Skip to main content

An Improved Calibration Method of EMG-driven Musculoskeletal Model for Estimating Wrist Joint Angles

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12595))

Included in the following conference series:

  • 1522 Accesses

Abstract

Lumped-parameter musculoskeletal model based on surface electromyography (EMG) promises to estimate multiple degrees-of-freedom (DoFs) wrist kinematics and might be potentially applied in the real-time control of powered upper limb prostheses. In this study, we proposed a new parameter calibration method based on the lumped-parameter musculoskeletal model. Compared with the existing calibration method in the lumped-parameter musculoskeletal model, this paradigm used an improved method of calculating estimated joint angles in optimization and a reduced training dataset (data from only single-DoF movements) to optimize model parameters. Surface EMG signals were then mapped into the kinematics of the wrist joint using the optimized musculoskeletal model. In the experiments, wrist joint angles and surface EMG signals were simultaneously acquired from able-bodied subjects while performing 3 movements, including flexion/extension (Flex/Ext) only, pronation/supination (Pro/Sup) only, and 2-DoF movements. The offline tracking performance of the proposed method was comparable to that of the existing calibration method with averaged r = 0.883 and NRMSE = 0.218. Moreover, the results demonstrated significant superiority of the proposed method over the existing method with less amount of data for parameter tuning, providing a promising direction for predicting multi-DoF limb motions with only single-DoF information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Farina, D., et al.: The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges. IEEE Trans. Neural Syst. Rehabil. Eng. 22(4), 797–809 (2014)

    Article  Google Scholar 

  2. Graupe, D., Cline, W.K.: Functional separation of EMG signals via ARMA identification methods for prosthesis control purposes. IEEE Trans. Syst. Man Cybern. 5(2), 252–259 (1975)

    Article  Google Scholar 

  3. Doerschuk, P.C., Gustafon, D.E., Willsky, A.S.: Upper extremity limb function discrimination using EMG signal analysis. IEEE Trans. Biomed. Eng. 30(1), 18–29 (2007)

    Article  Google Scholar 

  4. Fougner, A., Stavdahl, O., Kyberd, P.J., Losier, Y.G., Parker, P.A.: Control of upper limb prostheses: terminology and proportional myoelectric control-a review. IEEE Trans. Neural Syst. Rehabil. Eng. 20(5), 663–677 (2012)

    Article  Google Scholar 

  5. Davidson, J.: A survey of the satisfaction of upper limb amputees with their prostheses, their lifestyles, and their abilities. J. Hand Ther. 15(1), 62–70 (2002)

    Article  Google Scholar 

  6. Englehart, K., Hudgins, B.: A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 50(7), 848–854 (2003)

    Article  Google Scholar 

  7. Huang, H., Zhou, P., Li, G., Kuiken, T.A.: Spatial filtering improves EMG classification accuracy following targeted muscle reinnervation. Ann. Biomed. Eng. 37(9), 1849–1857 (2009)

    Article  Google Scholar 

  8. Jiang, N., Englehart, K.B., Parker, P.A.: Extracting simultaneous and proportional neural control information for multiple-DOF prostheses from the surface electromyographic signal. IEEE Trans. Biomed. Eng. 56(4), 1070–1080 (2009)

    Article  Google Scholar 

  9. Jiang, N., Dosen, S., Muller, K.R., Farina, D.: Myoelectric control of artificial limbs-is there a need to change focus? [In the spotlight]. IEEE Signal Process. Mag. 29(5), 150–152 (2012)

    Google Scholar 

  10. Crouch, D.L., Huang, H.: Musculoskeletal model predicts multi-joint wrist and hand movement from limited EMG control signals. In: Engineering in Medicine and Biology Society, pp. 1132–1135 (2015)

    Google Scholar 

  11. Sartori, M., Durandau, G., Dosen, S., Farina, D.: Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling. J. Neural Eng. 15(6), 066,026.1-066,026.15 (2018)

    Google Scholar 

  12. Lloyd, D.G., Besier, T.F.: An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J. Biomech. 36(6), 765–776 (2003)

    Article  Google Scholar 

  13. Buchanan, T.S., Lloyd, D.G., Manal, K., Besier, T.F.: Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. J. Appl. Biomech. 20(4), 367–395 (2004)

    Article  Google Scholar 

  14. Sartori, M., Reggiani, M., Farina, D., Lloyd, D.G.: EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity. PloS One 7(12), 1–11 (2012)

    Article  Google Scholar 

  15. Crouch, D.L., Huang, H.: Lumped-parameter electromyogram-driven musculoskeletal hand model: A potential platform for real-time prosthesis control. J. Biomech. 49(16), 3901–3907 (2016)

    Article  Google Scholar 

  16. Manal, K., Gonzalez, R.V., Lloyd, D.G., Buchanan, T.S.: A real-time EMG-driven virtual arm. Comput. Biol. Med. 32(1), 25–36 (2002)

    Article  Google Scholar 

  17. Chadwick, E., Blana, D., van den Bogert, A., Kirsch, R.: A real-time, 3-D musculoskeletal model for dynamic simulation of arm movements. IEEE Trans. Biomed. Eng. 56(4), 941–948 (2009)

    Article  Google Scholar 

  18. Pan, L., Crouch, D.L., Huang, H.: Musculoskeletal model for simultaneous and proportional control of 3-DOF hand and wrist movements from EMG signals. In: 8th International IEEE/EMBS Conference on Neural Engineering, NER, pp. 325–328. IEEE (2017)

    Google Scholar 

  19. Pan, L., Crouch, D.L., Huang, H.: Comparing EMG-based human-machine interfaces for estimating continuous, coordinated movements. IEEE Trans. Neural Syst. Rehabil. Eng. 27(10), 2145–2154 (2019)

    Article  Google Scholar 

  20. Heine, R., Manal, K., Buchanan, T.S.: Using hill-type muscle models and EMG data in a forward dynamic analysis of joint moment evaluation of critical parameters. J. Mech. Med. Bio. 3(2), 169–186 (2003)

    Article  Google Scholar 

  21. Corcos, D.M., Gottlieb, G.L., Latash, M.L., Almeida, G.L., Agarwal, G.C.: Electromechanical delay: an experimental artifact. J. Electromyogr. Kinesiol. 2(2), 59–68 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjun Sheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, J., Yu, Y., Sheng, X., Zhu, X. (2020). An Improved Calibration Method of EMG-driven Musculoskeletal Model for Estimating Wrist Joint Angles. In: Chan, C.S., et al. Intelligent Robotics and Applications. ICIRA 2020. Lecture Notes in Computer Science(), vol 12595. Springer, Cham. https://doi.org/10.1007/978-3-030-66645-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66645-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66644-6

  • Online ISBN: 978-3-030-66645-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics