Skip to main content

Extracting Stable Control Information from EMG Signals to Drive a Musculoskeletal Model - A Preliminary Study

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Abstract

Musculoskeletal models (MMs) driven by electromyography (EMG) signals have been used to predict human movements. Muscle excitations of MMs are generally the amplitude of EMG, which shows large variability even when repeating the same task. The general structure of muscle synergies has been proved to be consistent across test sessions, providing a perspective for extracting stable control information for MMs. Although non-negative matrix factorization (NMF) is a common method for extracting synergies, the factorization result of NMF is not unique. In this study, we proposed an improved NMF algorithm for extracting stable control information of MMs to predict hand and wrist motions. Specifically, we supplemented the Hadamard product and L2-norm regularization term to the objective function of NMF. The proposed NMF was utilized to identify stable muscle synergies. Then, the time-varying profile of each synergy was fed into a subject-specific MM for estimating joint motions. The results demonstrated that the proposed scheme significantly outperformed a traditional MM and an MM combined with the classic NMF (NMF-MM), with averaged R and NRMSE equal to \(0.89\pm 0.06\) and \(0.16\pm 0.04\). Further, the similarity between muscle synergies extracted from different training data revealed the proposed method’s effectiveness of identifying consistent control information for MMs. This study provides a novel model-based scheme for the estimation of continuous movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Piazza, C., Rossi, M., Catalano, M.G., Bicchi, A., Hargrove, L.J.: Evaluation of a simultaneous myoelectric control strategy for a multi-DoF transradial prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 28(10), 2286–2295 (2020)

    Article  Google Scholar 

  2. Yao, S., Zhuang, Y., Li, Z., Song, R.: Adaptive admittance control for an ankle exoskeleton using an EMG-driven musculoskeletal model. Front. Neurorobot. 12, 16 (2018)

    Article  Google Scholar 

  3. Delpreto, J., Rus, D.: Sharing the load: Human-robot team lifting using muscle activity. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 7906–7912 (2019)

    Google Scholar 

  4. Smith, L.H., Kuiken, T.A., Hargrove, L.J.: Evaluation of linear regression simultaneous myoelectric control using intramuscular EMG. IEEE Trans. Biomed. Eng. 63(4), 737–746 (2016)

    Article  Google Scholar 

  5. Ameri, A., Kamavuako, E.N., Scheme, E.J., Englehart, K.B., Parker, P.A.: Support vector regression for improved real-time, simultaneous myoelectric control. IEEE Trans. Neural Syst. Rehabil. Eng. 22(6), 1198–1209 (2014)

    Article  Google Scholar 

  6. Muceli, S., Farina, D.: Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of-freedom. IEEE Trans. Neural Syst. Rehabil. Eng. 20(3), 371–378 (2012)

    Article  Google Scholar 

  7. Yu, Y., Chen, C., Zhao, J., Sheng, X., Zhu, X.: Surface electromyography image-driven torque estimation of multi-DoF wrist movements. IEEE Trans. Industr. Electron. 69(1), 795–804 (2022)

    Article  Google Scholar 

  8. Buchanan, T.S., Lloyd, D.G., Manal, K., Besier, T.F.: Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. J. Appl. Biomech. 20(4), 367–395 (2004)

    Article  Google Scholar 

  9. Lloyd, D.G., Besier, T.F.: An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J. Biomech. 36(6), 765–776 (2003)

    Article  Google Scholar 

  10. Crouch, D.L., Huang, H.: Lumped-parameter electromyogram-driven musculoskeletal hand model: A potential platform for real-time prosthesis control. J. Biomech. 49(16), 3901–3907 (2016)

    Article  Google Scholar 

  11. Sartori, M., Durandau, G., Dosen, S., Farina, D.: Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling. J. Neural Eng. 15(6), 066,026.1-066,026.15 (2018)

    Google Scholar 

  12. Zhao, Y., Zhang, Z., Li, Z., Yang, Z., Xie, S.: An EMG-driven musculoskeletal model for estimating continuous wrist motion. IEEE Trans. Neural Syst. Rehabil. Eng. 28(12), 3113–3120 (2020)

