Skip to main content

Mechanochemistry: A Power Tool for Green Synthesis

  • Chapter
  • First Online:
Advances in Green Synthesis

Part of the book series: Advances in Science, Technology & Innovation ((ASTI))

Abstract

Mechanochemistry has gained significant interest as a powerful, more sustainable, timesaving, environmentally friendly, and more economical synthesis method to prepare new functional materials. This method depends on the chemical and physicochemical transformations through mechanical force forming by grinding and milling. This study is a systematic review of the history, principles, mechanisms, and kinetics of mechanochemistry. The effects of mechanochemical synthesis parameters (milling types, materials, size, time, temperature, atmosphere, revolution speed, frequency, ball/powder weight ratio, filling ratio, process control agents) were detailed explained. The current researches about the mechanochemical synthesis of co-crystals, inorganic materials, metal–organic frameworks, porous organic materials, and polymers, their respective characteristics, challenges, and future improvements were briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achimovičová M, Gotor FJ, Real C, Daneu N (2012) Mechanochemical synthesis and characterization of nanocrystalline BiSe, Bi2Se3 semiconductors. J Mater Sci Mater Electron 23(10):1844–1850

    Article  CAS  Google Scholar 

  • Adams CJ, Kurawa MA, Lusi M, Orpen AG (2008) Solid state synthesis of coordination compounds from basic metal salts. CrystEngComm 10(12):1790–1795

    Article  CAS  Google Scholar 

  • Aitipamula S, Banerjee R, Bansal AK, Biradha K, Cheney ML, Choudhury AR, Desiraju GR, Dikundwar AG, Dubey R, Duggirala N (2012) Polymorphs, salts, and cocrystals: what’s in a name? Cryst Growth Des 12(5):2147–2152

    Article  CAS  Google Scholar 

  • Aleksanyan DV, Churusova SG, Aysin RR, Klemenkova ZS, Nelyubina YV, Kozlov VA (2017) The first example of mechanochemical synthesis of organometallic pincer complexes. Inorg Chem Commun 76:33–35

    Article  CAS  Google Scholar 

  • Anastas PT, Tundo P (2000) Green chemistry: challenging perspectives. Oxford University Press, Oxford

    Google Scholar 

  • Avila-Ortiz CG, Pérez-Venegas M, Vargas-Caporali J, Juaristi E (2019) Recent applications of mechanochemistry in enantioselective synthesis. Tetrahedron Lett 60(27):1749–1757

    Google Scholar 

  • Baláž P (2008) Mechanochemistry in nanoscience and minerals engineering. Springer, Berlin

    Google Scholar 

  • Baláž P, Aláčová A, Achimovičová M, Ficeriova J, Godočíková E (2005) Mechanochemistry in hydrometallurgy of sulphide minerals. Hydrometallurgy 77(1–2):9–17

    Article  CAS  Google Scholar 

  • Baláž P, Baláž M, Achimovičová M, Bujňáková Z, Dutková E (2017) Chalcogenide mechanochemistry in materials science: insight into synthesis and applications (a review). J Mater Sci 52(20):11851–11890

    Article  CAS  Google Scholar 

  • Baláz M, Achimovicová M, Baláz P, Dutková E, Fabián M, Kovácová M, Bujnáková ZL, Tóthová E (2020) Mechanochemistry as a versatile and scalable tool for nanomaterials synthesis: Recent achievements in Košice, Slovakia. Curr Opin Green Sustain Chem 24:7–13

    Article  Google Scholar 

  • Begin-Colin S, Caer GL, Mocellin A, Zandona M (1994) Polymorphic transformations of titania induced by ball milling. Philos Mag Lett 69(1):1–7

    Article  CAS  Google Scholar 

  • Begin-Colin S, Girot T, Le Caër G, Mocellin A (2000) Kinetics and mechanisms of phase transformations induced by ball-milling in anatase TiO2. J Solid State Chem 149(1):41–48

    Article  CAS  Google Scholar 

  • Beyer MK, Clausen-Schaumann H (2005) Mechanochemistry: the mechanical activation of covalent bonds. Chem Rev 105(8):2921–2948

    Article  CAS  PubMed  Google Scholar 

  • Blanco MC, Cámara J, Gimeno MC, Laguna A, James SL, Lagunas MC, Villacampa MD (2012) Synthesis of gold-silver luminescent honeycomb aggregates by both solvent-based and solvent-free methods. Angew Chem Int Ed 51(39):9777–9779

    Article  CAS  Google Scholar 

  • Boldyrev V, Tkáčová K (2000) Mechanochemistry of solids: past, present, and prospects. J Mater Synth Process 8(3–4):121–132

    Article  CAS  Google Scholar 

  • Boldyreva E (2013) Mechanochemistry of inorganic and organic systems: what is similar, what is different? Chem Soc Rev 42(18):7719–7738

