Skip to main content

Terbinafine and Itraconazole Resistance in Dermatophytes

  • Chapter
  • First Online:
Dermatophytes and Dermatophytoses

Abstract

Terbinafine-resistant dermatophytes in patients were exceptional before the second decade of this century. However, acquired resistance to commonly used antifungal compounds has recently emerged in several countries. Resistance towards terbinafine is generated by missense mutations in the squalene epoxidase enzyme targeted by the drug, while recorded resistance towards azoles is due to the overexpression of genes encoding multidrug transporters of the ABC family. At present, approximately 1% of Trichophyton rubrum isolates from Tinea pedis and onychomycosis in Switzerland are resistant to terbinafine. Terbinafine-resistant T. rubrum was also isolated from extended Tinea corporis in patients more susceptible to fungal infections and requiring continuous treatment. Repeated topical and systemic treatments with terbinafine have likely contributed to the development of terbinafine resistance in patients. The prevalence of T. rubrum resistant to terbinafine in Europe contrasts with that of resistant Trichophyton mentagrophytes isolates in India (30–70%). If drugs on the open market and overmedication can partly explain this alarming situation, several indications also allow the suspicion of an origin linked to environmental problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanglard D, Ischer F, Koymans L, Bille J. Amino acid substitutions in the cytochrome P-450 lanosterol 14alpha-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrob Agents Chemother. 1998;42:241–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Perea S, López-Ribot JL, Kirkpatrick WR, McAtee RK, Santillán RA, Martínez M, et al. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 2001;45:2676–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mellado E, Garcia-Effron G, Alcazar-Fuoli L, Cuenca-Estrella M, Rodriguez-Tudela JL. Substitutions at methionine 220 in the 14alpha-sterol demethylase (Cyp51A) of Aspergillus fumigatus are responsible for resistance in vitro to azole antifungal drugs. Antimicrob Agents Chemother. 2004;48:2747–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen J, Li H, Li R, Bu D, Wan Z. Mutations in the cyp51A gene and susceptibility to itraconazole in Aspergillus fumigatus serially isolated from a patient with lung aspergilloma. J Antimicrob Chemother. 2005;55:31–7.

    Article  CAS  PubMed  Google Scholar 

  5. Mellado E, Garcia-Effron G, Alcázar-Fuoli L, Melchers WJ, Verweij PE, Cuenca-Estrella M, et al. A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations. Antimicrob Agents Chemother. 2007;51:1897–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hagiwara D, Watanabe A, Kamei K, Goldman GH. Epidemiological and genomic landscape of azole resistance mechanisms in Aspergillus fungi. Front Microbiol. 2016;7:1382.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sanglard D, Kuchler K, Ische F, Pagani JL, Monod M, Bille J. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother. 1995;39:2378–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sanglard D, Ischer F, Monod M, Bille J. Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology. 1997;143(Pt 2):405–16.

    Article  CAS  PubMed  Google Scholar 

  9. Sanglard D, Ischer F, Bille J. Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata. Antimicrob Agents Chemother. 2001;45:1174–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fraczek MG, Bromley M, Buied A, Moore CB, Rajendran R, Rautemaa R, et al. The cdr1B efflux transporter is associated with non-cyp51a-mediated itraconazole resistance in Aspergillus fumigatus. J Antimicrob Chemother. 2013;68:1486–96.

    Article  CAS  PubMed  Google Scholar 

  11. Sanglard D, Ischer F, Calabrese D, Micheli M, Bille J. Multiple resistance mechanisms to azole antifungals in yeast clinical isolates. Drug Resist Update. 1998;1:255–65.

    Article  CAS  Google Scholar 

  12. Leyden J. Pharmacokinetics and pharmacology of terbinafine and itraconazole. J Am Acad Dermatol. 1998;38(5 Pt 3):S42–7.

    Article  CAS  PubMed  Google Scholar 

  13. Odds FC, Brown AJ, Gow NA. Antifungal agents: mechanisms of action. Trends Microbiol. 2003;11:272–9.

    Article  CAS  PubMed  Google Scholar 

  14. Ryder NS. Specific inhibition of fungal sterol biosynthesis by SF 86-327, a new allylamine antimycotic agent. Antimicrob Agents Chemother. 1985;27:252–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ryder NS, Mieth H. Allylamine antifungal drugs. Curr Top Med Mycol. 1991;4:158–88.

    Article  Google Scholar 

  16. Favre B, Ryder NS. Characterization of squalene epoxidase activity from the dermatophyte Trichophyton rubrum and its inhibition by terbinafine and other antimycotic agents. Antimicrob Agents Chemother. 1996;40:443–7.

