Skip to main content

Hydrogen Diagnostics of Industrial Parts of Aluminum Alloys

  • Chapter
  • First Online:
Advances in Hydrogen Embrittlement Study

Abstract

Aluminum alloys are very popular in a variety of technical applications. The strong influence of hydrogen on the properties of aluminum alloys is known, however, as in the case of steels; it is continuously increasing as new alloys with extreme properties are developed and introduced. Scientific research in the field of the hydrogen effect on the properties of aluminum alloys is mainly focused on the fundamental aspects such as the diffusion coefficients of hydrogen in aluminum, possible types of hydrogen traps, and their effect on the microstructure of alloys. At the same time, the industry has a problem of cracking ingots and semi-finished products (sheets, pipes, and plates), including their further processing and welding. In contrast to the high-strength steels, scientific research does not actually provide specific values for critical hydrogen concentration. The problem of separating the hydrogen adsorbed on the surface and dissolved during measurements has not been solved. There are only a few types of aluminum alloy reference specimens. The article is intended to partially fill this gap. It provides specific examples of the study of technological problems and proposes the measurement methods that allow the separation of hydrogen dissolved and adsorbed on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, P., Matsumoto, R.: Temperature dependence of vacancy concentration and void growth mechanism in al with constant hydrogen concentration: A first-principles study. Eng. Fract. Mech. 216, 106508 (2019). https://doi.org/10.1016/j.engfracmech.2019.106508

  2. Toda, H., Hidaka, T., Kobayashi, M., Uesugi, K., Takeuchi, A., Horikawa, K.: Growth behavior of hydrogen micropores in aluminum alloys during high-temperature exposure. Acta Mater. 57(7), 2277 (2009). https://doi.org/10.1016/j.actamat.2009.01.026

  3. Thomas, P., Gruzleski, J.: Threshold hydrogen for pore formation during the solidification of aluminum alloys. Metall. Trans. B 9(1), 139 (1978)

    Google Scholar 

  4. Bhuiyan, M.S., Tada, Y., Toda, H., Hang, S., Uesugi, K., Takeuchi, A., Sakaguchi, N., Watanabe, Y.: Influences of hydrogen on deformation and fracture behaviors of high Zn 7xxx aluminum alloys. Int. J. Fract. 200(1–2), 13–29 (2016)

    Article  CAS  Google Scholar 

  5. Li, X., Cao, Y., He, L., Guo, Y., Cui, J.: Relationships between casting parameters and inclusions on the hydrogen content in 1050 alloy. Steel Res. Int. 84(12), 1223–1229 (2013)

    Article  CAS  Google Scholar 

  6. Atwood, R.C., Sridhar, S., Zhang, W., Lee, P.D.: Diffusion-controlled growth of hydrogen pores in aluminium-silicon castings: in situ observation and modelling. Acta Mater. 48(2), 405–417 (2000). https://doi.org/10.1016/S1359-6454(99)00363-8

    Article  CAS  Google Scholar 

  7. Toda, H., Minami, K., Koyama, K., Ichitani, K., Kobayashi, M., Uesugi, K., Suzuki, Y.: Healing behavior of preexisting hydrogen micropores in aluminum alloys during plastic deformation. Acta Mater. 57(15), 4391–4403 (2009). https://doi.org/10.1016/j.actamat.2009.06.012

    Article  CAS  Google Scholar 

  8. Lee, P.D., Hunt, J.D.: Hydrogen porosity in directional solidified aluminum copper alloys: in situ observation. Acta Mater. 45(10), 4155–4169 (1997). https://doi.org/10.1016/S1359-6454(97)00081-5

    Article  CAS  Google Scholar 

  9. Bond, G.M., Robertson, I.M., Birnbaum, H.K.: The influence of hydrogen on deformation and fracture processes in high-strength aluminum alloys. Acta Metall. 35(9), 2289–2296 (1987). https://doi.org/10.1016/0001-6160(87)90076-9

    Article  CAS  Google Scholar 

  10. Song, R.G., Tseng, M.K., Zhang, B.J., Liu, J., Jin, Z.H., Shin, K.S.: Grain boundary segregation and hydrogen-induced fracture in 7050 aluminium alloy. Acta Mater. 44(8), 3241–3248 (1996). https://doi.org/10.1016/1359-6454(95)00406-8

