Skip to main content

Part of the book series: Current Topics in Medical Mycology ((CT MYCOLOGY,volume 4))

Abstract

The allylammes constitute a recently developed class of synthetic antimycotics characterized functionally by their action as squalene epoxidase inhibitors.1 Figure 6–1 shows the structures of three representative allylamines. Naftifine, the first of these compounds to be discovered, was first synthesized in 1974,2 and its antifungal properties were identified during routine screening. The potent antifungal activity of naftifine in vitro3 and in vivo4 led to its clinical development, and this drug has been marketed since 1985 as a topical antimycotic. Naftifine provided the basis for an extensive program of chemical derivatization5–8 aimed at improving the antimycotic efficacy, especially with regard to oral administration. This goal was achieved in the form of terbinafine (SF 86–327), 1,6–13 the efficacy of which has now been confirmed in numerous clinical studies involving both topical and oral application. Parallel to this development, detailed investigations were carried out concerning the mechanism of action of the allylamines,14–26 including much basic research on the biochemistry of ergosterol biosynthesis in pathogenic fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Petranyi G, Ryder NS, Stütz A. Allylamine derivatives: new class of synthetic antifungal agents inhibiting fungal squalene epoxidase. Science 1984; 224: 1239–1241.

    PubMed  CAS  Google Scholar 

  2. Berney D, Schuh K. Heterocyclic spiro-naphthalenones. Part I: synthesis and reactions of some spiro[(11-naphthalenone)-1,3’-piperidines]. Helv Chim, Acta 1978; 61: 1262–1273.

    CAS  Google Scholar 

  3. Georgopoulos A, Petranyi G, Mieth H, Drews, J. In vitro activity of naftifine, a new antifungal agent. Antimicrob Agents Chemother 1981; 19: 386–389.

    PubMed  CAS  Google Scholar 

  4. Petranyi G, Georgopoulos A, Mieth H. In vivo antimycotic activity of naftifine. Antimicrob Agents Chemother 1981; 19: 390–392.

    PubMed  CAS  Google Scholar 

  5. Stütz A, Georgopoulos A, Granitzer W, Petranyi G, Berney, D. Synthesis and structure-activity relationships of naftifine-related allylamine antimycotics. J Med Chem 1986; 29: 112–125.

    PubMed  Google Scholar 

  6. Stütz A, Petranyi G. Synthesis and antifungal activity of (E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-l-naphthalenemethanamine (SF 86-327) and related allylamine derivatives with enhanced oral activity. J Med Chem 1984; 27: 1539–1543.

    PubMed  Google Scholar 

  7. Stütz A. Synthesis and structure-activity correlations within aflylamine antimycotics. Ann NY Acad Sci 1988; 544: 46–62.

    PubMed  Google Scholar 

  8. Stütz A. Allylamine derivatives: a new class of active substances in antifungal chemotherapy. Angew Chem Int Ed Engl 1987; 26: 320–328.

    Google Scholar 

  9. Shadomy S, Espinel-Ingroff A, Gebhart RJ. In vitro studies with SF 86-327, a new orally active allylamine derivative. Sabouraudia 1985; 23: 125–132.

    PubMed  CAS  Google Scholar 

  10. Petranyi G, Meingassner JG, Mieth H. Antifungal activity of the allylamine derivative terbinafine in vitro. Antimicrob Agents Chemother 1987; 31: 1365–1368.

    PubMed  CAS  Google Scholar 

  11. Petranyi G, Meingassner JG, Mieth H. Activity of terbinafine in experimental fungal infections of laboratory animals. Antimicrob Agents Chemother 1987; 31: 1558–1561.

    PubMed  CAS  Google Scholar 

  12. Petranyi G, Stütz A, Ryder NS, Meingassner JG, Mieth H. Experimental antimycotic activity of naftifine and terbinafine, in Fromtling RA (ed), Recent trends in the Discovery, Development and Evaluation of Antifungal Agents. JR Prous Science Publishers, Barcelona. 1987; pp 441–450.

    Google Scholar 

  13. Schuster I, Schaude M, Schatz F, Mieth H. Preclinical characteristics of allylamines, in Berg D, Plempel M (eds), Sterol Biosynthesis Inhibitors: Pharmaceutical and Agrochemical Aspects. Ellis Horwood, Chichester. 1988; pp 449–470.