    Article  CAS  PubMed  Google Scholar 

  • Bowmaker GA, Chaichit N, Pakawatchai C, Skelton BW, White AH (2008) Solvent-assisted mechanochemical synthesis of metal complexes. Dalton Trans 22:2926–2928

    Article  CAS  Google Scholar 

  • Braga D, Curzi M, Johansson A, Polito M, Rubini K, Grepioni F (2006) Simple and quantitative mechanochemical preparation of a porous crystalline material based on a 1D coordination network for uptake of small molecules. Angew Chem Int Ed 45(1):142–146

    Article  CAS  Google Scholar 

  • Braga D, Giaffreda S, Curzi M, Maini L, Polito M, Grepioni F (2007) Mechanical mixing of molecular crystals: a green route to co-crystals and coordination networks. J Therm Anal Calorim 90(1):115–123

    Article  CAS  Google Scholar 

  • Braga D, d’Agostino S, Dichiarante E, Maini L, Grepioni F (2011) Dealing with crystal forms (the kingdom of serendip?). Chem Asian J 6(9):2214–2223

    Google Scholar 

  • Braga D, Maini L, Grepioni F (2013) Mechanochemical preparation of co-crystals. Chem Soc Rev 42(18):7638–7648

    Article  CAS  PubMed  Google Scholar 

  • Burmeister CF, Kwade A (2013) Process engineering with planetary ball mills. Chem Soc Rev 42(18):7660–7667

    Article  CAS  PubMed  Google Scholar 

  • Burmeister CF, Schmidt R, Jacob K, Breitung S, Stolle A, Kwade A (2020) Effect of stressing conditions on mechanochemical Knoevenagel synthesis. Chem Eng J 396:124578

    Google Scholar 

  • Cave GW, Raston CL, Scott JL (2001) Recent advances in solventless organic reactions: towards benign synthesis with remarkable versatility. Chem Commun 21:2159–2169

    Article  CAS  Google Scholar 

  • Chadwick K, Davey R, Cross W (2007) How does grinding produce co-crystals? Insights from the case of benzophenone and diphenylamine. CrystEngComm 9(9):732–734

    Article  CAS  Google Scholar 

  • Chen Y, Williams JR (1996) Hydriding reactions induced by ball milling. In: Materials science forum. Trans Tech Publications, pp 881–888

    Google Scholar 

  • Cinčić D, Brekalo I, Kaitner B (2012) Effect of atmosphere on solid-state amine–aldehyde condensations: gas-phase catalysts for solid-state transformations. Chem Commun 48(95):11683–11685

    Article  CAS  Google Scholar 

  • Clements M, Blackie M, de Kock C, Lawrence N, Smith P, Tl R (2019) Investigation into the structures and properties of multicomponent crystals formed from a series of 7-chloroquinolines and aromatic acids. Cryst Growth Des 19(3):1540–1549

    Article  CAS  Google Scholar 

  • Colacino E, Porcheddu A, Charnay C, Delogu F (2019b) From enabling technologies to medicinal mechanochemistry: an eco-friendly access to hydantoin-based active pharmaceutical ingredients. React Chem Eng 4(7):1179–1188

    Article  CAS  Google Scholar 

  • Colacino E, Dayaker G, Morère A, Friščić T (2019) Introducing students to mechanochemistry via environmentally friendly organic synthesis using a solvent-free mechanochemical preparation of the antidiabetic drug tolbutamide. J Chem Educ 96(4):766–771

    Google Scholar 

  • Coro J, Suárez M, Silva LS, Eguiluz KI, Salazar-Banda GR (2016) Fullerene applications in fuel cells: a review. Int J Hydrogen Energy 41(40):17944–17959

    Article  CAS  Google Scholar 

  • Cravino A, Sariciftci NS (2002) Double-cable polymers for fullerene based organic optoelectronic applications. J Mater Chem 12(7):1931–1943

    Article  CAS  Google Scholar 

  • Das S, Heasman P, Ben T, Qiu S (2017) Porous organic materials: strategic design and structure–function correlation. Chem Rev 117(3):1515–1563

    Article  CAS  PubMed  Google Scholar 

  • Dayaker G, Tan D, Biggins N, Shelam A, Do J-L, Katsenis AD, Friscic T (2020) Catalytic room‐temperature C–N coupling of amides and isocyanates using mechanochemistry. ChemSusChem 13(11):2966–2972

    Google Scholar 

  • Delmonte D, Manfredi R, Calestani D, Mezzadri F, Righi L, Mazzer M, Pattini F, Rampino S, Spaggiari G, Gilioli E (2020) An affordable method to produce CuInS2 ‘mechano-targets’ for film deposition. Semicond Sci Technol 35(4):045026

    Article  CAS  Google Scholar 

  • Di Nardo T, Hadad C, Van Nhien AN, Moores A (2019) Synthesis of high molecular weight chitosan from chitin by mechanochemistry and aging. Green Chem 21(12):3276–3285

    Article  Google Scholar 

  • Di L, Bakker H (1991) Phase transformation of the compound V3Ga induced by mechanical grinding. J Phys: Condens Matter 3(20):3427

    CAS  Google Scholar 

  • Do J-L, Friščić T (2017) Mechanochemistry: a force of synthesis. ACS Central Sci 3(1):13–19

    Google Scholar 

  • Dutková E, Takacs L, Sayagués MJ, Baláž P, Kováč J, Šatka A (2013) Mechanochemical synthesis of Sb2S3 and Bi2S3 nanoparticles. Chem Eng Sci 85:25–29

    Article  CAS  Google Scholar 

  • Egorov IN, Santra S, Kopchuk DS, Kovalev IS, Zyryanov GV, Majee A, Ranu B, Rusinov VL, Chupakhin ON (2020) Ball-milling: an efficient and green approach for asymmetric organic synthesis. Green Chem 22(2):302–315

    Google Scholar 

  • Emami S, Shayanfar A (2020) Deep eutectic solvents for pharmaceutical formulation and drug delivery applications. Pharm Dev Technol 25:1–18

    Google Scholar 

  • Etter MC (1991) Hydrogen bonds as design elements in organic chemistry. J Phys Chem 95(12):4601–4610

    Article  CAS  Google Scholar 

  • Fernandes P, Salomé P, Da Cunha A (2011) Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J Alloy Compd 509(28):7600–7606

    Article  CAS  Google Scholar 

  • Fernandez-Bertran JF (1999) Mechanochemistry: an overview. Pure Appl Chem 71(4):581–586

    Article  CAS  Google Scholar 

  • Fiss BG, Hatherly L, Stein RS, Friščić T, Moores A (2019) Mechanochemical phosphorylation of polymers and synthesis of flame-retardant cellulose nanocrystals. ACS Sustain Chem Eng 7(8):7951–7959

    Google Scholar 

  • Fox P (1975) Mechanically initiated chemical reactions in solids. J Mater Sci 10(2):340–360

    Article  CAS  Google Scholar 

  • Friščić T, Fábián L (2009) Mechanochemical conversion of a metal oxide into coordination polymers and porous frameworks using liquid-assisted grinding (LAG). CrystEngComm 11(5):743–745

    Article  CAS  Google Scholar 

  • Friščić T, MacGillivray LR (2005) Reversing the code of a template-directed solid-state synthesis: a bipyridine template that directs a single-crystal-to-single-crystal [2 + 2] photodimerisation of a dicarboxylic acid. Chem Commun 46:5748–5750

    Article  CAS  Google Scholar 

  • Friščić T, Trask AV, Jones W, Motherwell WS (2006) Screening for inclusion compounds and systematic construction of three-component solids by liquid-assisted grinding. Angew Chem Int Ed 45(45):7546–7550

    Article  CAS  Google Scholar 

  • Friščić T, Childs SL, Rizvi SA, Jones W (2009a) The role of solvent in mechanochemical and sonochemical cocrystal formation: a solubility-based approach for predicting cocrystallisation outcome. CrystEngComm 11(3):418–426

    Article  Google Scholar 

  • Friščić T, Meštrović E, Škalec Šamec D, Kaitner B, Fabian L (2009b) One‐pot mechanosynthesis with three levels of molecular self‐assembly: coordination bonds, hydrogen bonds and host–guest inclusion. Chem Eur J 15(46):12644–12652

    Google Scholar 

  • Friščić T, Reid DG, Halasz I, Stein RS, Dinnebier RE, Duer MJ (2010) Ion-and liquid-assisted grinding: improved mechanochemical synthesis of metal–organic frameworks reveals salt inclusion and anion templating. Angew Chem Int Ed 49(4):712–715

    Article  CAS  Google Scholar 

  • Friščić T, Halasz I, Beldon PJ, Belenguer AM, Adams F, Kimber SA, Honkimäki V, Dinnebier RE (2013) Real-time and in situ monitoring of mechanochemical milling reactions. Nat Chem 5(1):66

    Article  PubMed  CAS  Google Scholar 

  • Gaffet E, Harmelin M, Faudot F (1993) Far-from-equilibrium phase transition induced by mechanical alloying in the Cu–Fe system. J Alloy Compd 194(1):23–30

    Article  CAS  Google Scholar 

  • Garay AL, Pichon A, James SL (2007) Solvent-free synthesis of metal complexes. Chem Soc Rev 36(6):846–855

    Article  CAS  PubMed  Google Scholar 

  • Giannakoudakis DA, Chatel G, Colmenares JC (2020) Mechanochemical forces as a synthetic tool for zero-and one-dimensional titanium oxide-based nano-photocatalysts. Top Curr Chem 378(1):2

    Article  CAS  Google Scholar 

  • Gómez-López P, Puente-Santiago A, Castro-Beltrán A, do Nacimiento LAS, Balu AM, Luque R, Alvarado-Beltrán CG (2020) Nanomaterials and catalysis for green chemistry. Curr Opin Green Sustain Chem 24:48–55