    Article  Google Scholar 

  13. Zhao, J., Yu, Y., Wang, X., Ma, S., Sheng, X., Zhu, X.: A musculoskeletal model driven by muscle synergy-derived excitations for hand and wrist movements. J. Neural Eng. 19(1), 016027 (2022)

    Article  Google Scholar 

  14. Winters, J.M., Woo, S.LY.: Multiple Muscle Systems, pp. 69–93. Springer, New York (1990)

    Google Scholar 

  15. Crouch, D.L., Huang, H.: Musculoskeletal model-based control interface mimics physiologic hand dynamics during path tracing task. J. Neural Eng. 14(3), 036008 (2017)

    Article  Google Scholar 

  16. Jayaneththi, V.R., Viloria, J., Wiedemann, L.G., Jarrett, C., Mcdaid, A.J.: Robotic assessment of neuromuscular characteristics using musculoskeletal models: A pilot study. Comput. Biol. Med. 86, 82–89 (2017)

    Article  Google Scholar 

  17. Neptune, R.R., Clark, D.J., Kautz, S.A.: Modular control of human walking: a simulation study. J. Biomech. 42(9), 1282–1287 (2009)

    Article  Google Scholar 

  18. Sartori, M., Gizzi, L., Lloyd, D.G., Farina, D.: A musculoskeletal model of human locomotion driven by a low dimensional set of impulsive excitation primitives. Front. Comput. Neurosci. 7, 79 (2013)

    Article  Google Scholar 

  19. Pale, U., Atzori, M., Müller, H., Scano, A.: Variability of muscle synergies in hand grasps: Analysis of intra- and inter-session data. Sensors 20(15), 4297 (2020)

    Article  Google Scholar 

  20. Kristiansen, M., Samani, A., Madeleine, P., Hansen, E.A.: Muscle synergies during bench press are reliable across days. J. Electromyogr. Kinesiol. 30, 81–88 (2016)

    Article  Google Scholar 

  21. Lee, D.D., Seung, H.H.: Learning parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  22. Gizzi, L., Nielsen, J.F., Felici, F., Ivanenko, Y.P., Farina, D.: Impulses of activation but not motor modules are preserved in the locomotion of subacute stroke patients. J. Neurophysiol. 106(1), 202–210 (2011)

    Article  Google Scholar 

  23. Wang, D., Liu, J.X., Gao, Y.L., Yu, J., Zheng, C.H., Xu, Y.: An NMF-L2,1-norm constraint method for characteristic gene selection. PLoS ONE 11(7), e0158494 (2016)

    Article  Google Scholar 

  24. Cichocki, A., Zdunek, R., Amari, S.: New algorithms for non-negative matrix factorization in applications to blind source separation. In: IEEE International Conference on Acoustics Speech and Signal Processing Proceedings (2006)

    Google Scholar 

  25. Cichocki, A., Amari, Si., Zdunek, R., Kompass, R., Hori, G., He, Z.: Extended SMART algorithms for non-negative matrix factorization. In: International Conference on Artificial Intelligence and Soft Computing (ICAISC), pp. 548–562 (2006)

    Google Scholar 

  26. Scano, A., Dardari, L., Molteni, F., Giberti, H., Tosatti, L.M., d’Avella, A.: A comprehensive spatial mapping of muscle synergies in highly variable upper-Limb movements of healthy subjects. Front. Physiol. 10, 1231 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the participants in the experiments. This work was supported by the National Natural Science Foundation of China under Grant 91948302 and Grant 51905339.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjun Sheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, J., Yu, Y., Sheng, X., Zhu, X. (2022). Extracting Stable Control Information from EMG Signals to Drive a Musculoskeletal Model - A Preliminary Study. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13456. Springer, Cham. https://doi.org/10.1007/978-3-031-13822-5_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13822-5_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13821-8

  • Online ISBN: 978-3-031-13822-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics