Skip to main content

Polycarbonate Plastics and Neurological Disorders: From Exposure to Preventive Interventions

  • Chapter
  • First Online:
Environmental Contaminants and Neurological Disorders

Abstract

Plastics are widely used substances that hold a crucial place in today’s economy around the world. Despite their low cost and innumerable applications, they are a serious threat to biological systems and the environment. Therefore, industries are forced to look forward to alternatives that are safe for biological systems and environment friendly. Bisphenol A (BPA) is used to create clear and hard polycarbonate plastic (PCP) containers and bottles. It is also used to make epoxy resins, which are the protective lining inside the metal-based food and beverage cans. BPA can leach out from PCP, epoxy resins and other products that are in contact with foods and drinks, leading to various tissue and organ disorders, especially neurological illnesses. Hence, PCPs can pose greater health hazards when containers having food, water and so on are additionally contaminated by mycotoxins (MTs). Human protection from PCPs is essential, for which environmental and biological monitoring can be helpful. MTs are the secondary metabolites of fungi, which may enter into the food chain in the field, during storage, or at later stages. They are the most substantial and chronic dietary risk elements, which can induce acute to severe disease conditions in human and animals. These toxins are more hazardous than pesticide residues or food additives. Various interventional and preventive measures have to be taken to decrease PCP exposure in human beings. Governments and policymakers should set standards for moderate use of PCPs, and funding for pertinent research is also required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng Y, Yanful EK, Bassi AS. A review of plastic waste biodegradation. Crit Rev Biotechnol. 2005;25(4):243–50.

    Article  CAS  Google Scholar 

  2. Scott G. Photo-biodegradable plastics: their role in the protection of the environment. Polym Degrad Stab. 1990;29(1):135–54.

    Article  CAS  Google Scholar 

  3. Seymour RB. Polymer science before and after 1899: notable developments during the lifetime of Maurits Dekker. J Macromol Sci Chem. 1989;26(8):1023–32.

    Article  Google Scholar 

  4. Filachione E, Fisher C. Lactic acid condensation polymers. Ind Eng Chem. 1944;36(3):223–8.

    Article  CAS  Google Scholar 

  5. Villalobos M, Awojulu A, Greeley T, Turco G, Deeter G. Oligomeric chain extenders for economic reprocessing and recycling of condensation plastics. Energy. 2006;31(15):3227–34.

    Article  CAS  Google Scholar 

  6. Matyjaszewski K. Cationic polymerizations: mechanisms, synthesis & applications. Boca Raton: CRC Press; 1996.

    Book  Google Scholar 

  7. Kaewtatip K, Tanrattanakul V. Preparation of cassava starch grafted with polystyrene by suspension polymerization. Carbohydr Polym. 2008;73(4):647–55.

    Article  CAS  Google Scholar 

  8. Oishi Y, Ishida M, Kakimoto MA, Imai Y, Kurosaki T. Preparation and properties of novel soluble aromatic polyimides from 4,4′-diaminotriphenylamine and aromatic tetracarboxylic dianhydrides. J Polym Sci A Polym Chem. 1992;30(6):1027–35.

    Article  CAS  Google Scholar 

  9. van den Berg O, Dispinar T, Hommez B, Du Prez FE. Renewable sulfur-containing thermoplastics via AB-type thiol-ene polyaddition. Eur Polym J. 2013;49(4):804–12.

    Article  CAS  Google Scholar 

  10. Chen J, Maekawa Y, Asano M, Yoshida M. Double crosslinked polyetheretherketone-based polymer electrolyte membranes prepared by radiation and thermal crosslinking techniques. Polymer. 2007;48(20):6002–9.

    Article  CAS  Google Scholar 

  11. Tian M, Hu Q, Wu H, Zhang L, Fong H, Zhang L. Formation and morphological stability of polybutadiene rubber fibers prepared through combination of electrospinning and in-situ photo-crosslinking. Mater Lett. 2011;65(19–20):3076–9.

    Article  CAS  Google Scholar 

  12. Rosato DV. Plastics processing data handbook. Berlin: Springer Science & Business Media; 2012.

    Google Scholar 

  13. Erhard G. Designing with plastics. Munich: Carl Hanser Verlag GmbH Co KG; 2013.

    Google Scholar 

  14. Christopher W, Fox D. Polycarbonates, vol. 38. New York: Reinhold; 1962.

    Google Scholar 

  15. Schnell H. Chemistry and physics of polycarbonates. New York: Interscience; 1964.

    Google Scholar 

  16. Bostick E. Introduction and historical background. Handbook of polycarbonate science and technology. Boca Raton: CRC Press; 1999. p. 17–22.

    Google Scholar 

  17. Schnell H. Linear aromatic polyesters of carbonic acid. Ind Eng Chem. 1959;51(2):157–60.

    Article  CAS  Google Scholar 

  18. Morgan P. Linear condensation polymers from phenolphthalein and related compounds. J Polym Sci Part A Gen Pap. 1964;2(1):437–59.

    Article  CAS  Google Scholar 

  19. Losev I, Smirnova O, Smurova YV. Kinetics of polycarbonate synthesis by transesterification between 2,2-(4-hydroxyphenyl) propane and diphenyl carbonate. Polym Sci USSR. 1963;4(4):662–70.

    Article  Google Scholar 

  20. Hersh S, Choi K. Melt transesterification of diphenyl carbonate with bisphenol A in a batch reactor. J Appl Polym Sci. 1990;41(5–6):1033–46.

    Article  CAS  Google Scholar 

  21. Kim Y, Choi KY, Chamberlin TA. Kinetics of melt transesterification of diphenyl carbonate and bisphenol A to polycarbonate with lithium hydroxide monohydrate catalyst. Ind Eng Chem Res. 1992;31(9):2118–27.

    Article  CAS  Google Scholar 

  22. Kim Y, Choi KY. Multistage melt polymerization of bisphenol-A and diphenyl carbonate to polycarbonate. J Appl Polym Sci. 1993;49(5):747–64.

    Article  CAS  Google Scholar 

  23. Suriano F, Coulembier O, Hedrick JL, Dubois P. Functionalized cyclic carbonates: from synthesis and metal-free catalyzed ring-opening polymerization to applications. Polym Chem. 2011;2(3):528–33.

    Article  CAS  Google Scholar 

  24. Sun W, Xu F, Cheng W, Sun J, Ning G, Zhang S. Synthesis of isosorbide-based polycarbonates via melt polycondensation catalyzed by quaternary ammonium ionic liquids. Chin J Catal. 2017;38(5):908–17.

    Article  CAS  Google Scholar 

  25. Bair H, Johnson G, Merriweather R. Water sorption of polycarbonate and its effect on the polymer’s dielectric behavior. J Appl Phys. 1978;49(10):4976–84.

    Article  CAS  Google Scholar 

  26. Geens T, Aerts D, Berthot C, Bourguignon J-P, Goeyens L, Lecomte P, et al. A review of dietary and non-dietary exposure to bisphenol-A. Food Chem Toxicol. 2012;50(10):3725–40.