    Google Scholar 

  • Gonzalez-Moragas L, Yu S-M, Murillo-Cremaes N, Laromaine A, Roig A (2015) Scale-up synthesis of iron oxide nanoparticles by microwave-assisted thermal decomposition. Chem Eng J 281:87–95

    Article  CAS  Google Scholar 

  • Gotor F, Achimovicova M, Real C, Balaz P (2013) Influence of the milling parameters on the mechanical work intensity in planetary mills. Powder Technol 233:1–7

    Article  CAS  Google Scholar 

  • Haneef J, Chadha R (2020) Sustainable synthesis of ambrisentan–syringic acid cocrystal: employing mechanochemistry in the development of novel pharmaceutical solid form. CrystEngComm 22(14):2507–2516

    Article  CAS  Google Scholar 

  • Hasa D, Schneider Rauber G, Voinovich D, Jones W (2015) Cocrystal formation through mechanochemistry: from neat and liquid-assisted grinding to polymer-assisted grinding. Angew Chem Int Ed 54(25):7371–7375

    Article  CAS  Google Scholar 

  • Hasegawa M, Kimata M, Kobayashi SI (2001) Mechanochemical polymerization of styrene initiated by the grinding of quartz. J Appl Polym Sci 82(11):2849–2855

    Article  CAS  Google Scholar 

  • Hermann GN, Becker P, Bolm C (2016) Mechanochemical iridium (III)-catalyzed C−H bond amidation of benzamides with sulfonyl azides under solvent-free conditions in a ball mill. Angew Chem Int Ed 55(11):3781–3784

    Article  CAS  Google Scholar 

  • Hong L, Bansal C, Fultz B (1994) Steady state grain size and thermal stability of nanophase Ni3Fe and Fe3X (X=Si, Zn, Sn) synthesized by ball milling at elevated temperatures. Nanostruct Mater 4(8):949–956

    Article  CAS  Google Scholar 

  • Hou H, Zhou J, Ji M, Yue Y, Qian G, Zhang J (2020) Mechanochemical activation of titanium slag for effective selective catalytic reduction of nitric oxide. Sci Total Env 743:140733

    Google Scholar 

  • Howard JL, Cao Q, Browne DL (2018) Mechanochemistry as an emerging tool for molecular synthesis: what can it offer? Chem Sci 9(12):3080–3094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivison P, Soletta I, Cowlam N, Cocco G, Enzo S, Battezzati L (1992) The effect of absorbed hydrogen on the amorphization of CuTi alloys. J Phys Condens Matter 4(23):5239

    Article  CAS  Google Scholar 

  • James SL, Friščić T (2013) Mechanochemistry. Chem Soc Rev 42(18):7494–7496

    Article  CAS  PubMed  Google Scholar 

  • James SL, Adams CJ, Bolm C, Braga D, Collier P, Friščić T, Grepioni F, Harris KD, Hyett G, Jones W (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41(1):413–447

    Article  CAS  PubMed  Google Scholar 

  • Janot R, Guérard D (2005) Ball-milling in liquid media: applications to the preparation of anodic materials for lithium-ion batteries. Prog Mater Sci 50(1):1–92

    Article  CAS  Google Scholar 

  • Julien PA, Užarević K, Katsenis AD, Kimber SA, Wang T, Farha OK, Zhang Y, Casaban J, Germann LS, Etter M (2016) In situ monitoring and mechanism of the mechanochemical formation of a microporous MOF-74 framework. J Am Chem Soc 138 (9):2929-2932

    Google Scholar 

  • Kaloshkin S, Tomilin I, Andrianov G, Baldokhin U, Shelekhov E (1997) Phase transformations and hyperfine interactions in mechanically alloyed Fe–Cu solid solutions. In: Materials science forum. Trans Tech Publications, pp 565–570

    Google Scholar 

  • Kamolphop U, Taylor SF, Breen JP, Burch R, Delgado JJ, Chansai S, Hardacre C, Hengrasmee S, James SL (2011) Low-temperature selective catalytic reduction (SCR) of NOx with n-octane using solvent-free mechanochemically prepared Ag/Al2O3 catalysts. ACS Catal 1(10):1257–1262

    Article  CAS  Google Scholar 

  • Karki S, Friščić T, Jones W, Motherwell WS (2007) Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding. Mol Pharm 4(3):347–354

    Article  CAS  PubMed  Google Scholar 

  • Kaupp G (2003) Solid-state molecular syntheses: complete reactions without auxiliaries based on the new solid-state mechanism. CrystEngComm 5(23):117–133

    Article  CAS  Google Scholar 

  • Kaupp G (2006) Waste-free large-scale syntheses without auxiliaries for sustainable production omitting purifying workup. CrystEngComm 8(11):794–804

    Article  CAS  Google Scholar 

  • Kaupp G (2009) Mechanochemistry: the varied applications of mechanical bond-breaking. CrystEngComm 11(3):388–403