    Google Scholar 

  17. Gull K, Trinci AP. Griseofulvin inhibits fungal mitosis. Nature. 1973;244(5414):292–4.

    Article  CAS  PubMed  Google Scholar 

  18. Oxford AE, Raistrick H, Simonart P. Studies in the biochemistry of micro-organisms: Griseofulvin, C(17)H(17)O(6)Cl, a metabolic product of Penicillium griseo-fulvum Dierckx. Biochem J. 1939;33:240–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gentles JC. Experimental ringworm in guinea pigs: oral treatment with griseofulvin. Nature. 1958;182(4633):476–7.

    Article  CAS  PubMed  Google Scholar 

  20. Barich LL, Nakai T, Schwarz J, Barich DJ. Tumour-promoting effect of excessively large doses of oral griseofulvin on tumours induced in mice by methylcholanthrene. Nature. 1960;187:335–6.

    Article  CAS  PubMed  Google Scholar 

  21. Knasmüller S, Parzefall W, Helma C, Kassie F, Ecker S, Schulte-Hermann R. Toxic effects of griseofulvin: disease models, mechanisms, and risk assessment. Crit Rev Toxicol. 1997;27:495–537. Review. Erratum in: Crit Rev Toxicol. 1998;28:102.

    Article  PubMed  Google Scholar 

  22. Hay RJ. Tinea capitis: current status. Mycopathologia. 2017;182:87–93.

    Google Scholar 

  23. Hay RJ. Therapy of skin, hair and nail fungal infections. J Fungi (Basel). 2018;4(3):99.

    Google Scholar 

  24. M38-A protocols. National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. Approved standard M38-A2; 2nd ed. Wayne: Clinical and Laboratory Standards Institute; 2008.

    Google Scholar 

  25. Jessup CJ, Wamer J, Isham N, Hasan I, Ghannoum MA. Antifungal susceptibility testing of dermatophytes: establishing a medium for inducing conidial growth and evaluation of susceptibility of clinical isolates. J Clin Microbiol. 2000;38:341–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Laurent A, Monod M. Production of Trichophyton rubrum microspores in large quantities and its application to evaluate amorolfine/azole compound interactions in vitro. Mycoses. 2017;60:581–6.

    Article  CAS  PubMed  Google Scholar 

  27. Chin B, Knight S. Growth of Trichophyton mentagrophytes and Trichophyton rubrum in increased carbon dioxide tensions. J Gen Microbiol. 1957;16:642–6.

    Article  CAS  PubMed  Google Scholar 

  28. Baudraz-Rosselet F, Monod M, Jaccoud S, Frenk E. Efficacy of terbinafine treatment of tinea capitis in children varies according to the dermatophyte species. Br J Dermatol. 1996;135:1011–2.

    Article  CAS  PubMed  Google Scholar 

  29. Baudraz-Rosselet F, Ruffieux C, Lurati M, Bontems O, Monod M. Onychomycosis insensitive to systemic terbinafine and azole treatments reveals non-dermatophyte moulds as infectious agents. Dermatology. 2010;220:164–8.

    Article  CAS  PubMed  Google Scholar 

  30. Lurati M, Baudraz-Rosselet F, Vernez M, Spring P, Bontems O, Fratti M, et al. Efficacious treatment of non-dermatophyte mould onychomycosis with topical amphotericin B. Dermatology. 2011;223:289–92.

    Article  CAS  PubMed  Google Scholar 

  31. Mukherjee PK, Leidich SD, Isham N, Leitner I, Ryder NS, Ghannoum MA. Clinical Trichophyton rubrum strain exhibiting primary resistance to terbinafine. Antimicrob Agents Chemother. 2003;47:82–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Osborne CS, Leitner I, Favre B, Ryder NS. Amino acid substitution in Trichophyton rubrum squalene epoxidase associated with resistance to terbinafine. Antimicrob Agents Chemother. 2005;49:2840–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Osborne CS, Leitner I, Hofbauer B, Fielding CA, Favre B, Ryder NS. Biological, biochemical, and molecular characterization of a new clinical Trichophyton rubrum isolate resistant to terbinafine. Antimicrob Agents Chemother. 2006;50:2234–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamada T, Maeda M, Alshahni MM, Tanaka R, Yaguchi T, Bontems O, et al. Terbinafine resistance of Trichophyton clinical isolates caused by specific point mutations in the squalene epoxidase gene. Antimicrob Agents Chemother. 2017;61(7):e00115–17.