    Article  CAS  Google Scholar 

  11. Toda, H., Masuda, S., Batres, R., Kobayashi, M., Aoyama, S., Onodera, M., Furusawa, R., Uesugi, K., Takeuchi, A., Suzuki, Y.: Statistical assessment of fatigue crack initiation from sub-surface hydrogen micropores in high-quality die-cast aluminum. Acta Mater. 59(12), 4990–4998 (2011). https://doi.org/10.1016/j.actamat.2011.04.049

    Article  CAS  Google Scholar 

  12. TiryakioÄŸlu, M.: The effect of hydrogen on pore formation in aluminum alloy castings: Myth versus reality. Metals 10(3), 368 (2020). https://doi.org/10.3390/met10030368

  13. Bhuiyan, M.S., Toda, H., Shimizu, K., Su, H., Uesugi, K., Takeuchi, A., Watanabe, Y.: The role of hydrogen on the local fracture toughness properties of 7XXX aluminum alloys. Metall. Mater. Trans. A 49(11), 5368–5381 (2018)

    Article  CAS  Google Scholar 

  14. Birnbaum, H.K., Buckley, C., Zeides, F., Sirois, E., Rozenak, P., Spooner, S., Lin, J.S.: Hydrogen in aluminum. J. Alloys Compd. 253, 260–264 (1997). https://doi.org/10.1016/S0925-8388(96)02968-4

    Article  Google Scholar 

  15. Indeitsev, D.A., Osipova, E.V.: Formation of surface hydrogen layer in pure aluminum. In: Doklady Physical Chemistry, vol. 484, No. 1, pp. 4–7. Pleiades Publishing (2019)

    Google Scholar 

  16. Shimizu, K., Toda, H., Fujihara, H., Hirayama, K., Uesugi, K., Takeuchi, A.: Hydrogen partitioning behavior and related hydrogen embrittlement in al-zn-mg alloys. Eng. Fract. Mech. 216, 106503 (2019). https://doi.org/10.1016/j.engfracmech.2019.106503

  17. Bruna, M., Sládek, A.: Hydrogen analysis and effect of filtration on final quality of castings from aluminum alloy AlSi7Mg0.3. Arch. Foundry Eng. 11(1), 5–10 (2011)

    Google Scholar 

  18. Buckley, C.E., Birnbaum, H.K., Lin, J.S., Spooner, S., Bellmann, D., Staron, P., Udovic, T.J., Hollar, E.: Characterization of H defects in the aluminum-hydrogen system using small angle scattering techniques. J. Appl. Crystallogr. 34(2), 119–129 (2001). https://doi.org/10.1107/S0021889800018239

    Article  CAS  Google Scholar 

  19. Quirós, C., Mougenot, J., Lombardi, G., Redolfi, M., Brinza, O., Charles, Y., Michau, A., Hassouni, K.: Blister formation and hydrogen retention in aluminum and beryllium: a modeling and experimental approach. Nucl. Mater. Energy 12, 1178–1183 (2017). https://doi.org/10.1016/j.nme.2016.12.036

    Article  Google Scholar 

  20. Yamabe, J., Awane, T., Murakami, Y.: Hydrogen trapped at intermetallic particles in aluminum alloy 6061–T6 exposed to high-pressure hydrogen gas and the reason for high resistance against hydrogen embrittlement. Int. J. Hydrogen Energy 42(38), 24560–24568 (2017). https://doi.org/10.1016/j.ijhydene.2017.08.035

    Article  CAS  Google Scholar 

  21. Georgiou, E.P., Cevallos, V.P., Van der Donck, T., Drees, D., Meersschaut, J., Panagopoulos, C.N., Celis, J.P.: Effect of cathodic hydrogen charging on the wear behavior of 5754 Al alloy. Wear 390, 295–301 (2017). https://doi.org/10.1016/j.wear.2017.08.013

    Article  CAS  Google Scholar 

  22. Lunarska, E., Chernyaeva, O.: Effect of precipitates on hydrogen transport and hydrogen embrittlement of aluminum alloys. Mater. Sci. 40(3), 399–407 (2004)

    Article  CAS  Google Scholar 

  23. Felberbaum, M., Landry-Désy, E., Weber, L., Rappaz, M.: Effective hydrogen diffusion coefficient for solidifying aluminum alloys. Acta Mater. 59(6), 2302–2308 (2011). https://doi.org/10.1016/j.actamat.2010.12.022