    Article  CAS  Google Scholar 

  27. RAR E. European union risk assessment report. 4,4′-Isopropylidenediphenol (bisphenol-A). Environment and quality of life series. 2003;37.

    Google Scholar 

  28. Michałowicz J. Bisphenol A—sources, toxicity and biotransformation. Environ Toxicol Pharmacol. 2014;37(2):738–58.

    Article  CAS  Google Scholar 

  29. Corrales J, Kristofco LA, Steele WB, Yates BS, Breed CS, Williams ES, et al. Global assessment of bisphenol A in the environment: review and analysis of its occurrence and bioaccumulation. Dose Response. 2015;13(3):1559325815598308.

    Article  CAS  Google Scholar 

  30. Groshart C, Okkeman P, Pijnenburg A. Chemical study on bisphenol A. Rapportnr: 2001027; 2001.

    Google Scholar 

  31. Almeida S, Raposo A, Almeida-González M, Carrascosa C. Bisphenol A: food exposure and impact on human health. Compr Rev Food Sci Food Saf. 2018;17(6):1503–17.

    Article  Google Scholar 

  32. Arnich N, Canivenc-Lavier M-C, Kolf-Clauw M, Coffigny H, Cravedi J-P, Grob K, et al. Conclusions of the French Food Safety Agency on the toxicity of bisphenol A. Int J Hyg Environ Health. 2011;214(3):271–5.

    Article  CAS  Google Scholar 

  33. Flint S, Markle T, Thompson S, Wallace E. Bisphenol A exposure, effects, and policy: a wildlife perspective. J Environ Manage. 2012;104:19–34.

    Article  CAS  Google Scholar 

  34. Kang J-H, Kito K, Kondo F. Factors influencing the migration of bisphenol A from cans. J Food Prot. 2003;66(8):1444–7.

    Article  CAS  Google Scholar 

  35. Kang J-H, Katayama Y, Kondo F. Biodegradation or metabolism of bisphenol A: from microorganisms to mammals. Toxicology. 2006;217(2–3):81–90.

    Article  CAS  Google Scholar 

  36. Kang J-H, Kondo F, Katayama Y. Human exposure to bisphenol A. Toxicology. 2006;226(2–3):79–89.

    Article  CAS  Google Scholar 

  37. Hoekstra EJ, Simoneau C. Release of bisphenol A from polycarbonate—a review. Crit Rev Food Sci Nutr. 2013;53(4):386–402.

    Article  CAS  Google Scholar 

  38. Wilson NK, Chuang JC, Morgan MK, Lordo RA, Sheldon LS. An observational study of the potential exposures of preschool children to pentachlorophenol, bisphenol-A, and nonylphenol at home and daycare. Environ Res. 2007;103(1):9–20.

    Article  CAS  Google Scholar 

  39. Cao X-L, Perez-Locas C, Dufresne G, Clement G, Popovic S, Beraldin F, et al. Concentrations of bisphenol A in the composite food samples from the 2008 Canadian total diet study in Quebec City and dietary intake estimates. Food Addit Contam. 2011;28(6):791–8.

    Article  CAS  Google Scholar 

  40. Noonan GO, Ackerman LK, Begley TH. Concentration of bisphenol A in highly consumed canned foods on the US market. J Agric Food Chem. 2011;59(13):7178–85.

    Article  CAS  Google Scholar 

  41. Irshad K, Rehman K, Sharif H, Tariq M, Murtaza G, Ibrahim M, et al. Bisphenol A as an EDC in metabolic disorders. Endocrine disrupting chemicals-induced metabolic disorders and treatment strategies. Berlin: Springer; 2021. p. 251–63.

    Google Scholar 

  42. Akash MSH, Sabir S, Rehman K. Bisphenol A-induced metabolic disorders: from exposure to mechanism of action. Environ Toxicol Pharmacol. 2020;77:103373.

    Article  CAS  Google Scholar 

  43. Szymanska K, Makowska K, Gonkowski S. The influence of high and low doses of bisphenol A (BPA) on the enteric nervous system of the porcine ileum. Int J Mol Sci. 2018;19(3):917.

    Article  CAS  Google Scholar 

  44. Wang H, Zhao P, Huang Q, Chi Y, Dong S, Fan J. Bisphenol-A induces neurodegeneration through disturbance of intracellular calcium homeostasis in human embryonic stem cells-derived cortical neurons. Chemosphere. 2019;229:618–30.

    Article  CAS  Google Scholar 

  45. Xue J, Zhang L, Xie X, Gao Y, Jiang L, Wang J, et al. Prenatal bisphenol A exposure contributes to Tau pathology: potential roles of CDK5/GSK3β/PP2A axis in BPA-induced neurotoxicity. Toxicology. 2020;438:152442.

    Article  CAS  Google Scholar 

  46. Jones BA, Watson NV. Perinatal BPA exposure demasculinizes males in measures of affect but has no effect on water maze learning in adulthood. Horm Behav. 2012;61(4):605–10.

    Article  CAS  Google Scholar 

  47. Palanza P, Gioiosa L, vom Saal FS, Parmigiani S. Effects of developmental exposure to bisphenol A on brain and behavior in mice. Environ Res. 2008;108(2):150–7.

    Article  CAS  Google Scholar 

  48. Perera F, Vishnevetsky J, Herbstman JB, Calafat AM, Xiong W, Rauh V, et al. Prenatal bisphenol A exposure and child behavior in an inner-city cohort. Environ Health Perspect. 2012;120(8):1190–4.

    Article  CAS  Google Scholar 

  49. EFSA Panel on Food Contact Materials E, Flavourings and Processing Aids. Scientific opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J. 2015;13(1):3978.

    Article  CAS  Google Scholar 

  50. Völkel W, Colnot T, Csanády GA, Filser JG, Dekant W. Metabolism and kinetics of bisphenol A in humans at low doses following oral administration. Chem Res Toxicol. 2002;15(10):1281–7.

    Article  CAS  Google Scholar 

  51. Tominaga T, Negishi T, Hirooka H, Miyachi A, Inoue A, Hayasaka I, et al. Toxicokinetics of bisphenol A in rats, monkeys and chimpanzees by the LC–MS/MS method. Toxicology. 2006;226(2-3):208–17.

    Article  CAS  Google Scholar 

  52. Pottenger LH, Domoradzki JY, Markham DA, Hansen SC, Cagen SZ, Waechter JM Jr. The relative bioavailability and metabolism of bisphenol A in rats is dependent upon the route of administration. Toxicol Sci. 2000;54(1):3–18.

    Article  CAS  Google Scholar 

  53. Soriano S, Ripoll C, Alonso-Magdalena P, Fuentes E, Quesada I, Nadal A, et al. Effects of bisphenol A on ion channels: experimental evidence and molecular mechanisms. Steroids. 2016;111:12–20.

    Article  CAS  Google Scholar 

  54. Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. Human exposure to bisphenol A (BPA). Reprod Toxicol. 2007;24(2):139–77.