    Google Scholar 

  35. Saunte DML, Hare RK, Jørgensen KM, Jørgensen R, Deleuran M, Zachariae CO, et al. Emerging terbinafine resistance in Trichophyton: Clinical characteristics, squalene epoxidase gene mutations, and a reliable EUCAST method for detection. Antimicrob Agents Chemother. 2019;63(10):e01126–19.

    Google Scholar 

  36. Rudramurthy SM, Shankarnarayan SA, Dogra S, Shaw D, Mushtaq K, Paul RA, et al. Mutation in the squalene epoxidase gene of Trichophyton interdigitale and Trichophyton rubrum associated with allylamine resistance. Antimicrob Agents Chemother. 2018;62(5):e02522–17.

    Google Scholar 

  37. Salehi Z, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Antifungal drug susceptibility profile of clinically important dermatophytes and determination of point mutations in terbinafine-resistant isolates. Eur J Clin Microbiol Infect Dis. 2018;37:1841–6.

    Article  CAS  PubMed  Google Scholar 

  38. Suzuki S, Mano Y, Furuya N, Fujitani K. Discovery of terbinafine low susceptibility Trichophyton rubrum strain in Japan. Biocontrol Sci. 2018;23:151–4.

    Article  CAS  PubMed  Google Scholar 

  39. Noguchi H, Matsumoto T, Hiruma M, Kimura U, Kano R, Yaguchi T, et al. Tinea unguium caused by terbinafine-resistant Trichophyton rubrum successfully treated with fosravuconazole. J Dermatol. 2019;46(12):e446–7.

    Article  PubMed  Google Scholar 

  40. Ebert A, Monod M, Salamin K, Burmester A, Uhrlaß S, Wiegand C, et al. Alarming India wide phenomenon of antifungal resistance in dermatophytes: A multicentre study. Mycoses. 2020;63:717–28.

    Article  CAS  PubMed  Google Scholar 

  41. Hiruma J, Kitagawa H, Noguchi H, Kano R, Hiruma M, Kamata H, et al. Terbinafine-resistant strain of Trichophyton interdigitale strain isolated from a tinea pedis patient. J Dermatol. 2019;46:351–3.

    Article  CAS  PubMed  Google Scholar 

  42. Singh A, Masih A, Khurana A, Singh PK, Gupta M, Hagen F, et al. High terbinafine resistance in Trichophyton interdigitale isolates in Delhi, India harbouring mutations in the squalene epoxidase gene. Mycoses. 2018;61:477–84.

    Article  CAS  PubMed  Google Scholar 

  43. Süß A, Uhrlaß S, Ludes A, Verma SB, Monod M, Krüger C, et al. [Extensive tinea corporis due to a terbinafine-resistant Trichophyton mentagrophytes isolate of the Indian genotype in a young infant from Bahrain in Germany]. Hautarzt. 2019;70(11):888–96.

    Google Scholar 

  44. Hsieh A, Quenan S, Riat A, Toutous-Trellu L, Fontao L. A new mutation in the SQLE gene of Trichophyton mentagrophytes associated to terbinafine resistance in a couple with disseminated tinea corporis. J Mycol Med. 2019;29:352–5.

    Article  CAS  PubMed  Google Scholar 

  45. Taghipour S, Shamsizadeh F, Pchelin IM, Rezaei-Matehhkolaei A, Zarei Mahmoudabadi A, Valadan R, et al. Emergence of terbinafine resistant Trichophyton mentagrophytes in Iran, harboring mutations in the squalene epoxidase (SQLE) gene. Infect Drug Resist. 2020;13:845–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shaw D, Singh S, Dogra S, Jayaraman J, Bhat R, Panda S, et al. MIC and upper limit of wild-type distribution for 13 antifungal agents against a Trichophyton mentagrophytes-Trichophyton interdigitale complex of Indian origin. Antimicrob Agents Chemother. 2020;64(4):e01964–19.

    Google Scholar 

  47. Digby SS, Hald M, Arendrup MC, Hjort SV, Kofoed K. Darier disease complicated by terbinafine-resistant Trichophyton rubrum: a case report. Acta Derm Venereol. 2017;97:139–40.

    Article  PubMed  Google Scholar 

  48. Schøsler L, Andersen LK, Arendrup MC, Sommerlund M. Recurrent terbinafine resistant Trichophyton rubrum infection in a child with congenital ichthyosis. Pediatr Dermatol. 2018;35:259–60.

    Article  PubMed  Google Scholar 

  49. Kelly SL, Lamb DC, Loeffler J, Einsele H, Kelly DE. The G464S amino acid substitution in Candida albicans sterol 14alpha-demethylase causes fluconazole resistance in the clinic through reduced affinity. Biochem Biophys Res Commun. 1999;262:174–9.

