleev D (1869) Principles of chemistry – Third Edition (English) (1905). Longmans, London

    Google Scholar 

  25. Sacks O (2001) Uncle tungsten. Alfred A Knopf Inc., New York

    Google Scholar 

  26. Lavoisier AL (1801) Traité élémentaire de Chimie, 3rd edn. Chez Deterville Libraire, Paris

    Google Scholar 

  27. Kekulé FA (1861) Lehrbuch der organischen chemie. Erlagen Univ Press, Erlagen

    Google Scholar 

  28. Proust LG (1797) Ann Chim 23:85; 51:174; 54:89; 59:260,321; 63:364,438

    Google Scholar 

  29. Dalton J (1808) A new system of chemical philosophy, Part I, Manchester

    Google Scholar 

  30. Berzelius JJ (1845) Lehrbuch der chemie, 5th edn. Berzelius introduced alphabetical element symbols from 1813 onwards: see Brock WH (1993) The Norton History of Chemistry

    Google Scholar 

  31. Avogadro A (1811) J Phys 73:58

    Google Scholar 

  32. Gay-Lussac LJ (1815) Ann Chim 95:161

    Google Scholar 

  33. Odling W (1855) Chem Soc Quart J 7:1

    Google Scholar 

  34. Couper AS (1858) Phil Mag 16:104

    Google Scholar 

  35. Newlands JAR (1863) Chem News 7:70

    Google Scholar 

  36. Newlands JAR (1865) Chem News 12:83

    Google Scholar 

  37. Odling W (1864) Quart J Sci 1:642

    Google Scholar 

  38. Sanderson RT (1964) J Chem Educ 41:187

    CAS  Google Scholar 

  39. Katz J (2001) Chem Educ 6:324

    CAS  Google Scholar 

  40. Scerri ER (2019) Chem Eur J 25:7410

    CAS  PubMed  Google Scholar 

  41. Stewart PJ (2010) Found Chem 12:5

    Google Scholar 

  42. Mingos DMP (ed) (2016) The chemical bond I–III. Struct Bond 169:1–252; 170:1–267; 171:1–205

    Google Scholar 

  43. Moseley HGJ (1913) Nature 2:554; Phil Mag 26:1024

    Google Scholar 

  44. Rahm M, Cammi R, Ashcroft NW, Hoffmann R (2019) J Am Chem Soc 141:10273

    Google Scholar 

  45. Craddock PT (1995) Early mining and production. Edinburgh University Press, Edinburgh

    Google Scholar 

  46. Bayley J, Rehren TH, Ponting M (2008) Metals and metalworking: a research framework for historical archaeometallurgy. Historical Metallurgy Society, London

    Google Scholar 

  47. Bachmann H-G (1999) In: Schmidbaur H (ed) Gold for coinage; history and metallurgy in gold, progress in chemistry. Wiley, Chichester

    Google Scholar 

  48. Tylecote RF (1992) An early history of metallurgy in Europe. Longman archeological series. Addison-Wesley Longman, London

    Google Scholar 

  49. Temple RRG (2007) The genius of China – 3000 years of science, discovery and invention, 3rd edn. Andre Deutsch, London

    Google Scholar 

  50. Partington JR (1989) A short history of chemistry. Dover Press, London

    Google Scholar 

  51. Jensen WB (1998) J Chem Educ 75:679; 75: 817; 75: 961

    Google Scholar 

  52. Brock WH (1993) The Fontana history of chemistry. Fontana Press, London

    Google Scholar 

  53. Ihde AI (1970) The development of modern chemistry. Harper Row, New York

    Google Scholar 

  54. House JE, House KL (2001) Descriptive inorganic chemistry. Harcourt/Academic Press, New York

    Google Scholar 

  55. Emsley J (1991) The elements, 2nd edn. Oxford University Press, Clarendon. Oxford gives dates for the discovery of the elements and the most commonly occurring minerals and are used in the text and in the figures