    Google Scholar 

  14. Paltauf F, Daum G, Zuder G, Högenauer G, Schulz G, Seidl G. Squalene and ergosterol biosynthesis in fungi treated with naftifine, a new antimycotic agent. Biochim Biophys Acta 1982; 712: 268–273.

    CAS  Google Scholar 

  15. Ryder NS, Troke PF. The activity of naftifine as a sterol synthesis inhibitor in Candida albicans, in Periti P, Grassi GG (eds), Current Chemotherapy and Immunotherapy. American Society for Microbiology, Washington D.C. 1982; pp 1016–1017.

    Google Scholar 

  16. . Ryder NS, Seidl G, Troke PF. Effect of the antimycotic drug naftifine on growth of and sterol biosynthesis in Candida albicans. Antimicrob Agents Chemother 1984; 25: 483–487.

    PubMed  CAS  Google Scholar 

  17. Ryder NS. Selective inhibition of squalene epoxidation by allylamine antimycotic agents, in Nombela C (ed), Microbial Cell Wall Synthesis and Autolysis. Elsevier, Amsterdam. 1984; pp 313–321.

    Google Scholar 

  18. Ryder NS. Specific inhibition of fungal sterol biosynthesis by SF 86-327, a new allylamine antimycotic agent. Antimicrob Agents Chemother1985; 27: 252–256.

    PubMed  CAS  Google Scholar 

  19. Ryder NS. Effect of allylamine antimycotic agents on fungal sterol biosynthesis measured by sterol side-chain methylation. J Gen Microbial1985; 131: 1595–1602.

    CAS  Google Scholar 

  20. Ryder NS, Dupont M-C. Inhibition of squalene epoxidase by allylamine antimycotic compounds: a comparative study of the fungal and mammalian enzymes. Biochem J1985; 230: 765–770.

    PubMed  CAS  Google Scholar 

  21. Ryder NS. Biochemical mode of action of the allylamine antimycotic agents naftifine and terbinafine, in Iwata K, Vanden Bossche H (eds), In Vitro and In Vivo Evaluation of Antifungal Agents. Elsevier, Amsterdam. 1986; pp 89–99.

    Google Scholar 

  22. Ryder NS. Squalene epoxidase as the target of antifungal allylamines.Pestic Sci 1987; 21: 281–288.

    CAS  Google Scholar 

  23. Ryder NS. Mechanism of action of the allylamine antimycotics, in Fromfling RA (ed), Recent Trends in the Discovery, Development and Evaluation of Antifungal Agents. JR Prows Science Publishers, Barcelona. 1987; pp 451–459.

    Google Scholar 

  24. Ryder NS. Mechanism of action and biochemical selectivity of allylamine antimycotic agents. Ann NY Acad Sci 1988; 544: 208–220.

    PubMed  CAS  Google Scholar 

  25. Ryder NS. Mode of action of allylamines, in Berg D, Plempel M (eds), Sterol Biosynthesis Inhibitors: Pharmaceutical and Agrochemical Aspects. Ellis Horwood, Chichester. 1988; pp 151–167.

    Google Scholar 

  26. Ryder NS. The mechanism of action of terbinafine. Clin Exp Dermatol 1989; 14: 98–100.

    PubMed  CAS  Google Scholar 

  27. Georgopoulos A, Berney D, Petranyi G, Drews J, Mieth H. SN 105-843, a new antimycotic agent. Part I. Antifungal and chemotherapeutic properties. Abstr 11th Int Congr Chemother 1979; Abstr 153.

    Google Scholar 

  28. Clayton YM. In vitro activity of terbinafine. Clin Exp Dermatol 1989; 14: 101–103.

    PubMed  CAS  Google Scholar 

  29. Stütz A, Nussbaumer P. SDZ 87–469. Drugs Fut. 1989; 14: 639–642.

    Google Scholar 

  30. Nussbaumer P, Petranyi G, Stütz A. Synthesis and structure-activity relationships of benzo[b]thienyl allylamine antimycotics. J Med Chem 1991; 34: 65–73.