    Article  CAS  Google Scholar 

  55. Inoue H, Yokota H, Makino T, Yuasa A, Kato S. Bisphenol A glucuronide, a major metabolite in rat bile after liver perfusion. Drug Metab Dispos. 2001;29(8):1084–7.

    CAS  Google Scholar 

  56. Mazur CS, Kenneke JF, Hess-Wilson JK, Lipscomb JC. Differences between human and rat intestinal and hepatic bisphenol A glucuronidation and the influence of alamethicin on in vitro kinetic measurements. Drug Metab Dispos. 2010;38(12):2232–8.

    Article  CAS  Google Scholar 

  57. Ginsberg G, Rice DC. Does rapid metabolism ensure negligible risk from bisphenol A? Environ Health Perspect. 2009;117(11):1639–43.

    Article  CAS  Google Scholar 

  58. Doerge DR, Twaddle NC, Vanlandingham M, Brown RP, Fisher JW. Distribution of bisphenol A into tissues of adult, neonatal, and fetal Sprague–Dawley rats. Toxicol Appl Pharmacol. 2011;255(3):261–70.

    Article  CAS  Google Scholar 

  59. Fernandez M, Arrebola J, Taoufiki J, Navalón A, Ballesteros O, Pulgar R, et al. Bisphenol-A and chlorinated derivatives in adipose tissue of women. Reprod Toxicol. 2007;24(2):259–64.

    Article  CAS  Google Scholar 

  60. Schwartz JB. The influence of sex on pharmacokinetics. Clin Pharmacokinet. 2003;42(2):107–21.

    Article  CAS  Google Scholar 

  61. Kadiri S, Ajayi S. Variability in the relationship between serum creatinine and creatinine clearance in hypertensives and normotensives with normal renal function. Afr J Med Med Sci. 2000;29(2):93–6.

    CAS  Google Scholar 

  62. Kim Y-H, Kim C-S, Park S, Han SY, Pyo M-Y, Yang M. Gender differences in the levels of bisphenol A metabolites in urine. Biochem Biophys Res Commun. 2003;312(2):441–8.

    Article  CAS  Google Scholar 

  63. Wang Z, Liu H, Liu S. Low-dose bisphenol A exposure: a seemingly instigating carcinogenic effect on breast cancer. Adv Sci. 2017;4(2):1600248.

    Article  CAS  Google Scholar 

  64. Aris A. Estimation of bisphenol A (BPA) concentrations in pregnant women, fetuses and nonpregnant women in Eastern Townships of Canada. Reprod Toxicol. 2014;45:8–13.

    Article  CAS  Google Scholar 

  65. Nahar MS, Liao C, Kannan K, Dolinoy DC. Fetal liver bisphenol A concentrations and biotransformation gene expression reveal variable exposure and altered capacity for metabolism in humans. J Biochem Mol Toxicol. 2013;27(2):116–23.

    Article  CAS  Google Scholar 

  66. Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ, Schoenfelder G. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ Health Perspect. 2010;118(8):1055–70.

    Article  CAS  Google Scholar 

  67. Schönfelder G, Wittfoht W, Hopp H, Talsness CE, Paul M, Chahoud I. Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environ Health Perspect. 2002;110(11):A703–A7.

    Article  Google Scholar 

  68. Barac A. Mycotoxins and human disease. Clinically relevant mycoses. Berlin: Springer; 2019. p. 213–25.

    Book  Google Scholar 

  69. Bennett J, Klich M. Mycotoxins. Clin Microbiol Rev. 2003;16:497–516.

    Article  CAS  Google Scholar 

  70. Fernández-Blanco C, Elmo L, Waldner T, Ruiz M-J. Cytotoxic effects induced by patulin, deoxynivalenol and toxin T2 individually and in combination in hepatic cells (HepG2). Food Chem Toxicol. 2018;120:12–23.

    Article  CAS  Google Scholar 

  71. Kong D, Liu L, Song S, Suryoprabowo S, Li A, Kuang H, et al. A gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins. Nanoscale. 2016;8(9):5245–53.

    Article  CAS  Google Scholar 

  72. Ratnaseelan AM, Tsilioni I, Theoharides TC. Effects of mycotoxins on neuropsychiatric symptoms and immune processes. Clin Ther. 2018;40(6):903–17.

    Article  CAS  Google Scholar 

  73. Man Y, Liang G, Li A, Pan L. Recent advances in mycotoxin determination for food monitoring via microchip. Toxins. 2017;9(10):324.

    Article  CAS  Google Scholar 

  74. Kuiper-Goodman T. Food safety: mycotoxins and phycotoxins in perspective. Mycotoxins and phycotoxins—developments in chemistry, toxicology and food safety. Fort Collins: Alaken; 1998. p. 25–48.

    Google Scholar 

  75. Fung F, Clark RF. Health effects of mycotoxins: a toxicological overview. J Toxicol Clin Toxicol. 2004;42(2):217–34.

    Article  CAS  Google Scholar 

  76. Tran VN, Viktorova J, Augustynkova K, Jelenova N, Dobiasova S, Rehorova K, et al. In silico and in vitro studies of mycotoxins and their cocktails; their toxicity and its mitigation by silibinin pre-treatment. Toxins. 2020;12(3):148.

    Article  CAS  Google Scholar 

  77. Friis RH. The Praeger handbook of environmental health. Santa Barbara: ABC-CLIO; 2012.

    Google Scholar 

  78. Von Goetz N, Wormuth M, Scheringer M, Hungerbühler K. Bisphenol A: how the most relevant exposure sources contribute to total consumer exposure. Risk Anal. 2010;30(3):473–87.

    Article  Google Scholar 

  79. Inadera H. Neurological effects of bisphenol A and its analogues. Int J Med Sci. 2015;12(12):926.

    Article  CAS  Google Scholar 

  80. https://www.sciencemag.org/news/2017/02/bpa-safety-war-battle-over-evidence.

  81. Cirillo T, Esposito F, Barbieri G. Study on exposure to endocrine disruptors and mycotoxins in susceptible population, through different compound-specific clean-up methods and application of gas and liquid chromatography coupled with fluorescence and mass spectrometry detection; 2016.

    Google Scholar 

  82. Campagnollo FB, Ganev KC, Khaneghah AM, Portela JB, Cruz AG, Granato D, et al. The occurrence and effect of unit operations for dairy products processing on the fate of aflatoxin M1: a review. Food Control. 2016;68:310–29.

    Article  CAS  Google Scholar 

  83. Anfossi L, Giovannoli C, Baggiani C. Mycotoxin detection. Curr Opin Biotechnol. 2016;37:120–6.

    Article  CAS  Google Scholar 

  84. Fromme H, Gareis M, Völkel W, Gottschalk C. Overall internal exposure to mycotoxins and their occurrence in occupational and residential settings—an overview. Int J Hyg Environ Health. 2016;219(2):143–65.