    Article  CAS  Google Scholar 

  24. Anyalebechi, P.N.: Hydrogen diffusion in al-li alloys. Metall. Trans. B 21(4), 649–655 (1990)

    Article  Google Scholar 

  25. Ishikawa, T., McLellan, R.: The diffusivity of hydrogen in aluminum. Acta Metall. 34(6), 1091–1095 (1986). https://doi.org/10.1016/0001-6160(86)90219-1

    Article  CAS  Google Scholar 

  26. Nakashima, M., Aratono, Y., Tachikawa, E.: Diffusivity of recoil-injected or thermally-doped tritium in aluminum. J. Nucl. Mater. 98(1), 27–34 (1981). https://doi.org/10.1016/0022-3115(81)90384-6

    Article  CAS  Google Scholar 

  27. Scully, J.R., Young Jr, G.A., Smith, S.W.: Hydrogen solubility, diffusion and trapping in high purity aluminum and selected Al-base alloys. In: Starke, Jr., E.A., Sanders, Jr., T.H., Cassada, W.A. (eds.) Materials Science Forum, vol. 331, pp. 1583–1600. Trans Tech Publications Ltd (2000)

    Google Scholar 

  28. Buckley, C.E., Birnbaum, H.K.: Characterization of the charging techniques used to introduce hydrogen in aluminum. J. Alloys Compd. 330, 649–653 (2002). https://doi.org/10.1016/S0925-8388(01)01496-7

    Article  Google Scholar 

  29. Jiang, G.R., Li, Y.X., Yuan, L.: Calculation of hydrogen solubility in molten alloys. Trans. Nonferrous Metals Soc. China 21(5), 1130–1135 (2011). https://doi.org/10.1016/S1003-6326(11)60832-7

    Article  CAS  Google Scholar 

  30. Anyalebechi, P.N.: Attempt to predict hydrogen solubility limits in liquid multicomponent aluminum alloys. Scripta Mater. 34(4), 513–517 (1996). https://doi.org/10.1016/1359-6462(95)00591-9

    Article  CAS  Google Scholar 

  31. Anyalebechi, P.N., Talbot, D.E.J., Granger, D.A.: The solubility of hydrogen in solid binary aluminum lithium alloys. Metall. Trans. B 20(4), 523–533 (1989)

    Article  Google Scholar 

  32. Anyalebechi, P.N.: Analysis and thermodynamic prediction of hydrogen solution in solid and liquid multicomponent aluminum alloys. In: Grandfield, J.F., Eskin, D.G. (eds.) Essential Readings in Light Metals, pp. 185–200. Springer, Cham (2016)

    Google Scholar 

  33. Anyalebechi, P.N., Talbot, D.E.J., Granger, D.A.: The solubility of hydrogen in liquid binary al-li alloys. Metall. Trans. B 19(2), 227–232 (1988)

    Article  Google Scholar 

  34. Talbot, D.E.J., Anyalebechi, P.N.: Solubility of hydrogen in liquid aluminum. Mater. Sci. Technol. 4(1), 1–4 (1988)

    Article  CAS  Google Scholar 

  35. Anyalebechi, P.N.: Analysis of the effects of alloying elements on hydrogen solubility in liquid aluminum alloys. Scripta Metall. Mater. 33(8), 1209–1216 (1995). https://doi.org/10.1016/0956-716X(95)00373-4

    Article  CAS  Google Scholar 

  36. Ichimura, M., Katsuta, H., Sasajima, Y., Imabayashi, M.: Hydrogen and deuterium solubility in aluminum with voids. J. Phys. Chem. Solids 49(10), 1259–1267 (1988). https://doi.org/10.1016/0022-3697(88)90184-9

    Article  CAS  Google Scholar 

  37. Outlaw, R.A., Peterson, D.T., Schmidt, F.A.: Diffusion of hydrogen in pure large grain aluminum. Scripta Metall. 16(3), 287–292 (1982). https://doi.org/10.1016/0036-9748(82)90354-4

    Article  CAS  Google Scholar 

  38. Hashimoto, E., Kino, T.: Hydrogen diffusion in aluminum at high temperatures. J. Phys. F Metal Phys. 13(6), 1157 (1983). https://doi.org/10.1088/0305-4608/13/6/013