    Google Scholar 

  56. Cooper E (1989) A history of world pottery. Chilton Book, Philadelphia

    Google Scholar 

  57. Cooper E (2010) Ten thousand years of pottery. University of Pennsylvania Press, Philadelphia

    Google Scholar 

  58. Cox W (1970) The book of pottery and porcelain. Crown Publishers, London

    Google Scholar 

  59. Dinsdale A (1986) Pottery science. Ellis Horwood, Chichester

    Google Scholar 

  60. Dodd A (1994) Dictionary of ceramics: pottery, glass, vitreous enamels, refractories, clay building materials, cement and concrete, electroceramics, special ceramics. Maney Publishing (USA), Leeds

    Google Scholar 

  61. Macfarlane A, Martin G (2002) The glass bathyscaphe – how glass changed the world. Profile Books, London

    Google Scholar 

  62. McCray WP (2007) Prehistory and history of glassmaking technology. American Ceramic Society, Westerville

    Google Scholar 

  63. Douglas RW (1972) A history of glassmaking. G T Foulis & Co Ltd, Henley-on-Thames

    Google Scholar 

  64. Bernard HWS, De Jong Ruud GC, Beerkens PA, van Nijnatten A (2002) Glass in: Ullmann’s encyclopedia of industrial chemistry. Wiley, New York

    Google Scholar 

  65. Vogel W (1994) Glass chemistry, 2nd edn. Springer, Berlin

    Google Scholar 

  66. Hecht J (1999) City of light, the story of fibre optics. Oxford University Press, New York

    Google Scholar 

  67. Atkins PW, Weller MT, Rourke JP, Overton TI, Armstrong FA (2014) Shriver and Atkins inorganic chemistry. 5th edn. Oxford University Press, Oxford

    Google Scholar 

  68. Bauer H (2008) A history of chemistry (1907). Forgotten Books, Bibliolife LLC

    Google Scholar 

  69. Karpenko V, Norris JA (2001) Vitriol in the history of chemistry. Chem List 96:997

    Google Scholar 

  70. Thompson CJS (2002) Alchemy and alchemists (Reprint of the edition published by George G. Harrap and Co., London, 1932 ed). Dover Publications, New York

    Google Scholar 

  71. Rooney A (2017) The story of chemistry. Acturus Press

    Google Scholar 

  72. Datta NC (2005) The story of chemistry. Orient Black Swan, Universities Press

    Google Scholar 

  73. Leicester HM (1971) The historical background of chemistry. Courier Dover Publications, London

    Google Scholar 

  74. Waite AE (1992) Secret tradition in alchemy (public document ed.). Kessinger Publishing, New York

    Google Scholar 

  75. Brown JC (2006) A history of chemistry from earliest times to the present day. Kessinger Publishing, New York

    Google Scholar 

  76. Golinski I (1992) Science as public culture: chemistry and enlightenment in Britain 1760–1820 (1992) Cambridge University Press, Cambridge

    Google Scholar 

  77. Bell MS (2005) Lavoisier in the year one; the birth of a new science in the age of revolution. Atlas Books, Norton

    Google Scholar 

  78. Knight DM (1998) Science in the romantic era. Routledge Library Editions, London

    Google Scholar 

  79. Bowden ME (1997) Chemical achievers: the human face of chemical sciences. Chemical Heritage Foundation, Philadelphia

    Google Scholar 

  80. Priestley J (1997) Chemical achievers: chemical achievers: the human face of chemical sciences. Chemical Heritage Foundation, Philadelphia, p 5

    Google Scholar 

  81. Smeaton WA (1992) Carl Wilhelm Scheele, provincial Swedish pharmacist and world-famous chemist. Endeavour 16:128

    CAS  Google Scholar 

  82. Pancaldi G (2003) Volta – science and culture in the age of the enlightenment. Princeton University Press, Princeton. Alessandro Volta Biography, The Great Idea Finder. 2005