    Article  CAS  PubMed  Google Scholar 

  50. Nenoff P, Verma SB, Vasani R, Burmester A, Hipler UC, Wittig F, et al. The current Indian epidemic of superficial dermatophytosis due to Trichophyton mentagrophytes-a molecular study. Mycoses. 2019;62:336–56.

    Article  CAS  PubMed  Google Scholar 

  51. Lübbert C, Baars C, Dayakar A, Lippmann N, Rodloff AC, Kinzig M, et al. Environmental pollution with antimicrobial agents from bulk drug manufacturing industries in Hyderabad, South India, is associated with dissemination of extended-spectrum beta-lactamase and carbapenemase-producing pathogens. Infection. 2017;45:479–91.

    Article  PubMed  CAS  Google Scholar 

  52. Chatterjee A, Chattopadhyay D, Chatterjee D, Sengupta DN. Isolation of dermatophytes from rural and urban soil samples in premises of infected and non-infected animals. Int J Zoonoses. 1983;10:22–7.

    CAS  PubMed  Google Scholar 

  53. Gugnani HC, Paliwal-Joshi A, Rahman H, Padhye AA, Singh TS, Das TK, et al. Occurrence of pathogenic fungi in soil of burrows of rats and of other sites in bamboo plantations in India and Nepal. Mycoses. 2007;50:507–11.

    Article  CAS  PubMed  Google Scholar 

  54. Snelders E, Huis In’t Veld RA, Rijs AJ, Kema GH, Melchers WJ, Verweij PE. Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles. Appl Environ Microbiol. 2009;75:4053–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Verweij PE, Snelders E, Kema GH, Mellado E, Melchers WJ. Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infect Dis. 2008;9:789–95.

    Article  Google Scholar 

  56. Monod M, Feuermann M, Salamin K, Fratti M, Makino M, Mahdi Alshahni M, et al. Trichophyton rubrum azole resistance mediated by a new ABC transporter, TruMDR3. Antimicrob Agents Chemother. 2019;63(11). pii: AAC.00863-19.

    Google Scholar 

  57. Cervelatti EP, Fachin AL, Ferreira-Nozawa MS, Martinez-Rossi NM. Molecular cloning and characterization of a novel ABC transporter gene in the human pathogen Trichophyton rubrum. Med Mycol. 2006;44:141–7.

    Article  CAS  PubMed  Google Scholar 

  58. Fachin AL, Ferreira-Nozawa MS, Maccheroni W Jr, Martinez-Rossi NM. Role of the ABC transporter TruMDR2 in terbinafine, 4-nitroquinoline N-oxide and ethidium bromide susceptibility in Trichophyton rubrum. J Med Microbiol. 2006;55(Pt 8):1093–9.

    Article  CAS  PubMed  Google Scholar 

  59. Martins MP, Franceschini ACC, Jacob TR, Rossi A, Martinez-Rossi NM. Compensatory expression of multidrug-resistance genes encoding ABC transporters in dermatophytes. J Med Microbiol. 2016;65:605–10.

    Article  CAS  PubMed  Google Scholar 

  60. Holmes AR, Lin YH, Niimi K, Lamping E, Keniya M, Niimi M, et al. ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates. Antimicrob Agents Chemother. 2008;52:3851–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Niimi K, Harding DR, Holmes AR, Lamping E, Niimi M, Tyndall JD, et al. Specific interactions between the Candida albicans ABC transporter Cdr1p ectodomain and a D-octapeptide derivative inhibitor. Mol Microbiol. 2012;85:747–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Silva LV, Sanguinetti M, Vandeputte P, Torelli R, Rochat B, Sanglard D. Milbemycins: more than efflux inhibitors for fungal pathogens. Antimicrob Agents Chemother. 2013;57:873–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Coste A, Turner V, Ischer F, Morschhäuser J, Forche A, Selmecki A, et al. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics. 2006;172:2139–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Camps SM, Dutilh BE, Arendrup MC, Rijs AJ, Snelders E, Huynen MA, et al. Discovery of a HapE mutation that causes azole resistance in Aspergillus fumigatus through whole genome sequencing and sexual crossing. PLoS One. 2012;7:e50034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Monod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Monod, M., Feuermann, M., Yamada, T. (2021). Terbinafine and Itraconazole Resistance in Dermatophytes. In: Bouchara, JP., Nenoff, P., Gupta, A.K., Chaturvedi, V. (eds) Dermatophytes and Dermatophytoses. Springer, Cham. https://doi.org/10.1007/978-3-030-67421-2_20

Download citation

Publish with us

Policies and ethics