  39. McLellan, R.B.: Kinetics of hydrogen-monovacancy interactions in metals. Scripta Metall. 17(3), 417–420 (1983). https://doi.org/10.1016/0036-9748(83)90184-9

    Article  CAS  Google Scholar 

  40. Smith, S.W., Scully, J.R.: The identification of hydrogen trapping states in an Al-Li-Cu-Zr alloy using thermal desorption spectroscopy. Metall. Mater. Trans. A 31(1), 179–193 (2000)

    Article  Google Scholar 

  41. Furuya, Y., Takasaki, A., Koga, M., Kino, T.: Effect of surface on hydrogen permeation through pure aluminum. In: Materials Science Forum, vol. 331, pp. 1665–1670. Trans Tech Publications Ltd. (2000)

    Google Scholar 

  42. Okada, H., Itoh, G., Kanno, M.: Hydrogen segregation in an Al-Li alloy. Scripta Metall. Mater. 26(1), 69–74 (1992). https://doi.org/10.1016/0956-716X(92)90371-K

    Article  CAS  Google Scholar 

  43. Tiryakioğlu, M.: Solubility of hydrogen in liquid aluminum: reanalysis of available data. Int. J. Cast Metals Res. 32(5–6), 315–318 (2019). https://doi.org/10.1080/13640461.2020.1718337

    Article  CAS  Google Scholar 

  44. Andronov, D.Y., Arseniev, D.G., Polyanskiy, A.M., Polyanskiy, V.A., Yakovlev, Y.A.: Application of multichannel diffusion model to analysis of hydrogen measurements in solid. Int. J. Hydrogen Energy 42(1), 699–710 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.126

    Article  CAS  Google Scholar 

  45. Aluminum and aluminum alloys. Methods for determination of hydrogen in solid metal by vacuum heating (in Russian). GOST (State Standard) 21132, pp. 1–98. Izdatelstvo Standartov, Moscow (2000)

    Google Scholar 

  46. Konar, J., Banerjee, N.G.: Vacuum heating hydrogen determination in aluminum and aluminum alloys. NML Tech. J. 16(1–2), 18–19 (1974)

    CAS  Google Scholar 

  47. Belyaev, A.K., Polyanskiy, A.M., Polyanskiy, V.A., Sommitsch, C., Yakovlev, Y.A.: Multichannel diffusion vs TDS model on example of energy spectra of bound hydrogen in 34CrNiMo6 steel after a typical heat treatment. Int. J. Hydrog. Energy 41(20), 8627 (2016). https://doi.org/10.1016/j.ijhydene.2016.03.198

  48. Polyanskiy, A.M., Polyanskiy, V.A., Yakovlev, Y.A.: Experimental determination of parameters of multichannel hydrogen diffusion in solid probe. Int. J. Hydrog. Energy 39(30), 17381–17390 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.080

    Article  CAS  Google Scholar 

  49. Tretyakov, D., Belyaev, A., Polyanskiy, V., Stepanov, A., Yakovlev, Y.: Correlation of acoustoelasticity with hydrogen saturation during destruction. In: E3S Web of Conferences, vol. 121, p. 01016. EDP Sciences (2019)

    Google Scholar 

  50. Polyanskiy, V.A., Belyaev, A.K., Yakovlev, Y.A., Polyanskiy, A.M., Tretyakov, D.A.: Influence of the skin effect of plastic deformation on hydrogen accumulation in metals. In: AIP Conference Proceedings, vol. 2053(1), 020011 (2018). https://doi.org/10.1063/1.5084357

Download references

Acknowledgements

The study has been undertaken with the support of Russian Foundation for Basic Research grants: No-20-08-01100, 18-08-00201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy A. Yakovlev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yakovlev, Y.A., Arseniev, D.G., Belyaev, A.K., Loginov, V.P., Polyanskiy, A.M., Polyanskiy, V.A. (2021). Hydrogen Diagnostics of Industrial Parts of Aluminum Alloys. In: Polyanskiy, V.A., Belyaev, A.K. (eds) Advances in Hydrogen Embrittlement Study. Advanced Structured Materials, vol 143. Springer, Cham. https://doi.org/10.1007/978-3-030-66948-5_13

Download citation

Publish with us

Policies and ethics