    PubMed  CAS  Google Scholar 

  31. Clayton YM. The in vitro activity of terbinafine against uncommon fungal pathogens, in Fromtling RA (ed), Recent Trends in the Discovery, Development and Evaluation of Antifungal Agents. JR Prous Science Publishers, Barcelona. 1987: pp 433–439.

    Google Scholar 

  32. Wong PK, Ching WTW, Kwon-Chung KJ, Meyer RD. Disseminated Phialophora parasiticainfection in humans: case report and review. Rev Infect Dis1989; 11: 770–775.

    PubMed  CAS  Google Scholar 

  33. David M-F, Regli P, Doucet P, Metge P, Benderitter T. Mycotic keratitis caused by Fusarium: report of a case. Bull Soc Fr Mycol Med 1987; 16: 147–152.

    Google Scholar 

  34. Martine G, Cordier C, Regli P. Sensitivity of Fusarium to antifungal agents: in vitro studies. Bull Soc Fr Mycol Med 1988; 17: 199–202.

    Google Scholar 

  35. Regli P, Ferrari H, Buf[ard Y, Goudard M, Gallucci V. Etude de I’action in vitro sur les dermatophytes d’un nouvel antifongique: la naftifine. Pathol Biol 1985; 33: 614–617.

    PubMed  CAS  Google Scholar 

  36. Goudard M, BufFard Y, Ferrari H, Regli P. Spectre d’action in vitro d’un nouvel antifongique derive de la naftifine: la terbinafine (SF 86-327). Pathol Biol1986; 34: 680–683.

    PubMed  CAS  Google Scholar 

  37. Schmitt HJ, Bernard EM, Andrade J, Edwards F, Schmitt B, Armstrong D. MIC and fungicidal activity of terbinafine against clinical isolates of Aspergillus spp. Antimicrob Agents Chemother 1988; 32: 780–781.

    PubMed  CAS  Google Scholar 

  38. Goudard M, Regli P, Bufard Y, Gabriel B. Sensibilité in vitro des Aspergillusá la terbinafine; étude comparative avec I’amphotéricine B, la 5-fluorocytosine et le kétoconazole. Pathol Biol1988; 36: 139–143.

    PubMed  CAS  Google Scholar 

  39. Polak A, Dixon DM. Loss of melanin in Wangiella dermatitidisdoes not result in greater susceptibility to antifungal agents. Antimicrob Agents Chemother 1989; 33: 1639–1640.

    PubMed  CAS  Google Scholar 

  40. Mallie M, Jouvert S, Montes B, Bastille J-M. In vitro antifungal activity of naftifine against Malassezia furfur. Bull Soc Fr Mycol Med 1988; 17: 299–304.

    Google Scholar 

  41. Regli P, Goudard M, Ferrari H. In vitro comparative study of the susceptibility of Malassezia (Pityrosporum) to new antifungal agents terbinafine, ciclopiroxolamine, amorolfine. Bull Soc Fr Mycol Med 1989; 18: 51–54.

    Google Scholar 

  42. Buchman AM, Sisler HD. Effect of the antimycotic agent terbinafine (SF 86-327) on growth and lipid biosynthesis in Ustilago maydis. Phytopathology 1987; 77: 985.

    Google Scholar 

  43. Buchman AM, Sisler HD. Characterization of terbinafine-resistant mutants of Ustilago maydis. Phytopathology 1988; 78: 860.

    Google Scholar 

  44. Leroux P, Gredt M, Boeda P. Resistance to inhibitors of sterol biosynthesis in field isolates or laboratory strains of the eyespot pathogen Pseudocercosporella herpotrichoides. Pestic Sci 1988; 23: 119–130.

    CAS  Google Scholar 

  45. Carter GA, Kendall SJ, Burden RS, James CS, Clark T. The lipid compositions of two isolates of Cladosporium cucumerinum do not explain their differences in sensitivity to fungicides which inhibit sterol biosynthesis. Pestic Sci 1989; 26: 181–192.

    CAS  Google Scholar 

  46. Schaude M, Ackerbauer H, Mieth H. Inhibitory effect of antifungal agents on germ tube formation in Candida albicans. Mykosen 1987; 30: 281–287.