    Article  CAS  Google Scholar 

  • Kis-Varga M, Beke DL (1984) Phase transitions in Cu–Sb systems induced by ball milling. In: Materials science forum, 1996. Trans Tech Publications, Aedermannsdorf, Switzerland, pp 465–470

    Google Scholar 

  • Klimakow M, Klobes P, Thünemann AF, Rademann K, Emmerling F (2010) Mechanochemical synthesis of metal–organic frameworks: a fast and facile approach toward quantitative yields and high specific surface areas. Chem Mater 22(18):5216–5221

    Article  CAS  Google Scholar 

  • Komatsu K (2005) kThe mechanochemical solid-state reaction of fullerenes. In: Organic solid state reactions. Springer, pp 185–206

    Google Scholar 

  • Konnert L, Reneaud B, de Figueiredo RM, Campagne J-M, Fdr L, Martinez J, Colacino E (2014) Mechanochemical preparation of hydantoins from amino esters: application to the synthesis of the antiepileptic drug phenytoin. J Org Chem 79(21):10132–10142

    Article  CAS  PubMed  Google Scholar 

  • Kristl M, Gyergyek S, Srt N, Ban I (2016) Mechanochemical route for the preparation of nanosized aluminum and gallium sulfide and selenide. Mater Manuf Process 31(12):1608–1612

    Article  CAS  Google Scholar 

  • Kumar S, Jain S, Nehra M, Dilbaghi N, Marrazza G, Kim K-H (2020a) Green synthesis of metal–organic frameworks: a state-of-the-art review of potential environmental and medical applications. Coord Chem Rev 420:213407

    Article  CAS  Google Scholar 

  • Kumar YR, Deshmukh K, Sadasivuni KK, Pasha SK (2020b) Graphene quantum dot based materials for sensing, bio-imaging and energy storage applications: a review. RSC Adv 10(40):23861–23898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunitake M, Uemura S, Ito O, Fujiwara K, Murata Y, Komatsu K (2002) Structural analysis of C60 trimers by direct observation with scanning tunneling microscopy. Angew Chem Int Ed 41(6):969–972

    Article  CAS  Google Scholar 

  • Kuroda R, Imai Y, Tajima N (2002) Generation of a co-crystal phase with novel coloristic properties via solid state grinding procedures. Chem Commun 23:2848–2849

    Article  CAS  Google Scholar 

  • Kuroda R, Higashiguchi K, Hasebe S, Imai Y (2004) Crystal to crystal transformation in the solid state. CrystEngComm 6(76):464–468

    Article  Google Scholar 

  • Lai Y-Y, Cheng Y-J, Hsu C-S (2014) Applications of functional fullerene materials in polymer solar cells. Energy Environ Sci 7(6):1866–1883

    Article  CAS  Google Scholar 

  • Le Brun P, Froyen L, Delaey L (1993) The modelling of the mechanical alloying process in a planetary ball mill: comparison between theory and in-situ observations. Mater Sci Eng A 161(1):75–82

    Article  Google Scholar 

  • Lee D, Kim Y, Chang S (2013) Iridium-catalyzed direct arene C–H bond amidation with sulfonyl-and aryl azides. J Org Chem 78(21):11102–11109

    Article  CAS  PubMed  Google Scholar 

  • Li H, Cabañas-Gac F, Hadidi L, Bilodeau-Calame M, Abid A, Mameri K, Rigamonti MG, Rousselot S, Mickael D, Patience GS (2020) Ultrasound assisted wet media milling synthesis of nanofiber-cage LiFePO4/C. Ultrason Sonochem 68:105177

    Google Scholar 

  • Liu Z, Xu S, Xiao B, Xue P, Wang W, Ma Z (2012) Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites. Compos A Appl Sci Manuf 43(12):2161–2168

    Article  CAS  Google Scholar 

  • Liu K, Tan Q, Liu L, Li J (2020) From lead paste to high-value nanolead sulfide products: a new application of mechanochemistry in the recycling of spent lead-acid batteries. ACS Sustain Chem Eng 8(9):3547–3552

    Article  CAS  Google Scholar 

  • Lu J, Rohani S (2009) Preparation and characterization of theophylline−nicotinamide cocrystal. Org Process Res Dev 13(6):1269–1275

    Article  CAS  Google Scholar 

  • Lu C, Zhang J, Li Z (2004) Structural evolution of titanium powder during ball milling in different atmospheres. J Alloy Compd 381(1–2):278–283

    Article  CAS  Google Scholar 

  • Mack J, Shumba M (2007) Rate enhancement of the Morita–Baylis–Hillman reaction through mechanochemistry. Green Chem 9(4):328–330

    Article  CAS  Google Scholar 

  • Makhaev V, Borisov A, Petrova L (1999) Solid-state mechanochemical synthesis of ferrocene. J Organomet Chem 590(2):222–226