    Article  CAS  Google Scholar 

  85. Campbell AW, Thrasher JD, Gray MR, Vojdani A. Mold and mycotoxins: effects on the neurological and immune systems in humans. Adv Appl Microbiol. 2004;55:375–408.

    Article  CAS  Google Scholar 

  86. Crago BR, Gray MR, Nelson LA, Davis M, Arnold L, Thrasher JD. Psychological, neuropsychological, and electrocortical effects of mixed mold exposure. Arch Environ Health. 2003;58(8):452–63.

    Article  Google Scholar 

  87. Baldo JV, Ahmad L, Ruff R. Neuropsychological performance of patients following mold exposure. Appl Neuropsychol. 2002;9(4):193–202.

    Article  Google Scholar 

  88. Brown RC, Lockwood AH, Sonawane BR. Neurodegenerative diseases: an overview of environmental risk factors. Environ Health Perspect. 2005;113(9):1250–6.

    Article  CAS  Google Scholar 

  89. Shenassa ED, Daskalakis C, Liebhaber A, Braubach M, Brown M. Dampness and mold in the home and depression: an examination of mold-related illness and perceived control of one’s home as possible depression pathways. Am J Public Health. 2007;97(10):1893–9.

    Article  Google Scholar 

  90. Fraga-Silva TFC, Mimura LAN, Leite LCT, Borim PA, Ishikawa LLW, Venturini J, et al. Gliotoxin aggravates experimental autoimmune encephalomyelitis by triggering neuroinflammation. Toxins. 2019;11(8):443.

    Article  CAS  Google Scholar 

  91. Pleadin J, Frece J, Markov K. Mycotoxins in food and feed. Advances in food and nutrition research, vol. 89. Amsterdam: Elsevier; 2019. p. 297–345.

    Google Scholar 

  92. Gajęcka M, Zielonka Ł, Gajęcki M. Activity of zearalenone in the porcine intestinal tract. Molecules. 2017;22(1):18.

    Article  CAS  Google Scholar 

  93. Khoshal AK, Novak B, Martin PG, Jenkins T, Neves M, Schatzmayr G, et al. Co-occurrence of DON and emerging mycotoxins in worldwide finished pig feed and their combined toxicity in intestinal cells. Toxins. 2019;11(12):727.

    Article  CAS  Google Scholar 

  94. Rissato DF, de Santi Rampazzo AP, Borges SC, Sousa FC, Busso C, Buttow NC, et al. Chronic ingestion of deoxynivalenol-contaminated diet dose-dependently decreases the area of myenteric neurons and gliocytes of rats. Neurogastroenterol Motil. 2020;32(4):e13770.

    Article  Google Scholar 

  95. Gonkowski S, Gajęcka M, Makowska K. Mycotoxins and the enteric nervous system. Toxins. 2020;12(7):461.

    Article  CAS  Google Scholar 

  96. Hussein HS, Brasel JM. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology. 2001;167(2):101–34.

    Article  CAS  Google Scholar 

  97. Obremski K, Zielonka MG, Jakimiuk E, Bakuła T, Baranowski M, Gajęcki M. In the pig. Polish J leterinary Sci lol. 2008;11(4):339–45.

    CAS  Google Scholar 

  98. Goossens J, Pasmans F, Verbrugghe E, Vandenbroucke V, De Baere S, Meyer E, et al. Porcine intestinal epithelial barrier disruption by the Fusarium mycotoxins deoxynivalenol and T-2 toxin promotes transepithelial passage of doxycycline and paromomycin. BMC Vet Res. 2012;8(1):245.

    Article  Google Scholar 

  99. Osselaere A, Li S, De Bock L, Devreese M, Goossens J, Vandenbroucke V, et al. Toxic effects of dietary exposure to T-2 toxin on intestinal and hepatic biotransformation enzymes and drug transporter systems in broiler chickens. Food Chem Toxicol. 2013;55:150–5.

    Article  CAS  Google Scholar 

  100. Lin R, Sun Y, Ye W, Zheng T, Wen J, Deng Y. T-2 toxin inhibits the production of mucin via activating the IRE1/XBP1 pathway. Toxicology. 2019;424:152230.

    Article  CAS  Google Scholar 

  101. Sheng K, Lu X, Yue J, Gu W, Gu C, Zhang H, et al. Role of neurotransmitters 5-hydroxytryptamine and substance P in anorexia induction following oral exposure to the trichothecene T-2 toxin. Food Chem Toxicol. 2019;123:1–8.

    Article  CAS  Google Scholar 

  102. Guo P, Liu A, Huang D, Wu Q, Fatima Z, Tao Y, et al. Brain damage and neurological symptoms induced by T-2 toxin in rat brain. Toxicol Lett. 2018;286:96–107.

    Article  CAS  Google Scholar 

  103. Chaudhary M, Rao PL. Brain oxidative stress after dermal and subcutaneous exposure of T-2 toxin in mice. Food Chem Toxicol. 2010;48(12):3436–42.

    Article  CAS  Google Scholar 

  104. Dai C, Xiao X, Sun F, Zhang Y, Hoyer D, Shen J, et al. T-2 toxin neurotoxicity: role of oxidative stress and mitochondrial dysfunction. Arch Toxicol. 2019;93(11):3041–56.

    Article  CAS  Google Scholar 

  105. Authority EFS, Arcella D, Gergelova P, Innocenti ML, Steinkellner H. Human and animal dietary exposure to T-2 and HT-2 toxin. EFSA J. 2017;15(8):e04972.

    Google Scholar 

  106. Fairhurst S, Marrs T, Parker H, Scawin J, Swanston D. Acute toxicity of T2 toxin in rats, mice, guinea pigs, and pigeons. Toxicology. 1987;43(1):31–49.

    Article  CAS  Google Scholar 

  107. Ravindran J, Agrawal M, Gupta N, Rao PL. Alteration of blood brain barrier permeability by T-2 toxin: role of MMP-9 and inflammatory cytokines. Toxicology. 2011;280(1–2):44–52.

    Article  CAS  Google Scholar 

  108. Weidner M, Lenczyk M, Schwerdt G, Gekle M, Humpf H-U. Neurotoxic potential and cellular uptake of T-2 toxin in human astrocytes in primary culture. Chem Res Toxicol. 2013;26(3):347–55.

    Article  CAS  Google Scholar 

  109. Nakajima K, Masubuchi Y, Ito Y, Inohana M, Takino M, Saegusa Y, et al. Developmental exposure of citreoviridin transiently affects hippocampal neurogenesis targeting multiple regulatory functions in mice. Food Chem Toxicol. 2018;120:590–602.

    Article  CAS  Google Scholar 

  110. Cid-Castro C, Hernandez-Espinosa DR, Morán J. ROS as regulators of mitochondrial dynamics in neurons. Cell Mol Neurobiol. 2018;38(5):995–1007.

    Article  CAS  Google Scholar 

  111. Pearson JN, Patel M. The role of oxidative stress in organophosphate and nerve agent toxicity. Ann N Y Acad Sci. 2016;1378(1):17.