    PubMed  CAS  Google Scholar 

  47. Schaude M, Ryder NS. Inhibition of Candida albicans germ tube growth by terbinafine and naftifine in comparison to standard antifungals, in Progress in Antimicrobial and Anticancer Chemotherapy. Proceedings of the 15th International Congress on Chemother, Istanbul, 1987. Ecomed, 1987; pp 1689–1691.

    Google Scholar 

  48. Warnock DW. Antifungal drug susceptibility testing, in McGinnis MR, Borgers M (eds), Current Topics in Medical Mycology(Vol 3 ). Springer Verlag, New York. 1989; pp 403–416.

    Google Scholar 

  49. Petranyi G, Leitner I, Mieth H. The “hair root invasion test”, a semi-quantitative method for experimental evaluation of antimycotics in guinea-pigs. Sabouraudia 1982; 20: 101–108.

    PubMed  CAS  Google Scholar 

  50. Weidinger G, Czok R, Mieth H. Exoderil (Naftifin): ein neues Antimykotikum zur Behandlung von Dermatomykosen. Med Welt 1985; 36: 462–467.

    Google Scholar 

  51. Grassberger MA, Mieth H, Petranyi G, Ryder NS, Schuster I, Stütz A. Aspects of antimycotic research exemplified by the allylamines. Triangle(Basel) 1986; 25: 71–84.

    Google Scholar 

  52. Petranyi G. Preclinical evaluation of Exoderil (naftifine): I. Results regarding antifungal activity. Mykosen1985; 28 (Suppl 1): 37–43.

    Google Scholar 

  53. Mieth H, Petranyi G. Preclinical evaluation of terbinafine in viva. Clin Exp Dermatol 1989; 14: 104–107.

    PubMed  CAS  Google Scholar 

  54. Yamaguchi H, Uchida K. Once daily administration of terbinafine to guinea-pigs with experimental dermatophytosis. Clin Exp Dermatol 1989; 14: 108–109.

    PubMed  CAS  Google Scholar 

  55. Kan VL, Bennett JE. Efficacies of four antifungal agents in experimental murine sporotrichosis. Antimicrob Agents Chemother 1988; 32: 1619–1623.

    PubMed  CAS  Google Scholar 

  56. Dixon DM, Polak A. In vitro and in vivo drug studies with three agents of central nervous system phaeohyphomycosis. Chemotherapy(Basel) 1987; 33: 129–140.

    CAS  Google Scholar 

  57. Polak A, Dixon DM. Chemotherapeutic activity in a mouse model of cryptococcosis with cutaneous and nasal involvement. Mycoses1988; 31: 501–507.

    PubMed  CAS  Google Scholar 

  58. Van Cutsem J, Van Gerven F, Janssen PAJ. The treatment of experimental aspergillosis with enilconazole and itraconazole. Bull Soc Fr Mycol Med 1989; 18: 55–60.

    Google Scholar 

  59. Goad LJ, Holz GG, Beach DH. Effect of the allylamine antifungal drug SF 86-327 on the growth and sterol synthesis of Leishmania mexicana mexicanapromastigotes. Biochem Pharmacol 1985; 34: 3785–3788.

    PubMed  CAS  Google Scholar 

  60. Berman JD, Gallalee JV. In vitro antileishmanial activity of inhibitors of steroid biosynthesis and combinations of antileishmanial agents. J Parasital 1987; 73: 671–673.

    CAS  Google Scholar 

  61. Urbina JA, Lazardi K, Aguirre T, Piras MM, Piras R. Antiproliferative synergism of the allylamine SF 86-327 and ketoconazole on epimastigotes and amastigotes of Trypanosoma (Schizotrypanum) cruzi. Antimicrob Agents Chemother 1988; 32: 1237–1242.

    PubMed  CAS  Google Scholar 

  62. Vanden Bossche H, Willemsens G, Marichal P, Cools W, Lauwers W. The molecular basis for the antifungal activities of N-substituted azole derivatives. Focus on R 51211, in Trinci APJ, Ryley JE (eds), Mode of action of Antifungal Agents. Cambridge University Press, Cambridge. 1984; pp 321–341.