    Article  CAS  Google Scholar 

  • Malpartida I, Maireles-Torres P, Vereda C, Rodríguez-Maroto JM, Halloumi S, Lair V, Thiel J, Lacoste F (2020) Semi-continuous mechanochemical process for biodiesel production under heterogeneous catalysis using calcium diglyceroxide. Renew Energy 159:117–126

    Google Scholar 

  • Maurice DR, Courtney T (1990) The physics of mechanical alloying: a first report. Metall Trans A 21(1):289–303

    Article  Google Scholar 

  • McNaught AD, Wilkinson A (1997) Compendium of chemical terminology, vol 1669. Blackwell Science, Oxford

    Google Scholar 

  • Medina GM, van Raap MF, Coral D, Muraca D, Sánchez F (2020) Synthesis of highly stable Fe/FeOx@ citrate colloids with strong magnetic response by mechanochemistry and coprecipitation for biomedical and environmental applications. J Magn Magn Mater 508:166759

    Google Scholar 

  • Mikhailenko MA, Shakhtshneider TP, Boldyrev VV (2004) On the mechanism of mechanochemical synthesis of phthalylsulphathiazole. J Mater Sci 39(16–17):5435–5439

    Article  CAS  Google Scholar 

  • Miki M, Yamasaki T, Ogino Y (1992) Preparation of nanocrystalline NbN and (Nb, Al) N powders by mechanical alloying under nitrogen atmosphere. Mater Trans JIM 33(9):839–844

    Article  CAS  Google Scholar 

  • Mondal P, Anweshan A, Purkait MK (2020) Green synthesis and environmental application of Iron-based nanomaterials and nanocomposite: a review. Chemosphere 259:127509

    Google Scholar 

  • Mucsi G (2019) A review on mechanical activation and mechanical alloying in stirred media mill. Chem Eng Res Des 148:460-474

    Google Scholar 

  • Murata Y, Kato N, Komatsu K (2001) The reaction of fullerene C60 with phthalazine: the mechanochemical solid-state reaction yielding a new C60 dimer versus the liquid-phase reaction affording an open-cage fullerene. J Org Chem 66(22):7235–7239

    Article  CAS  PubMed  Google Scholar 

  • Mursalat M, Hastings DL, Schoenitz M, Dreizin EL (2019) Microspheres with diverse material compositions can be prepared by mechanical milling. Adv Eng Mater 22(3):1901204

    Google Scholar 

  • Nguyen KL, Friščić T, Day GM, Gladden LF, Jones W (2007) Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation. Nat Mater 6(3):206–209

    Article  CAS  PubMed  Google Scholar 

  • Nielsen SF, Peters D, Axelsson O (2000) The Suzuki reaction under solvent-free conditions. Synth Commun 30(19):3501–3509

    Article  CAS  Google Scholar 

  • Obrovac M, Mao O, Dahn J (1998) Structure and electrochemistry of LiMO2 (M=Ti, Mn, Fe Co, Ni) prepared by mechanochemical synthesis. Solid State Ionics 112(1–2):9–19

    Article  CAS  Google Scholar 

  • Ojala WH, Etter MC (1992) Polymorphism in anthranilic acid: a reexamination of the phase transitions. J Am Chem Soc 114(26):10288–10293

    Article  CAS  Google Scholar 

  • Orita A, Jiang L, Nakano T, Ma N, Otera J (2002) Solventless reaction dramatically accelerates supramolecular self-assembly. Chem Commun 13:1362–1363

    Article  CAS  Google Scholar 

  • Ostwald W (1919) Die chemische Literatur und die Organisation der Wissenschaft, vol 1. Akad. Verlag, Gesel

    Google Scholar 

  • Ozer D (2020) Fabrication and functionalization strategies of MOFs and their derived materials “MOF architecture”. In: Applications of metal–organic frameworks and their derived materials, pp 63–100

    Google Scholar 

  • Palaniandy S, Jamil NH (2009) Influence of milling conditions on the mechanochemical synthesis of CaTiO3 nanoparticles. J Alloy Compd 476(1–2):894–902

    Article  CAS  Google Scholar 

  • Palazon F, El Ajjouri Y, Bolink HJ (2019) Making by grinding: mechanochemistry boosts the development of halide perovskites and other multinary metal halides. Adv Energy Mater 10(13):1902499

    Google Scholar 

  • Pardeshi S, Patil A (2009) Effect of morphology and crystallite size on solar photocatalytic activity of zinc oxide synthesized by solution free mechanochemical method. J Mol Catal A Chem 308(1–2):32–40

    Article  CAS  Google Scholar 

  • Park B-I, Hwang Y, Lee SY, Lee J-S, Park J-K, Jeong J, Kim JY, Kim B, Cho S-H, Lee D-K (2014) Solvent-free synthesis of Cu2 ZnSnS 4 nanocrystals: a facile, green, up-scalable route for low cost photovoltaic cells. Nanoscale 6(20):11703–11711

    Article  CAS  PubMed  Google Scholar 

  • Partha R, Conyers JL (2009) Biomedical applications of functionalized fullerene-based nanomaterials. Int J Nanomed 4:261