    Google Scholar 

  83. Lavoisier A (1997) Chemical achievers: the human face of chemical sciences. Chemical Heritage Foundation, Philadelphia, p 8

    Google Scholar 

  84. Dalton J (1997) Chemical achievers: the human face of chemical sciences. Chemical Heritage Foundation, Philadelphia

    Google Scholar 

  85. Gay-Lussac JL (1997) Chemical achievers: the human face of chemical sciences. Chemical Heritage Foundation, Philadelphia, p 13

    Google Scholar 

  86. Berzelius JJ (1997) Chemical achievers: the human face of chemical sciences. Chemical Heritage Foundation, Philadelphia, p 27

    Google Scholar 

  87. Sella A (2007) Kipp’s apparatus. Chem World 2007:81

    Google Scholar 

  88. Fechete I (2016) Ferdinand Frédéric Henri Moissan: the first French Nobel Prize winner in chemistry. C R Chim 19:1027

    CAS  Google Scholar 

  89. Svehla G (1996) Vogel’s qualitative inorganic analysis. Longman Press, Pearson Education, Essex

    Google Scholar 

  90. Sanger MJ, Phelps AJ, Bank C (2004) J Chem Educ 81:959

    Google Scholar 

  91. Landis AM, Davies MI, Landis L, Thomas NC (2009) J Chem Educ 86:577

    CAS  Google Scholar 

  92. Russell MS (2009) The chemistry of fireworks, 2nd edn, Royal Society of Chemistry Books, London

    Google Scholar 

  93. Burns TD, Müller RK, Salzer R, Werner G (2014) Important figures of analytical chemistry from Germany. Springer, Heidelberg, p 57

    Google Scholar 

  94. Robert Wilhelm Bunsen (2011) Encyclopaedia Britannica. Online

    Google Scholar 

  95. Thomas JM (2004) Argon and the non-inert pair: Rayleigh and Ramsay. Angew Chem Inter Ed 43:6418

    CAS  Google Scholar 

  96. Xie F, Zhang TA, Dreisinger D, Doyle F (2014) A critical review of solvent extraction of rare earths from aqueous solutions. Minerals Eng 56:10–28

    CAS  Google Scholar 

  97. Kagan HB (2002) Frontiers in lanthanide chemistry: introduction. Chem Rev 102:1085

    Google Scholar 

  98. Huang C (2010) Rare earth co-ordination chemistry: fundamentals and applications. Wiley, Singapore

    Google Scholar 

  99. Bunzli CH (2010) Lanthanide luminescence for biomedical analysis and imaging. Chem Rev 110:2719

    Google Scholar 

  100. Bunzli CH, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34:1048

    PubMed  Google Scholar 

  101. Mould RF (1998) The discovery of radium in 1898 by Maria Sklodowska-Curie (1867–1934) and Pierre Curie (1859–1906) with commentary on their life and times. Int J Radiol 71:2

    Google Scholar 

  102. Katz JJ, Morss LR, Edelstein NM, Fuger J (2006) The chemistry of the actinides and transactinides elements. Springer, Heidelberg

    Google Scholar 

  103. Freeman AJ, Lander GH (1984) Handbook of the chemistry and physics of the actinides. North Holland, Amsterdam

    Google Scholar 

  104. Burrows A, Holman J, Parson A, Pilling G, Price G (2017) Chemistry, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  105. Mingos DMP (2016), Struct Bond 169:1

    Google Scholar 

  106. Russell CA (1971) The history of Valency. Leicester University Press, Leicester

    Google Scholar 

  107. Frankland E (1861) Lecture notes for chemical students (1870), London. J Chem Soc 13:231

    Google Scholar 

  108. Abegg R, Bodlander G (1899) Z Anorg Chem 20:453; (1904) 39:330

    Google Scholar 

  109. Lewis GN (1916) J Am Chem Soc 38:762

    CAS  Google Scholar 

  110. Lewis GN (1916) Proc Nat Acad 2:588

    Google Scholar 

  111. Lewis GN (1923) Valence and the structures of atoms and molecules. The Chemical Catalog Company, New York

    Google Scholar 

  112. Kossel W (1916) Ann Phys 49:229

    CAS  Google Scholar 

  113. Hoffmann R, Alvarez S, Mealli C, Falceto A, Cahill TJ, Zeng T, Manca G (2016) Chem Rev 116:8173

    CAS  PubMed  Google Scholar 

  114. Rayner-Canham GW, Overton TL (2006) Descriptive inorganic chemistry, 4th edn. W.H. Freeman Publishing, New York

    Google Scholar 

  115. Rayner-Canham GW (2009) Found Chem 11:1239

    Google Scholar 

  116. Rayner-Canham GW (2000) J Chem Educ 77:153–156

    Google Scholar 

  117. Greenwood NN, Earnshaw A (1997) Chemistry of the elements, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  118. Cotton FA, Wilkinson G (1962) Advanced inorganic chemistry, 5th edn. Wiley, New York, p 1988

    Google Scholar 

  119. Mingos DMP, Wales DJ (1990) Introduction to cluster chemistry. Prentice Hall, Upper Saddle River

    Google Scholar 

  120. Hoffmann R (1982) Angew Chem Int Ed 21:711

    Google Scholar 

  121. Green MLH, Parkin G (2007) In: Crabtree RH, Mingos DMP (eds) Comprehensive organometallic chemistry II. Elsevier Press, Oxford

    Google Scholar 

  122. Puddephatt RJ, Monaghan PK (1986) The periodic table of the elements. Oxford University Press, Oxford

    Google Scholar 

  123. Johnson DA (1982) Some thermodynamic aspects of inorganic chemistry, 2nd edn. Cambridge texts in chemistry and biochemistry, Cambridge University Press, Cambridge

    Google Scholar 

  124. Dasent WE (1970) Inorganic energetics. Penguin Library of Physical Sciences, Penguin Books, Harmondsworth

    Google Scholar 

  125. Mendeleev D (1895) Nature 51:543

    Google Scholar 

  126. Blaber M, Binod S (2019) In: UC Davis Library, The California State University (ed) Chemistry libretexts. https://chem.libretexts.org/Bookshelves/General_Chemistry/Map%3A_Chemistry_-_The_Central_Science_(Brown_et_al.)/07._Periodic_Properties_of_the_Element

    Google Scholar 

  127. Blaber M, Binod S (2019) Chemistry libretexts, UC Davis Library, The California State University. https://chem.libretexts.org/Ancillary_Materials/Reference/Reference_Tables/Electrochemistry_Tables/P3%3A_Activity_Series_of_Metals

  128. Wang J, Wood J, Lee E, Brar L (2019) Chemistry libretexts. UC Davis Library, The California State University. https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules_(Analytical_Chemistry)/Electrochemistry/Redox_Chemistry/Standard_Reduction_Potential

  129. Petrucci RH, Harwood WS, Herring GE, Madura J (2010) General chemistry: principles and modern applications, 9th edn. Pearson Education, Upper Saddle River, p 20

    Google Scholar 

  130. Poliakoff M, Tang S (2015) Phil Trans R Soc A373:2014–40211

    Google Scholar 

  131. Döbereiner JW (1817) Ann Physik 56:331; (1819) 57:436

    Google Scholar 

Download references

Acknowledgements

I thank Professors Lutz Gade and Alan Williams for their most helpful comments on my original draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Michael P. Mingos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mingos, D.M.P. (2019). The Discovery of the Elements in the Periodic Table. In: Mingos, D. (eds) The Periodic Table I. Structure and Bonding, vol 181. Springer, Cham. https://doi.org/10.1007/430_2019_50

Download citation

Publish with us

Policies and ethics