    Google Scholar 

  63. Ryder NS. Biochemical mode of action and enantiomeric selectivity of SDZ 89-485, a new triazole antimycotic. J Med Vet Mycol, 1990; 28: 387–396.

    Google Scholar 

  64. Ryder NS, Seidl G, Petranyi G, Stütz A. Mechanism of the fungicidal action of SF 86-327, a new allylamine antimycotic agent, in Ishigami J (ed), Recent Advances in Chemotherapy. University of Tokyo Press, Tokyo. 1985; pp 2558–2559.

    Google Scholar 

  65. Lanyi JK, Placky WZ, Kates M. Lipid interactions in membranes of extremely halophilic bacteria. II. Modification of the bilayer structure by squalene. Biochemistry 1974; 13: 4914–4920.

    PubMed  CAS  Google Scholar 

  66. Meingassner JG, Sleytr U, Petranyi G. Morphological changes induced by naftifine, a new antifungal agent, in Trichophyton mentagrophytes. J Invest Dermatol1981; 77: 444–451.

    PubMed  CAS  Google Scholar 

  67. Meingassner JG, Sleytr UB. The effects of naftifine on the ultrastructure of Candida parapsilosis: a freeze fracture study. Sabouraudia 1982; 20: 199–207.

    PubMed  CAS  Google Scholar 

  68. Meingassner JG, Sleytr UB, Petranyi G. SF 86-327: effects on the ultrastructure of Trichophyton mentagrophytes in vitro, in Spitzy KH, Karrer K (eds), Proceedings of the 13th International Congress of Chemotherapy, Vienna, 1983. H. Eggerman, Vienna. 1983; PS 4.8/4–7.

    Google Scholar 

  69. Meingassner JG, Mfiller M, Sleytr UB. SF 86-327: effects on the ultrastructure of Candida albicans in vitro, in Spitzy KH, Karrer K (eds), Proceedings of the 13th International Congress of Chemotherapy, Vienna, 1983. H. Eggerman, Vienna. 1983; PS 4.8/4–8.

    Google Scholar 

  70. Long MT, Steel CC, Mercer El. Location of squalene accumulation and physiological effects of ergosterol depletion in naftifine-grown yeast. Biochem Soc Trans 1988; 16: 1044–1045.

    CAS  Google Scholar 

  71. Ryder NS, Dupont M-C. Properties of a particulate squalene epoxidase from Candida albicans. Biochim Biophys Acta 1984; 794: 466–471.

    PubMed  CAS  Google Scholar 

  72. Ryder NS. Squalene epoxidase: enzymology and inhibition, in Kuhn PJ, Trinci APJ, Jung MJ, Goosey MU, Copping LG (eds), Biochemistry of Cell Walls and Membranes in Fungi. Springer-Verlag, Berlin. 1990; pp 189–203.

    Google Scholar 

  73. Ryder NS. Inhibition of squalene epoxidase and sterol side-chain methylation by allylamines. Biochem Soc Trans1990; 18: 45–46.

    PubMed  CAS  Google Scholar 

  74. Morita T, Nozawa Y. Effects of antifungal agents on ergosterol biosynthesis in Candida albicans and Trichophyton mentagrophytes: differential inhibitory sites of naphthiomate and miconazole. J Invest Dermatol 1985; 85: 434–437.

    PubMed  CAS  Google Scholar 

  75. Ryder NS, Frank I, Dupont M-C. Ergosterol biosynthesis inhibition by the thiocarbamate antifungal agents tolnaftate and tolciclate. Antimicrob Agents Chemother 1986; 29: 858–860.

    PubMed  CAS  Google Scholar 

  76. Barren-Bee KJ, Lane AC, Turner RW. The mode of action of tolnaftate. J Med Vet Mycol 1986; 24: 155–160.

    Google Scholar 

  77. De Falandre A, Bouvier-Fourcade I, Seng J-M, Leroux P. Induction and characterization of Penicillium caseicolummutants resistant to ergosterol biosynthesis inhibitors. Appl Environ Microbiol1987; 53: 1500–1503.

    PubMed  Google Scholar 

  78. Nemeeek GM, Denny IHSt, Van Valen RG, McCarthy LA, Handley DA, Stütz A. Terbinafine inhibits the mitogenic response to platelet-derived growth factor in vitro and neointimal proliferation in vivo. J Pharmacol Exp Ther 1989; 248: 1167–1174.