    CAS  Google Scholar 

  • Pérez-Venegas M, Juaristi E (2020) Mechanochemical and mechanoenzymatic synthesis of pharmacologically active compounds: a green perspective. ACS Sustain Chem Eng 8(24):8881–8893

    Google Scholar 

  • Petrova L, Borisov A, Makhaev V (2002) Solid-phase synthesis of zinc (II) b-diketonates upon mechanical activation. Russ J Inorg Chem 47(12):1827–1832

    Google Scholar 

  • Ralphs K, Hardacre C, James SL (2013) Application of heterogeneous catalysts prepared by mechanochemical synthesis. Chem Soc Rev 42(18):7701–7718

    Article  CAS  PubMed  Google Scholar 

  • Rapoport L, Fleischer N, Tenne R (2005) Applications of WS2 (MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites. J Mater Chem 15(18):1782–1788

    Article  CAS  Google Scholar 

  • Raston CL, Scott JL (2000) Chemoselective, solvent-free aldol condensation reaction. Green Chem 2(2):49–52

    Article  CAS  Google Scholar 

  • Rathod RV, Mondal D, Bera S (2020) Mechanochemical synthesis of fluorescein-based receptor for CN-ion detection in aqueous solution and cigarette smoke residue. Anal Bioanal Chem 412(13):3177–3186

    Article  CAS  PubMed  Google Scholar 

  • Ravnsbæk JB, Swager TM (2014) Mechanochemical synthesis of poly (phenylene vinylenes). ACS Macro Lett 3(4):305–309

    Article  CAS  PubMed  Google Scholar 

  • Rightmire NR, Hanusa TP (2016) Advances in organometallic synthesis with mechanochemical methods. Dalton Trans 45(6):2352–2362

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez B, Bruckmann A, Rantanen T, Bolm C (2007) Solvent-free carbon-carbon bond formations in ball mills. Adv Synth Catal 349(14–15):2213–2233

    Article  CAS  Google Scholar 

  • Rydin R, Maurice D, Courtney T (1993) Milling dynamics: part I. Attritor dynamics: results of a cinematographic study. Metall Trans A 24(1):175–185

    Google Scholar 

  • Sarmah KK, Nath N, Rao DR, Thakuria R (2020) Mechanochemical synthesis of drug–drug and drug–nutraceutical multicomponent solids of olanzapine. CrystEngComm 22(6):1120–1130

    Article  CAS  Google Scholar 

  • Schneider F, Stolle A, Ondruschka B, Hopf H (2009) The Suzuki−Miyaura reaction under mechanochemical conditions. Org Process Res Dev 13(1):44–48

    Article  CAS  Google Scholar 

  • Shan N, Toda F, Jones W (2002) Mechanochemistry and co-crystal formation: effect of solvent on reaction kinetics. Chem Commun 20:2372–2373

    Article  CAS  Google Scholar 

  • Sokolov AN, Friščić T, MacGillivray LR (2006) Enforced face-to-face stacking of organic semiconductor building blocks within hydrogen-bonded molecular cocrystals. J Am Chem Soc 128(9):2806–2807

    Article  CAS  PubMed  Google Scholar 

  • Sopicka-Lizer M (2010) High-energy ball milling: mechanochemical processing of nanopowders. Elsevier

    Google Scholar 

  • Štefanić G, Krehula S, Štefanić I (2013) The high impact of a milling atmosphere on steel contamination. Chem Commun 49(81):9245–9247

    Article  CAS  Google Scholar 

  • Stolle A, Szuppa T, Leonhardt SE, Ondruschka B (2011) Ball milling in organic synthesis: solutions and challenges. Chem Soc Rev 40(5):2317–2329

    Article  CAS  PubMed  Google Scholar 

  • Stolle A, Schmidt R, Jacob K (2014) Scale-up of organic reactions in ball mills: process intensification with regard to energy efficiency and economy of scale. Faraday Discuss 170:267–286

    Article  CAS  PubMed  Google Scholar 

  • Strobridge FC, Judaš N, Friščić T (2010) A stepwise mechanism and the role of water in the liquid-assisted grinding synthesis of metal–organic materials. CrystEngComm 12(8):2409–2418

    Article  CAS  Google Scholar 

  • Suryanarayana C (1995) Does a disordered γ-TiAl phase exist in mechanically alloyed TiAl powders? Intermetallics 3(2):153–160

    Article  CAS  Google Scholar 

  • Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1–2):1–184

    Article  CAS  Google Scholar 

  • Takacs L (2007) The mechanochemical reduction of AgCl with metals. J Therm Anal Calorim 90(1):81–84

    Article  CAS  Google Scholar 

  • Takacs L (2013) The historical development of mechanochemistry. Chem Soc Rev 42(18):7649–7659

    Article  CAS  PubMed  Google Scholar 

  • Takacs L, McHenry J (2006) Temperature of the milling balls in shaker and planetary mills. J Mater Sci 41(16):5246–5249