    Article  CAS  Google Scholar 

  112. Poersch AB, Trombetta F, Souto NS, de Oliveira LC, Braga ACM, Dobrachinski F, et al. Fumonisin B1 facilitates seizures induced by pentylenetetrazol in mice. Neurotoxicol Teratol. 2015;51:61–7.

    Article  CAS  Google Scholar 

  113. Wang X, Fan M, Chu X, Zhang Y, Rahman SU, Jiang Y, et al. Deoxynivalenol induces toxicity and apoptosis in piglet hippocampal nerve cells via the MAPK signaling pathway. Toxicon. 2018;155:1–8.

    Article  CAS  Google Scholar 

  114. Wang X, Xu W, Fan M, Meng T, Chen X, Jiang Y, et al. Deoxynivalenol induces apoptosis in PC12 cells via the mitochondrial pathway. Environ Toxicol Pharmacol. 2016;43:193–202.

    Article  CAS  Google Scholar 

  115. Liu X, Huang D, Guo P, Wu Q, Dai M, Cheng G, et al. PKA/CREB and NF-κB pathway regulates AKNA transcription: a novel insight into T-2 toxin-induced inflammation and GH deficiency in GH3 cells. Toxicology. 2017;392:81–95.

    Article  CAS  Google Scholar 

  116. Zhang X, Wang Y, Velkov T, Tang S, Dai C. T-2 toxin-induced toxicity in neuroblastoma-2a cells involves the generation of reactive oxygen, mitochondrial dysfunction and inhibition of Nrf2/HO-1 pathway. Food Chem Toxicol. 2018;114:88–97.

    Article  CAS  Google Scholar 

  117. Gaigé S, Djelloul M, Tardivel C, Airault C, Félix B, Jean A, et al. Modification of energy balance induced by the food contaminant T-2 toxin: a multimodal gut-to-brain connection. Brain Behav Immun. 2014;37:54–72.

    Article  CAS  Google Scholar 

  118. Agrawal M, Bhaskar A, Rao PL. Involvement of mitogen-activated protein kinase pathway in T-2 toxin-induced cell cycle alteration and apoptosis in human neuroblastoma cells. Mol Neurobiol. 2015;51(3):1379–94.

    Article  CAS  Google Scholar 

  119. Przybylska-Gornowicz B, Lewczuk B, Prusik M, Hanuszewska M, Petrusewicz-Kosińska M, Gajęcka M, et al. The effects of deoxynivalenol and zearalenone on the pig large intestine. A light and electron microscopy study. Toxins. 2018;10(4):148.

    Article  CAS  Google Scholar 

  120. Chain EPoCitF, Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, et al. Risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA J. 2017;15(7):e04851.

    Google Scholar 

  121. Lephart ED, Thompson JM, Setchell KD, Adlercreutz H, Weber KS. Phytoestrogens decrease brain calcium-binding proteins but do not alter hypothalamic androgen metabolizing enzymes in adult male rats. Brain Res. 2000;859(1):123–31.

    Article  CAS  Google Scholar 

  122. Venkataramana M, Nayaka SC, Anand T, Rajesh R, Aiyaz M, Divakara S, et al. Zearalenone induced toxicity in SHSY-5Y cells: the role of oxidative stress evidenced by N-acetyl cysteine. Food Chem Toxicol. 2014;65:335–42.

    Article  CAS  Google Scholar 

  123. Ren Z, Deng H, Deng Y, Deng J, Zuo Z, Yu S, et al. Effect of the Fusarium toxins, zearalenone and deoxynivalenol, on the mouse brain. Environ Toxicol Pharmacol. 2016;46:62–70.

    Article  CAS  Google Scholar 

  124. Kiss DS, Ioja E, Toth I, Barany Z, Jocsak G, Bartha T, et al. Comparative analysis of zearalenone effects on thyroid receptor alpha (TRα) and Beta (TRβ) expression in rat primary cerebellar cell cultures. Int J Mol Sci. 2018;19(5):1440.

    Article  CAS  Google Scholar 

  125. Khezri A, Herranz-Jusdado JG, Ropstad E, Fraser TW. Mycotoxins induce developmental toxicity and behavioural aberrations in zebrafish larvae. Environ Pollut. 2018;242:500–6.

    Article  CAS  Google Scholar 

  126. Gonkowski S, Obremski K, Calka J. The influence of low doses of zearalenone on distribution of selected active substances in nerve fibers within the circular muscle layer of porcine ileum. J Mol Neurosci. 2015;56(4):878–86.

    Article  CAS  Google Scholar 

  127. Obremski K, Gonkowski S, Wojtacha P. Zearalenone-induced changes in the lymphoid tissue and mucosal nerve fibers in the porcine ileum. Pol J Vet Sci. 2015;18:357–65.

    Article  CAS  Google Scholar 

  128. Artigot MP, Loiseau N, Laffitte J, Mas-Reguieg L, Tadrist S, Oswald IP, et al. Molecular cloning and functional characterization of two CYP619 cytochrome P450s involved in biosynthesis of patulin in Aspergillus clavatus. Microbiology. 2009;155(Pt 5):1738.

    Article  CAS  Google Scholar 

  129. Biango-Daniels MN, Hodge KT. Paecilomyces rot: a new apple disease. Plant Dis. 2018;102(8):1581–7.

    Article  CAS  Google Scholar 

  130. Assunção R, Pinhão M, Loureiro S, Alvito P, Silva MJ. A multi-endpoint approach to the combined toxic effects of patulin and ochratoxin a in human intestinal cells. Toxicol Lett. 2019;313:120–9.

    Article  CAS  Google Scholar 

  131. Mohan H, Collins D, Maher S, Walsh E, Winter D, O’Brien P, et al. The mycotoxin patulin increases colonic epithelial permeability in vitro. Food Chem Toxicol. 2012;50(11):4097–102.

    Article  CAS  Google Scholar 

  132. Malekinejad H, Aghazadeh-Attari J, Rezabakhsh A, Sattari M, Ghasemsoltani-Momtaz B. Neurotoxicity of mycotoxins produced in vitro by Penicillium roqueforti isolated from maize and grass silage. Hum Exp Toxicol. 2015;34(10):997–1005.

    Article  CAS  Google Scholar 

  133. Vidal A, Ouhibi S, Ghali R, Hedhili A, De Saeger S, De Boevre M. The mycotoxin patulin: an updated short review on occurrence, toxicity and analytical challenges. Food Chem Toxicol. 2019;129:249–56.

    Article  CAS  Google Scholar 

  134. Brand B, Stoye NM, Guilherme MDS, Nguyen VTT, Baumgaertner JC, Schüffler A, et al. Identification of patulin from penicillium coprobium as a toxin for enteric neurons. Molecules. 2019;24(15):2776.

    Article  Google Scholar 

  135. Mailafia S, Okoh GR, Olabode HOK, Osanupin R. Isolation and identification of fungi associated with spoilt fruits vended in Gwagwalada market, Abuja, Nigeria. Vet World. 2017;10(4):393.

    Article  CAS  Google Scholar 

  136. Saleh I, Goktepe I. The characteristics, occurrence, and toxicological effects of patulin. Food Chem Toxicol. 2019;129:301–11.

    Article  CAS  Google Scholar 

  137. Peltomaa R, Vaghini S, Patiño B, Benito-Peña E, Moreno-Bondi MC. Species-specific optical genosensors for the detection of mycotoxigenic Fusarium fungi in food samples. Anal Chim Acta. 2016;935:231–8.

    Article  CAS  Google Scholar 

  138. Gelineau-van Waes J, Starr L, Maddox J, Aleman F, Voss KA, Wilberding J, et al. Maternal fumonisin exposure and risk for neural tube defects: mechanisms in an in vivo mouse model. Birth Defects Res A Clin Mol Teratol. 2005;73(7):487–97.

    Article  CAS  Google Scholar 

  139. Purzycki CB, Shain DH. Fungal toxins and multiple sclerosis: a compelling connection. Brain Res Bull. 2010;82(1–2):4–6.

    Article  CAS  Google Scholar 

  140. Hope JH, Hope BE. A review of the diagnosis and treatment of ochratoxin A inhalational exposure associated with human illness and kidney disease including focal segmental glomerulosclerosis. J Environ Public Health. 2012;2012:835059.

    Article  CAS  Google Scholar 

  141. Sava V, Reunova O, Velasquez A, Harbison R, Sanchez-Ramos J. Acute neurotoxic effects of the fungal metabolite ochratoxin-A. Neurotoxicology. 2006;27(1):82–92.

    Article  CAS  Google Scholar 

  142. Sava V, Reunova O, Velasquez A, Sanchez-Ramos J. Can low level exposure to ochratoxin-A cause parkinsonism? J Neurol Sci. 2006;249(1):68–75.

    Article  CAS  Google Scholar 

  143. Ramyaa P, Padma VV. Quercetin modulates OTA-induced oxidative stress and redox signalling in HepG2 cells—up regulation of Nrf2 expression and down regulation of NF-κB and COX-2. Biochim Biophys Acta. 2014;1840(1):681–92.

    Article  CAS  Google Scholar 

  144. Ramyaa P, Padma VV. Ochratoxin-induced toxicity, oxidative stress and apoptosis ameliorated by quercetin–modulation by Nrf2. Food Chem Toxicol. 2013;62:205–16.

    Article  CAS  Google Scholar 

  145. Zoghbi HY, Bear MF. Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb Perspect Biol. 2012;4(3):a009886.

    Article  CAS  Google Scholar 

  146. Chen J, Yu S, Fu Y, Li X. Synaptic proteins and receptors defects in autism spectrum disorders. Front Cell Neurosci. 2014;8:276.

    Article  Google Scholar 

  147. De Santis B, Brera C, Mezzelani A, Soricelli S, Ciceri F, Moretti G, et al. Role of mycotoxins in the pathobiology of autism: a first evidence. Nutr Neurosci. 2019;22(2):132–44.

    Article  Google Scholar 

  148. Williams JH, Phillips TD, Jolly PE, Stiles JK, Jolly CM, Aggarwal D. Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am J Clin Nutr. 2004;80(5):1106–22.

    Article  CAS  Google Scholar 

  149. Wild CP, Gong YY. Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis. 2010;31(1):71–82.

    Article  CAS  Google Scholar 

  150. Marin S, Ramos A, Cano-Sancho G, Sanchis V. Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem Toxicol. 2013;60:218–37.

    Article  CAS  Google Scholar 

  151. https://www.niehs.nih.gov/health/topics/agents/sya-bpa/index.cfm.

  152. Ma Y, Liu H, Wu J, Yuan L, Wang Y, Du X, et al. The adverse health effects of bisphenol A and related toxicity mechanisms. Environ Res. 2019;176:108575.

    Article  CAS  Google Scholar 

  153. Talsness CE, Andrade AJ, Kuriyama SN, Taylor JA, Vom Saal FS. Components of plastic: experimental studies in animals and relevance for human health. Philos Trans R Soc B Biol Sci. 2009;364(1526):2079–96.

    Article  CAS  Google Scholar 

  154. EFSA Panel on Food Contact Materials E, Flavourings, Aids P. Scientific opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J. 2015;13(1):3978.

    Google Scholar 

  155. Elsworth JD, Jentsch JD, VandeVoort CA, Roth RH, Redmond DE Jr, Leranth C. Prenatal exposure to bisphenol A impacts midbrain dopamine neurons and hippocampal spine synapses in non-human primates. Neurotoxicology. 2013;35:113–20.

    Article  CAS  Google Scholar 

  156. Eilam-Stock T, Serrano P, Frankfurt M, Luine V. Bisphenol-A impairs memory and reduces dendritic spine density in adult male rats. Behav Neurosci. 2012;126(1):175.

    Article  CAS  Google Scholar 

  157. Kundakovic M, Gudsnuk K, Franks B, Madrid J, Miller RL, Perera FP, et al. Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. Proc Natl Acad Sci. 2013;110(24):9956–61.

    Article  CAS  Google Scholar 

  158. Cox KH, Gatewood JD, Howeth C, Rissman EF. Gestational exposure to bisphenol A and cross-fostering affect behaviors in juvenile mice. Horm Behav. 2010;58(5):754–61.

    Article  CAS  Google Scholar 

  159. Wolstenholme JT, Taylor JA, Shetty SR, Edwards M, Connelly JJ, Rissman EF. Gestational exposure to low dose bisphenol A alters social behavior in juvenile mice. PLoS One. 2011;6(9):e25448.

    Article  CAS  Google Scholar 

  160. Matsuda S, Matsuzawa D, Ishii D, Tomizawa H, Sutoh C, Nakazawa K, et al. Effects of perinatal exposure to low dose of bisphenol A on anxiety like behavior and dopamine metabolites in brain. Prog Neuro Psychopharmacol Biol Psychiatry. 2012;39(2):273–9.

    Article  CAS  Google Scholar 

  161. Churchwell MI, Camacho L, Vanlandingham MM, Twaddle NC, Sepehr E, Delclos KB, et al. Comparison of life-stage-dependent internal dosimetry for bisphenol A, ethinyl estradiol, a reference estrogen, and endogenous estradiol to test an estrogenic mode of action in Sprague Dawley rats. Toxicol Sci. 2014;139(1):4–20.

    Article  CAS  Google Scholar 

  162. Delclos KB, Camacho L, Lewis SM, Vanlandingham MM, Latendresse JR, Olson GR, et al. Toxicity evaluation of bisphenol A administered by gavage to Sprague Dawley rats from gestation day 6 through postnatal day 90. Toxicol Sci. 2014;139(1):174–97.

    Article  CAS  Google Scholar 

  163. Doerge DR, Twaddle NC, Woodling KA, Fisher JW. Pharmacokinetics of bisphenol A in neonatal and adult rhesus monkeys. Toxicol Appl Pharmacol. 2010;248(1):1–11.

    Article  CAS  Google Scholar 

  164. Doerge DR, Twaddle NC, Vanlandingham M, Fisher JW. Pharmacokinetics of bisphenol A in neonatal and adult CD-1 mice: inter-species comparisons with Sprague-Dawley rats and rhesus monkeys. Toxicol Lett. 2011;207(3):298–305.

    Article  CAS  Google Scholar 

  165. Doerge DR, Twaddle NC, Vanlandingham M, Fisher JW. Pharmacokinetics of bisphenol A in serum and adipose tissue following intravenous administration to adult female CD-1 mice. Toxicol Lett. 2012;211(2):114–9.

    Article  CAS  Google Scholar 

  166. Fisher JW, Twaddle NC, Vanlandingham M, Doerge DR. Pharmacokinetic modeling: prediction and evaluation of route dependent dosimetry of bisphenol A in monkeys with extrapolation to humans. Toxicol Appl Pharmacol. 2011;257(1):122–36.

    Article  CAS  Google Scholar 

  167. He Z, Paule MG, Ferguson SA. Low oral doses of bisphenol A increase volume of the sexually dimorphic nucleus of the preoptic area in male, but not female, rats at postnatal day 21. Neurotoxicol Teratol. 2012;34(3):331–7.

    Article  CAS  Google Scholar 

  168. Ferguson SA, Law CD Jr, Abshire JS. Developmental treatment with bisphenol A or ethinyl estradiol causes few alterations on early preweaning measures. Toxicol Sci. 2011;124(1):149–60.

    Article  CAS  Google Scholar 

  169. Patterson TA, Twaddle NC, Roegge CS, Callicott RJ, Fisher JW, Doerge DR. Concurrent determination of bisphenol A pharmacokinetics in maternal and fetal rhesus monkeys. Toxicol Appl Pharmacol. 2013;267(1):41–8.

    Article  CAS  Google Scholar 

  170. Twaddle NC, Churchwell MI, Vanlandingham M, Doerge DR. Quantification of deuterated bisphenol A in serum, tissues, and excreta from adult Sprague-Dawley rats using liquid chromatography with tandem mass spectrometry. Rapid Commun Mass Spectrom. 2010;24(20):3011–20.

    Article  CAS  Google Scholar 

  171. Yang X, Doerge DR, Fisher JW. Prediction and evaluation of route dependent dosimetry of BPA in rats at different life stages using a physiologically based pharmacokinetic model. Toxicol Appl Pharmacol. 2013;270(1):45–59.

    Article  CAS  Google Scholar 

  172. Doerge DR, Twaddle NC, Vanlandingham M, Fisher JW. Pharmacokinetics of bisphenol A in neonatal and adult Sprague-Dawley rats. Toxicol Appl Pharmacol. 2010;247(2):158–65.

    Article  CAS  Google Scholar 

  173. Srivastava R, Godara S. Use of polycarbonate plastic products and human health. Int J Basic Clin Pharmacol. 2017;2(1):12–7.

    Article  Google Scholar 

  174. Braun JM, Kalkbrenner AE, Calafat AM, Yolton K, Ye X, Dietrich KN, et al. Impact of early-life bisphenol A exposure on behavior and executive function in children. Pediatrics. 2011;128(5):873–82.

    Article  Google Scholar 

  175. Yolton K, Xu Y, Strauss D, Altaye M, Calafat AM, Khoury J. Prenatal exposure to bisphenol A and phthalates and infant neurobehavior. Neurotoxicol Teratol. 2011;33(5):558–66.

    Article  CAS  Google Scholar 

  176. Miodovnik A, Engel SM, Zhu C, Ye X, Soorya LV, Silva MJ, et al. Endocrine disruptors and childhood social impairment. Neurotoxicology. 2011;32(2):261–7.

    Article  CAS  Google Scholar 

  177. Barboza LGA, Vethaak AD, Lavorante BR, Lundebye A-K, Guilhermino L. Marine microplastic debris: an emerging issue for food security, food safety and human health. Mar Pollut Bull. 2018;133:336–48.

    Article  CAS  Google Scholar 

  178. UNEP U. Single-use plastics: a roadmap for sustainability. Plásticos De Un Solo Uso: Una hoja de ruta para la sostenibilidad; 2018.

    Google Scholar 

  179. Smith M, Love DC, Rochman CM, Neff RA. Microplastics in seafood and the implications for human health. Curr Environ Health Rep. 2018;5(3):375–86.

    Article  CAS  Google Scholar 

  180. Beltifa A, Feriani A, Machreki M, Ghorbel A, Ghazouani L, Di Bella G, et al. Plasticizers and bisphenol A, in packaged foods sold in the Tunisian markets: study of their acute in vivo toxicity and their environmental fate. Environ Sci Pollut Res. 2017;24(28):22382–92.

    Article  CAS  Google Scholar 

  181. Hopewell J, Dvorak R, Kosior E. Plastics recycling: challenges and opportunities. Philos Trans R Soc B Biol Sci. 2009;364(1526):2115–26.

    Article  CAS  Google Scholar 

  182. Yates J, Deeney M, White H, Joy E, Kalamatianou S, Kadiyala S. PROTOCOL: plastics in the food system: human health, economic and environmental impacts. A scoping review. Campbell Syst Rev. 2019;15(1-2):e1033.

    Google Scholar 

  183. Raloff J. Food for thought: what’s coming out of baby’s bottle. Science News Online. 1999;156:1–4.

    Google Scholar 

  184. Nugroho B, Pramudya Y, Widodo W. The content analysis of bisphenol A (BPA) on water in plastic glass with varying temperatures and contact times using UV-VIS spectrophotometer. Indones Rev Phys. 2019;1(2):27–32.

    Article  Google Scholar 

  185. Proshad R, Kormoker T, Islam MS, Haque MA, Rahman MM, Mithu MMR. Toxic effects of plastic on human health and environment: a consequences of health risk assessment in Bangladesh. Int J Health. 2018;6(1):1–5.

    Article  Google Scholar 

  186. Alabi O, Ologbonjaye K, Awosolu O, Alalade O. Public and environmental health effects of plastic wastes disposal: a review. J Toxicol Risk Assess. 2019;5:21.

    CAS  Google Scholar 

  187. Lim DS, Kwack SJ, Kim K-B, Kim HS, Lee BM. Potential risk of bisphenol A migration from polycarbonate containers after heating, boiling, and microwaving. J Toxicol Environ Health A. 2009;72(21–22):1285–91.

    Article  CAS  Google Scholar 

  188. Ohore OE, Zhang S. Endocrine disrupting effects of bisphenol A exposure and recent advances on its removal by water treatment systems. A review. Sci Afr. 2019;5:e00135.

    Google Scholar 

  189. Abdelzaher W, Ali D, Khalil W. Could licorice prevent bisphenol A-induced biochemical, histopathological and genetic effects in the adult male albino rats? Ain Shams J For Med Clin Toxicol. 2018;30(1):73–87.

    Article  Google Scholar 

  190. Kumar P. Role of plastics on human health. Indian J Pediatr. 2018;85(5):384–9.

    Article  Google Scholar 

  191. Ahbab MA, Barlas N, Karabulut G. The toxicological effects of bisphenol A and octylphenol on the reproductive system of prepubertal male rats. Toxicol Ind Health 2017;33(2):133-46.

    Google Scholar 

  192. Fang C, Ning B, Waqar AB, Niimi M, Li S, Satoh K, et al. Bisphenol A exposure induces metabolic disorders and enhances atherosclerosis in hyperlipidemic rabbits. J Appl Toxicol. 2015;35(9):1058–70.

    Article  CAS  Google Scholar 

  193. Pjanic M. The role of polycarbonate monomer bisphenol-A in insulin resistance. PeerJ. 2017;5:e3809.

    Article  CAS  Google Scholar 

  194. North EJ, Halden RU. Plastics and environmental health: the road ahead. Rev Environ Health. 2013;28(1):1–8.

    Article  CAS  Google Scholar 

  195. Food U, Administration D. Bisphenol A (BPA): use in food contact application. FDA [Internet]; 2014.

    Google Scholar 

  196. https://www.federalregister.gov/articles/2012/07/17/2012-17366/indirect-food-additives-polymers#p.

  197. Narayan R. Biobased and biodegradable polymer materials: rationale, drivers, and technology exemplars. In: American chemical society symposium series: ACS Publications; 2006. p. 939–282.

    Google Scholar 

  198. Thompson RC, Moore CJ, Vom Saal FS, Swan SH. Plastics, the environment and human health: current consensus and future trends. Philos Trans R Soc B Biol Sci. 2009;364(1526):2153–66.

    Article  CAS  Google Scholar 

  199. Huang G, Zhuo A, Wang L, Wang X. Preparation and flammability properties of intumescent flame retardant-functionalized layered double hydroxides/polymethyl methacrylate nanocomposites. Mater Chem Phys. 2011;130(1–2):714–20.

    Article  CAS  Google Scholar 

  200. Markit I. Bisphenol A. Chemical economics handbook. https://www ihsmarkit.com/products/bisphenol-chemical-economics-handbook html; 2016.

    Google Scholar 

  201. Maia J, Cruz JM, Sendón R, Bustos J, Cirugeda ME, Sanchez JJ, et al. Effect of amines in the release of bisphenol A from polycarbonate baby bottles. Food Res Int. 2010;43(5):1283–8.

    Article  CAS  Google Scholar 

  202. Nam S-H, Seo Y-M, Kim M-G. Bisphenol A migration from polycarbonate baby bottle with repeated use. Chemosphere. 2010;79(9):949–52.

    Article  CAS  Google Scholar 

  203. Sun H, Xu L-C, Chen J-F, Song L, Wang X-R. Effect of bisphenol A, tetrachlorobisphenol A and pentachlorophenol on the transcriptional activities of androgen receptor-mediated reporter gene. Food Chem Toxicol. 2006;44(11):1916–21.

    Article  CAS  Google Scholar 

  204. Bertoli S, Leone A, Battezzati A. Human bisphenol A exposure and the “diabesity phenotype”. Dose Response. 2015;13(3):1559325815599173.

    Article  CAS  Google Scholar 

  205. Lorber M, Schecter A, Paepke O, Shropshire W, Christensen K, Birnbaum L. Exposure assessment of adult intake of bisphenol A (BPA) with emphasis on canned food dietary exposures. Environ Int. 2015;77:55–62.

    Article  CAS  Google Scholar 

  206. Fay T, Phillips NA. Safe handling of potent compounds: containment of a hazardous chemical requires the establishment of a protective barrier between the chemical and the employee (feature report). Chem Eng. 2002;109(4):62–9.

    Google Scholar 

  207. Vom Saal FS, Nagel SC, Coe BL, Angle BM, Taylor JA. The estrogenic endocrine disrupting chemical bisphenol A (BPA) and obesity. Molecular and cellular endocrinology. 2012;354(1–2):74–84.

    Google Scholar 

  208. Eng DS, Lee JM, Gebremariam A, Meeker JD, Peterson K, Padmanabhan V. Bisphenol A and chronic disease risk factors in US children. Pediatrics. 2013;132(3):e637–e45.

    Article  Google Scholar 

  209. Durmaz E, Aşçı A, Erkekoğlu P, Akçurin S, Gümüşel BK, Bircan İ. Urinary bisphenol a levels in girls with idiopathic central precocious puberty. J Clin Res Pediatr Endocrinol. 2014;6(1):16.

    Article  Google Scholar 

  210. Bae S, Hong Y-C. Exposure to bisphenol A from drinking canned beverages increases blood pressure: randomized crossover trial. Hypertension. 2015;65(2):313–9.

    Article  CAS  Google Scholar 

  211. Li D, Zhou Z, Qing D, He Y, Wu T, Miao M, et al. Occupational exposure to bisphenol-A (BPA) and the risk of self-reported male sexual dysfunction. Hum Reprod. 2010;25(2):519–27.

    Article  CAS  Google Scholar 

  212. Gao X, Wang H-S. Impact of bisphenol A on the cardiovascular system—epidemiological and experimental evidence and molecular mechanisms. Int J Environ Res Public Health. 2014;11(8):8399–413.

    Article  CAS  Google Scholar 

  213. Harley KG, Gunier RB, Kogut K, Johnson C, Bradman A, Calafat AM, et al. Prenatal and early childhood bisphenol A concentrations and behavior in school-aged children. Environ Res. 2013;126:43–50.

    Article  CAS  Google Scholar 

  214. Derouiche S, Warnier M, Mariot P, Gosset P, Mauroy B, Bonnal J-L, et al. Bisphenol A stimulates human prostate cancer cell migration via remodelling of calcium signalling. Springerplus. 2013;2(1):54.

    Article  CAS  Google Scholar 

  215. Ellahi M, ur Rashid M. The toxic effects BPA on fetuses, infants, and children. In: Erkekoglu P, Kocer-Gumusel B (Eds.), Bisphenol A: exposure and health risks. National and University Library Zagreb, Croatia, 2017:143.

    Google Scholar 

  216. Sangai NP, Verma RJ. Quercetin ameliorates bisphenol A-induced toxicity in mice. Acta Pol Pharm-Drug Res. 2012;69(3):557–63.

    CAS  Google Scholar 

  217. Carnegie Mellon University. Catalysts efficiently and rapidly remove BPA from water. ScienceDaily. ScienceDaily Awscrh.

    Google Scholar 

Download references

Conflict of Interest

Nothing to declare.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anwar, Z., Anjum, F., Ghayas, S. (2021). Polycarbonate Plastics and Neurological Disorders: From Exposure to Preventive Interventions. In: Akash, M.S.H., Rehman, K. (eds) Environmental Contaminants and Neurological Disorders. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-66376-6_8

Download citation

Publish with us

Policies and ethics