    Google Scholar 

  79. Feldman D. Ketoconazole and other imidazole derivatives as inhibitors of steroidogenesis. Endocr Rev1986; 7: 409–420.

    PubMed  CAS  Google Scholar 

  80. Brown MW, Maldonado AL, Heredith CG, Speeg KV. Effect of ketoconazole on hepatic oxidative drug metabolism. Clip Pharmacol Ther1985; 37: 290–297.

    CAS  Google Scholar 

  81. Kraemer FB, Pont A. Inhibition of cholesterol biosynthesis by ketoconazole. Am J Med 1986; 80: 616–622.

    PubMed  CAS  Google Scholar 

  82. Schuster I. The interaction of representative members from two classes of antimycotics—the azoles and the allylamines—with cytochromes P-450 in steroidogenic tissues and liver. Xenobiotica1985; 15: 529–546.

    PubMed  CAS  Google Scholar 

  83. Schuster I. Potential of allylamines to inhibit cytochrome P-450, in Fromtling RA (ed), Recent Trends in the Discovery, Development and Evaluation of Antifungal Agents. JR Prous Science Publishers, Barcelona. 1987: pp 471–478.

    Google Scholar 

  84. Schuster I. Metabolic degradation of terbinafine in liver microsomes from man, guinea pig and rat, in Fromtling RA (ed), Recent Trends in the Discovery, Development and Evaluation of Antifungal Agents. JR Prous Science Publishers, Barcelona. 1987; pp 461–470.

    Google Scholar 

  85. Jensen JC, Back DJ. Interaction of terbinafine with cytochrome P-450 in vitro and in vivo in man. Br J Clin Pharmacol 1988; 26: 236 P.

    Google Scholar 

  86. Back DJ, Stevenson P, Tija JF. Comparative effects of two antimycotic agents, ketoconazole and terbinafine on the metabolism of tolbutamide, ethinyloestradiol, cyclosporin and ethoxycoumarin by human liver microsomes in vitro. Br J Clin Pharmacol 1989; 28: 166–170.

    PubMed  CAS  Google Scholar 

  87. Seyffer R, Eichelbaum M, Jensen JC, Klotz. Antipyrine metabolism is not affected by terbinafine, a new antifungal agent. Eur J Clin Pharmacol. 1989; 37: 231–233.

    PubMed  CAS  Google Scholar 

  88. Jensen JC. Pharmacokinetics of Lamisil in humans. J Dermatol Treat 1990; 1 (Suppl 2): 15–18.

    Google Scholar 

  89. Wahllaender A, Baumgartner G. Effect of ketoconazole and terbinafine on the pharmacokinatics of caffeine in healthy volunteers. Eur J Clin Pharmacol 1989; 37: 279–283.

    CAS  Google Scholar 

  90. Nashan D, Knuth UA, Weidinger G, Nieschlag E. The antimycotic drug terbinafine in contrast to ketoconazole lacks acute effects on the pituitary-testicular function of healthy men: a placebo-controlled double-blind trial. Acta Endocrinol 1989; 120: 677–678.

    PubMed  CAS  Google Scholar 

  91. Effendy I, Krause W. In vivo effects of terbinafine and ketoconazole on testosterone plasma levels in healthy males. Dermatologica 1989; 178: 103–106.

    PubMed  CAS  Google Scholar 

  92. Battig FA, Nefzger M, Schulz G. Major biotransformation routes of some allylamine antimycotics, in Fromtling RA (ed), Recent Trends in the Discovery, Development and Evaluation of Antifungal Agents. JR Prous Science Publishers, Barcelona. 1987; pp 479–495.

    Google Scholar 

  93. Schatz F, Haberl H, Battig F, Jobstmann D, Schulz G, Nefzger M, Czok R, Nikiforov A. Major routes of naftifine biotransformation in laboratory animals and man. Arzneim-Forsch/Drug Res 1986; 36 (I): 248–255.

    CAS  Google Scholar 

  94. Grimus RC, Schuster I. The role of the lymphatic transport in the enteral absorption of naftifine by the rat. Xenobiotica 1984; 14: 287–294.

    PubMed  CAS  Google Scholar 

  95. Kan VL, Henderson DK, Bennett JE. Bioassay for SF 86-327, a new antifungal agent. Antimicrob Agents Chemother 1986; 30: 628–629.

    PubMed  CAS  Google Scholar 

  96. Schatz F, Haberl H. Analytical methods for the determination of terbinafine and its metabolites in human plasma, milk and urine. Arzneim Forsch/Drug Res 1989; 39: 527–532.

    CAS  Google Scholar 

  97. Obenaus H, Schön H. Preclinical evaluation of Exoderil (naftifine)—III. Summary of toxicology. Mykosen1985; 28 (Suppl 1): 48–54.

    Google Scholar 

  98. Ganzinger U, Stephen A, Hitzenberger G, Baumgartner R, Madoerin M, Mekler PH, Richardson BP, Brüggeman S, Suter W, Racine R, Donatsch P, Schatz F, Haberl H. SF 86-327: evaluation of toxicity in laboratory animals, tolerance and pharmacokinetics after oral application to man, in Spitzy KH, Karrer K (eds), Proceedings of the 13th International Congress of Chemotherapy, Vienna, 1983. H. Eggerman, Vienna. 1983; PS 4.8/4–13.

    Google Scholar 

  99. Bechter R, Schmid BP. Teratogenicity in vitro: a comparative study of four antimycotic drugs using the whole-embryo culture system. Toxicol In Vitro 1987; 1: 11–15.

    PubMed  CAS  Google Scholar 

  100. Jones TC. Treatment of dermatomycoses with topically applied allylamines: naftifine and terbinafine. J Dermatol Treat 1990; 1 (Suppl 2): 29–32.

    Google Scholar 

  101. Kagawa S. Comparative clinical trial of naftifine and clotrimazole in tinea pedum, tinea cruris and tinea corporis. Mykosen1985; 28 (Suppl 1): 82–88.

    Google Scholar 

  102. Haas PJ, Tronnier H, Weidinger G. Naftifine in tinea pedis: double-blind comparison with clotrimazole. Mykosen 1983; 28: 33–40.

    Google Scholar 

  103. Paetzold OH, Engst R, Kneist W, Borelli S. Yeast infections of the skin: double-blind therapeutic comparison of naftifine and clotrimazole. Mykosen 1985; 28 (Suppl 1): 135–141.

    Google Scholar 

  104. Hira SK, Abraham MS, Mwinga A, Kamanga J, Schmidt C. Naftifine solution (1%) in the treatment of pityriasis versicolor in Zambia. Mykosen 1986; 29: 378–381.

    PubMed  CAS  Google Scholar 

  105. Czok R. Preclinical evaluation of Exoderil (naftifine): II. Mode of action, resorption, metabolism and excretion. Mykosen 1985; 28 (Suppl 1): 44–47.

    Google Scholar 

  106. Weidinger G, Striegel C, Meinicke K. Validation of the “once-a-day-principle” by a controlled trial. Mykosen 1985; 28 (Suppl 1): 119–125.

    Google Scholar 

  107. Polemann G. Antimycotic efficacy of naftifine after once-daily application. Mykosen 1985; 28 (Suppl 1): 113–118.

    Google Scholar 

  108. Zaun H, Luszpinski P. Antimycotic treatment of in-patients: contralateral comparison of naftifine and clotrimazole. Mykosen 1985; 28 (Suppl 1): 59–65.

    Google Scholar 

  109. Klaschka F. Therapy of onychomycosis with naftifine gel. Mykosen 1985; 28 (Suppl 1): 142–146.

    Google Scholar 

  110. Notting S. Benefit of an antibacterial activity: clinical contralateral comparison between naftifine and gentamycin in pyoderma. Mykosen1985; 28 (Suppl 1): 147–150.

    Google Scholar 

  111. Tronnier H. Inflammatory dermatomycoses: comparison of naftifine and a corticosteroid/imidazole compound preparation. Mykosen 1985; 28 (Suppl 1): 98–108.

    Google Scholar 

  112. Jung EG. The antiinflammatory effect of naftifine measured in the UV-erythema test. Mykosen 1985; 28 (Suppl 1): 109–112.