    Article  CAS  Google Scholar 

  • Tan D, Loots L, Friščić T (2016) Towards medicinal mechanochemistry: evolution of milling from pharmaceutical solid form screening to the synthesis of active pharmaceutical ingredients (APIs). Chem Commun 52(50):7760–7781

    Article  CAS  Google Scholar 

  • Thiessen PA, Meyer K, Heinicke G (1967) Grundlagen der Tribochemie: mit 24 Tab. im Text. Akad.-Verlag

    Google Scholar 

  • Toda F, Tanaka K, Sekikawa A (1987) Host–guest complex formation by a solid–solid reaction. J Chem Soc Chem Commun 4:279–280

    Article  Google Scholar 

  • Trask AV, Shan N, Motherwell WS, Jones W, Feng S, Tan RB, Carpenter KJ (2005) Selective polymorph transformation via solvent-drop grinding. Chem Commun 7:880–882

    Article  CAS  Google Scholar 

  • Tröbs L, Emmerling F (2014) Mechanochemical synthesis and characterisation of cocrystals and metal organic compounds. Faraday Discuss 170:109–119

    Article  PubMed  Google Scholar 

  • Tsuchimoto M, Hoshina G, Yoshioka N, Inoue H, Nakajima K, Kamishima M, Kojima M, Ohba S (2000) Mechanochemical reaction of polymeric oxovanadium (IV) complexes with Schiff base ligands derived from 5-nitrosalicylaldehyde and diamines. J Solid State Chem 153(1):9–15

    Article  CAS  Google Scholar 

  • Tumanov IA, Achkasov AF, Boldyreva EV, Boldyrev VV (2011) Following the products of mechanochemical synthesis step by step. CrystEngComm 13(7):2213–2216

    Article  CAS  Google Scholar 

  • U.S. Department of Health and Human Services Food and Drug Administration (2018) Regulatory classification of pharmaceutical co-crystals: guidance for industry. Center for Drug Evaluation and Research (CDER), Silver Spring, US

    Google Scholar 

  • Ulbrich K, Nishida E, Souza B, Campos C (2020) NiS2–NiS nanocrystalline composite synthesized by mechanochemistry and its performance for methylene blue dye adsorption. Mater Chem Phys 252:123226

    Google Scholar 

  • Urakaev F (2010) Mechanism and kinetics of mechanochemical processes. In: High-energy ball milling. Elsevier, pp 9–44

    Google Scholar 

  • Urakaev FK, Boldyrev V (2000) Mechanism and kinetics of mechanochemical processes in comminuting devices: 1. Theory. Powder Technol 107(1–2):93–107

    Article  CAS  Google Scholar 

  • Vaid P, Raizada P, Saini AK, Saini RV (2020) Biogenic silver, gold and copper nanoparticles—a sustainable green chemistry approach for cancer therapy. Sustain Chem Pharm 16:100247

    Article  Google Scholar 

  • Vishweshwar P, McMahon JA, Peterson ML, Hickey MB, Shattock TR, Zaworotko MJ (2005) Crystal engineering of pharmaceutical co-crystals from polymorphic active pharmaceutical ingredients. Chem Commun 36:4601–4603

    Article  CAS  Google Scholar 

  • Wang G-W (2013) Mechanochemical organic synthesis. Chem Soc Rev 42(18):7668–7700

    Article  CAS  PubMed  Google Scholar 

  • Wang G-W, Komatsu K, Murata Y, Shiro M (1997) Synthesis and X-ray structure of dumb-bell-shaped C120. Nature 387(6633):583–586

    Article  CAS  Google Scholar 

  • Willis‐Fox N, Rognin E, Baumann C, Aljohani TA, Göstl R, Daly R (2020) Going with the flow: tunable flow‐induced polymer mechanochemistry. Adv Funct Mater 30(27):2002372

    Google Scholar 

  • Xue J, Wan D, Lee SE, Wang J (1999) Mechanochemical synthesis of lead zirconate titanate from mixed oxides. J Am Ceram Soc 82(7):1687–1692

    Article  CAS  Google Scholar 

  • Zhang P, Dai S (2017) Mechanochemical synthesis of porous organic materials. J Mater Chem A 5(31):16118–16127

    Article  CAS  Google Scholar 

  • Zhang Q, Nakagawa T, Saito F (2000) Mechanochemical synthesis of La0.7Sr0.3MnO3 by grinding constituent oxides. J Alloys Compd 308(1–2):121–125

    Google Scholar 

  • Zhang P, Jiang X, Wan S, Dai S (2015) Advancing polymers of intrinsic microporosity by mechanochemistry. J Mater Chem A 3(13):6739–6741

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demet Ozer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ozer, D. (2021). Mechanochemistry: A Power Tool for Green Synthesis. In: Inamuddin, Boddula, R., Ahamed, M.I., Khan, A. (eds) Advances in Green Synthesis. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-67884-5_2

Download citation

Publish with us

Policies and ethics