    Google Scholar 

  113. Jung EG. The clinical relevance of the antiinflammatory effect of naftifine. Therapiewoche 1988; 38: 2577–2578.

    Google Scholar 

  114. Kecskes A, Jahn P. Measurement of the antiinflammatory effect of naftifine HCl using the UV-erythema test. Hautarzt 1989; 40: 158–160.

    PubMed  CAS  Google Scholar 

  115. Lee WL, Shalita AR. Naftifine, an antiinflammatory agent. Clin Res 1989; 37: 352A.

    Google Scholar 

  116. Maibach HI. Naftifine: dermatotoxicology and clinical efficacy. Mykosen1985; 28 (Suppl 1): 75–81.

    Google Scholar 

  117. Senff H, Tholen S, Stieler W, Reinel D, Hausen BM. Allergic contact dermatitis to naftifine. Dermatologica 1989; 178: 107–108.

    PubMed  CAS  Google Scholar 

  118. Weidinger G. Clinical efficacy of naftifine, in Fromtling RA (ed), Recent Trends in the Discovery, Development and Evaluation of Antifungal Agents. JR Prous Science Publishers, Barcelona. 1987; pp 497–509.

    Google Scholar 

  119. Villars V, Jones TC. Clinical efficacy and tolerability of terbinafine (Lamisil): a new topical and systemic fungicidal drug for treatment of dermatomycoses. Clin Exp Dermatol 1989; 14: 124–127.

    PubMed  CAS  Google Scholar 

  120. Jones TC, Villars VV. Terbinafine, in Ryley JF (ed), Handbook of Experimental Pharmacology (Vol 96). Chemotherapy of Fungal Diseases. Springer-Verlag, Berlin. 1990; pp 483–503.

    Google Scholar 

  121. Smith EB, Zaias N, Savin R. Topical terbinafine in tinea pedis. J Clin Pharmacol 1987; 27: 720.

    Google Scholar 

  122. Kagawa S. Clinical efficacy of terbinafine in 629 Japanese patients with dermatomycosis. Clin Exp Dermatol 1989; 14: 114–115.

    PubMed  CAS  Google Scholar 

  123. Villars V, Jones TC. Present status of the efficacy and tolerability of terbinafine (Lamisil) used systemically in the treatment of dermatomycoses of skin and nails. J Dermatol Treat 1990; 1: 33–38.

    Google Scholar 

  124. Savin R. Successful treatment of chronic tines pedis (moccasin type) with terbinafine (Lamisil). Clin Exp Dermatol 1989; 14: 116–119.

    PubMed  CAS  Google Scholar 

  125. Cole GW, Stricklin G. A comparison of a new oral antifungal, terbinafine, with griseofulvin as therapy for tines corporis. Arch Dennatol 1989; 125: 1537–1539.

    CAS  Google Scholar 

  126. Zaias N, Serrano L. The successful treatment of finger Trichophyton rubrumonychomycosis with oral terbinafine. Clin Exp Dennatol 1989; 14: 120–123.

    CAS  Google Scholar 

  127. Goodfield MJD, Rowell NR, Forster RA, Evans EGV, Raven A. Treatment of dermatophyte infection of the finger-and toe-nails with terbinafine (SF 86-327, Lamisil), an orally active fungicidal agent. Br J Dermatol1989; 121: 753–757.

    PubMed  CAS  Google Scholar 

  128. Lever LR, Dykes PJ, Thomas R, Finlay AW. How orally administered terbinafine reaches the stratum corneum. J Dermatol Treat 1990; 1 (Suppl 2): 23–25.

    Google Scholar 

  129. Finlay AY, Lever L, Thomas R, Dykes PJ. Nail matrix kinetics of oral terbinafine in onychomycosis and normal nails. J Dermatol Treat 1990; 1 (Suppl 2): 51–53.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Ryder, N.S., Mieth, H. (1992). Allylamine Antifungal Drugs. In: Borgers, M., Hay, R., Rinaldi, M.G. (eds) Current Topics in Medical Mycology. Current Topics in Medical Mycology, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2762-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2762-5_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7657-9

  • Online ISBN: 978-1-4612-2762-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics