Skip to main content

Perfluoroalkyl Chemicals and Neurological Disorders: From Exposure to Preventive Interventions

  • Chapter
  • First Online:
Environmental Contaminants and Neurological Disorders

Abstract

Perfluoroalkyl substances (PFAS) are the member of that class of compounds which includes at least one fluorine atom in their structure, are being used in various industrial and consumer products due to their unique chemical properties. Perfluorooctanoic sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are the most important and well-known components among PFAS. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) exert various kinds of effects on living organisms, but the most serious ones are the metabolic effects. However, PFAS are inert metabolically itself, but they interfere with endogenous metabolic pathways and reactions, and indirectly affect the metabolism of the body. Unluckily, there are many other PFAS to those humans are exposed throughout their life which not only imparts harmful effects on adults but also in whole life. It has been quantified that PFAS are present in amniotic fluid, fetal tissue, breastmilk, lung, heart, umbilical cord, and brain, blood, and placenta which indicates PFAS exposure in infants from the very start of life. PFAS exposure to Nematodes for 72 h shows the evidence of neuropathology during the inspection of GABAergic, dopaminergic, serotoninergic, and cholinergic neuronal morphologies. Ingestion of mycotoxins causes complex problems to human health. Physio-chemical processing aimed to destroy and mineralize contaminants into carbon dioxide and water or less toxic products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Niazi SG, Javed C, Shah A, Ain QU, Tahir IM. Role of perfluoroalkyl substances as EDCs in metabolic disorders. In: Akash MSH, Rehman K, Hashmi MZ, editors. Endocrine disrupting chemicals-induced metabolic disorders and treatment strategies. Berlin: Springer. p. 301–22.

    Google Scholar 

  2. ATSDR T. ATSDR (Agency for Toxic Substances and Disease Registry). Prepared by clement international corp, under contract, vol. 205; 2000. p. 88–0608.

    Google Scholar 

  3. Grandjean P. Delayed discovery, dissemination, and decisions on intervention in environmental health: a case study on immunotoxicity of perfluorinated alkylate substances. BioMed Central; 2018.

    Google Scholar 

  4. Cordner A, Vanessa Y, Schaider LA, Rudel RA, Richter L, Brown P. Correction: guideline levels for PFOA and PFOS in drinking water: the role of scientific uncertainty, risk assessment decisions, and social factors. J Expo Sci Environ Epidemiol. 2019;29(6):861.

    Article  Google Scholar 

  5. Trudel D, Horowitz L, Wormuth M, Scheringer M, Cousins IT, Hungerbühler K. Estimating consumer exposure to PFOS and PFOA. Risk Anal. 2008;28(2):251–69.

    Article  Google Scholar 

  6. Use F. Distribution and release overview. St Paul, MN: US Public Docket EPA-HQ-OPPT-2002-0051-0003; 1999.

    Google Scholar 

  7. Kissa E. Fluorinated surfactants and repellents. Boca Raton, FL: CRC; 2001.

    Google Scholar 

  8. Dassuncao C, Hu XC, Zhang X, Bossi R, Dam M, Mikkelsen B, et al. Temporal shifts in poly-and perfluoroalkyl substances (PFASs) in North Atlantic pilot whales indicate large contribution of atmospheric precursors. Environ Sci Technol. 2017;51(8):4512–21.

    Article  CAS  Google Scholar 

  9. Zhang X, Zhang Y, Dassuncao C, Lohmann R, Sunderland EM. North Atlantic deep water formation inhibits high Arctic contamination by continental perfluorooctane sulfonate discharges. Global Biogeochem Cycles. 2017;31(8):1332–43.

    Article  CAS  Google Scholar 

  10. Dassuncao C, Hu XC, Nielsen F, Weihe P, Grandjean P, Sunderland EM. Shifting global exposures to poly-and perfluoroalkyl substances (PFASs) evident in longitudinal birth cohorts from a seafood-consuming population. Environ Sci Technol. 2018;52(6):3738–47.

    Article  CAS  Google Scholar 

  11. Favreau P, Poncioni-Rothlisberger C, Place BJ, Bouchex-Bellomie H, Weber A, Tremp J, et al. Multianalyte profiling of per-and polyfluoroalkyl substances (PFASs) in liquid commercial products. Chemosphere. 2017;171:491–501.

    Article  CAS  Google Scholar 

  12. Vojta Š, Bečanová J, Melymuk L, Komprdova K, Kohoutek J, Kukučka P, et al. Screening for halogenated flame retardants in European consumer products, building materials and wastes. Chemosphere. 2017;168:457–66.

    Article  CAS  Google Scholar 

  13. Yuan G, Peng H, Huang C, Hu J. Ubiquitous occurrence of fluorotelomer alcohols in eco-friendly paper-made food-contact materials and their implication for human exposure. Environ Sci Technol. 2016;50(2):942–50.

    Article  CAS  Google Scholar 

  14. Begley T, White K, Honigfort P, Twaroski M, Neches R, Walker R. Perfluorochemicals: potential sources of and migration from food packaging. Food Addit Contam. 2005;22(10):1023–31.

    Article  CAS  Google Scholar 

  15. Haug LS, Huber S, Becher G, Thomsen C. Characterisation of human exposure pathways to perfluorinated compounds—comparing exposure estimates with biomarkers of exposure. Environ Int. 2011;37(4):687–93.

    Article  CAS  Google Scholar 

  16. Vestergren R, Cousins IT, Trudel D, Wormuth M, Scheringer M. Estimating the contribution of precursor compounds in consumer exposure to PFOS and PFOA. Chemosphere. 2008;73(10):1617–24.

    Article  CAS  Google Scholar 

  17. Harrad S, de Wit CA, Abdallah MA-E, Bergh C, Bjorklund JA, Covaci A, et al. Indoor contamination with hexabromocyclododecanes, polybrominated diphenyl ethers, and perfluoroalkyl compounds: an important exposure pathway for people? Environ Sci Technol. 2010;44(9):3221–31.

    Article  CAS  Google Scholar 

  18. Fromme H, Dreyer A, Dietrich S, Fembacher L, Lahrz T, Völkel W. Neutral polyfluorinated compounds in indoor air in Germany–the LUPE 4 study. Chemosphere. 2015;139:572–8.

    Article  CAS  Google Scholar 

  19. Wang Z, DeWitt JC, Higgins CP, Cousins IT. A never-ending story of per-and polyfluoroalkyl substances (PFASs)? vol. 51. Washington, DC: ACS Publications; 2017. p. 2508.

    Google Scholar 

  20. Wang Z, Cousins IT, Scheringer M, Hungerbuehler K. Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: status quo, ongoing challenges and possible solutions. Environ Int. 2015;75:172–9.

    Article  CAS  Google Scholar 

  21. Robel AE, Marshall K, Dickinson M, Lunderberg D, Butt C, Peaslee G, et al. Closing the mass balance on fluorine on papers and textiles. Environ Sci Technol. 2017;51(16):9022–32.

    Article  CAS  Google Scholar 

  22. Agency E. Lifetime health advisories and health effects support documents for perfluorooctanoic acid and perfluorooctane sulfonate. Fed Regist. 2016;81(101):33250–1.

    Google Scholar 

  23. Agency for Toxic Substances Disease Registry. Toxicological profile for perfluoroalkyls.(Draft for Public Comment). Atlanta, GA: US Department of Health and Human Services, Public Health Service; 2018.

    Google Scholar 

  24. Sunderland EM, Hu XC, Dassuncao C, Tokranov AK, Wagner CC, Allen JG. A review of the pathways of human exposure to poly-and perfluoroalkyl substances (PFASs) and present understanding of health effects. J Expo Sci Environ Epidemiol. 2019;29(2):131–47.

    Article  CAS  Google Scholar 

  25. Grandjean P, Budtz-Jørgensen E. Immunotoxicity of perfluorinated alkylates: calculation of benchmark doses based on serum concentrations in children. Environ Health. 2013;12(1):35.

    Article  CAS  Google Scholar 

  26. Emmett EA, Shofer FS, Zhang H, Freeman D, Desai C, Shaw LM. Community exposure to perfluorooctanoate: relationships between serum concentrations and exposure sources. J Occup Environ Med. 2006;48(8):759.

    Article  CAS  Google Scholar 

  27. Post GB, Louis JB, Cooper KR, Boros-Russo BJ, Lippincott RL. Occurrence and potential significance of perfluorooctanoic acid (PFOA) detected in New Jersey public drinking water systems. Environ Sci Technol. 2009;43(12):4547–54.

    Article  CAS  Google Scholar 

  28. EPA U. The third unregulated contaminant monitoring rule (UCMR 3): data summary. Washington, DC: EPA; 2013.

    Google Scholar 

  29. Borsanyiova M, Patil A, Mukherji R, Prabhune A, Bopegamage S. Biological activity of sophorolipids and their possible use as antiviral agents. Folia Microbiol. 2016;61(1):85–9.

    Article  CAS  Google Scholar 

  30. Sun M, Arevalo E, Strynar M, Lindstrom A, Richardson M, Kearns B, et al. Legacy and emerging perfluoroalkyl substances are important drinking water contaminants in the Cape Fear river watershed of North Carolina. Environ Sci Technol Lett. 2016;3(12):415–9.

    Article  CAS  Google Scholar 

  31. Lindh CH, Rylander L, Toft G, Axmon A, Rignell-Hydbom A, Giwercman A, et al. Blood serum concentrations of perfluorinated compounds in men from Greenlandic Inuit and European populations. Chemosphere. 2012;88(11):1269–75.

    Article  CAS  Google Scholar 

  32. Zhou Z, Shi Y, Vestergren R, Wang T, Liang Y, Cai Y. Highly elevated serum concentrations of perfluoroalkyl substances in fishery employees from Tangxun lake, China. Environ Sci Technol. 2014;48(7):3864–74.

    Article  CAS  Google Scholar 

  33. Weihe P, Kato K, Calafat AM, Nielsen F, Wanigatunga AA, Needham LL, et al. Serum concentrations of polyfluoroalkyl compounds in Faroese whale meat consumers. Environ Sci Technol. 2008;42(16):6291–5.

    Article  CAS  Google Scholar 

  34. Del Gobbo L, Tittlemier S, Diamond M, Pepper K, Tague B, Yeudall F, et al. Cooking decreases observed perfluorinated compound concentrations in fish. J Agric Food Chem. 2008;56(16):7551–9.

    Article  CAS  Google Scholar 

  35. Chain EPoCitF, Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, et al. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J. 2018;16(12):e05194.

    Google Scholar 

  36. Buser A, Morf L. Substance flow analysis of PFOS and PFOA. Perfluorinated surfactants perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA) in Switzerland. Bern: Federal Office for the Environment (FOEN); 2009.

    Google Scholar 

  37. Earnshaw MR, Paul AG, Loos R, Tavazzi S, Paracchini B, Scheringer M, et al. Comparing measured and modelled PFOS concentrations in a UK freshwater catchment and estimating emission rates. Environ Int. 2014;70:25–31.

    Article  CAS  Google Scholar 

  38. Stahl LL, Snyder BD, Olsen AR, Kincaid TM, Wathen JB, McCarty HB. Perfluorinated compounds in fish from US urban rivers and the Great Lakes. Sci Total Environ. 2014;499:185–95.

    Article  CAS  Google Scholar 

  39. Hu XC, Andrews DQ, Lindstrom AB, Bruton TA, Schaider LA, Grandjean P, et al. Detection of poly-and perfluoroalkyl substances (PFASs) in US drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants. Environ Sci Technol Lett. 2016;3(10):344–50.

    Article  CAS  Google Scholar 

  40. Sepulvado JG, Blaine AC, Hundal LS, Higgins CP. Occurrence and fate of perfluorochemicals in soil following the land application of municipal biosolids. Environ Sci Technol. 2011;45(19):8106–12.

    Article  CAS  Google Scholar 

  41. Venkatesan AK, Halden RU. National inventory of perfluoroalkyl substances in archived US biosolids from the 2001 EPA National Sewage Sludge Survey. J Hazard Mater. 2013;252:413–8.

    Article  CAS  Google Scholar 

  42. Navarro I, de la Torre A, Sanz P, Pro J, Carbonell G, de los Ángeles Martínez M. Bioaccumulation of emerging organic compounds (perfluoroalkyl substances and halogenated flame retardants) by earthworm in biosolid amended soils. Environ Res. 2016;149:32–9.

    Article  CAS  Google Scholar 

  43. Navarro I, de la Torre A, Sanz P, Porcel MÁ, Pro J, Carbonell G, et al. Uptake of perfluoroalkyl substances and halogenated flame retardants by crop plants grown in biosolids-amended soils. Environ Res. 2017;152:199–206.

    Article  CAS  Google Scholar 

  44. Domingo JL, Nadal M. Per-and polyfluoroalkyl substances (PFASs) in food and human dietary intake: a review of the recent scientific literature. J Agric Food Chem. 2017;65(3):533–43.

    Article  CAS  Google Scholar 

  45. Rosen MB, Abbott BD, Wolf DC, Corton JC, Wood CR, Schmid JE, et al. Gene profiling in the livers of wild-type and PPARα-null mice exposed to perfluorooctanoic acid. Toxicol Pathol. 2008;36(4):592–607.

    Article  CAS  Google Scholar 

  46. Abbott BD, Wood CR, Watkins AM, Tatum-Gibbs K, Das KP, Lau C. Effects of perfluorooctanoic acid (PFOA) on expression of peroxisome proliferator-activated receptors (PPAR) and nuclear receptor-regulated genes in fetal and postnatal CD-1 mouse tissues. Reprod Toxicol. 2012;33(4):491–505.

    Article  CAS  Google Scholar 

  47. Arukwe A, Mortensen AS. Lipid peroxidation and oxidative stress responses of salmon fed a diet containing perfluorooctane sulfonic-or perfluorooctane carboxylic acids. Compar Biochem Physiol Pt C Toxicol Pharmacol. 2011;154(4):288–95.

    Article  CAS  Google Scholar 

  48. Yang J-H. Perfluorooctanoic acid induces peroxisomal fatty acid oxidation and cytokine expression in the liver of male Japanese medaka (Oryzias latipes). Chemosphere. 2010;81(4):548–52.

    Article  CAS  Google Scholar 

  49. Jiang Q, Lust RM, Strynar MJ, Dagnino S, DeWitt JC. Perfluorooctanoic acid induces developmental cardiotoxicity in chicken embryos and hatchlings. Toxicology. 2012;293(1–3):97–106.

    Article  CAS  Google Scholar 

  50. Haughom B, Spydevold Ø. The mechanism underlying the hypolipemic effect of perfluorooctanoic acid (PFOA), perfluorooctane sulphonic acid (PFOSA) and clofibric acid. Biochim Biophys Acta Lipids Lipid Metabol. 1992;1128(1):65–72.

    Article  CAS  Google Scholar 

  51. Martin MT, Brennan RJ, Hu W, Ayanoglu E, Lau C, Ren H, et al. Toxicogenomic study of triazole fungicides and perfluoroalkyl acids in rat livers predicts toxicity and categorizes chemicals based on mechanisms of toxicity. Toxicol Sci. 2007;97(2):595–613.

    Article  CAS  Google Scholar 

  52. Kawashima Y, Kobayashi H, Miura H, Kozuka H. Characterization of hepatic responses of rat to administration of perfluorooctanoic and perfluorodecanoic acids at low levels. Toxicology. 1995;99(3):169–78.

    Article  CAS  Google Scholar 

  53. Bighetti EJ, Patrício PR, Casquero AC, Berti JA, Oliveira HC. Ciprofibrate increases cholesteryl ester transfer protein gene expression and the indirect reverse cholesterol transport to the liver. Lipids Health Dis. 2009;8(1):50.

    Article  CAS  Google Scholar 

  54. Guruge KS, Yeung LW, Yamanaka N, Miyazaki S, Lam PK, Giesy JP, et al. Gene expression profiles in rat liver treated with perfluorooctanoic acid (PFOA). Toxicol Sci. 2006;89(1):93–107.

    Article  CAS  Google Scholar 

  55. Hu WY, Jones PD, DeCoen W, King L, Fraker P, Newsted J, et al. Alterations in cell membrane properties caused by perfluorinated compounds. Compar Biochem Physiol Pt C Toxicol Pharmacol. 2003;135(1):77–88.

    Article  CAS  Google Scholar 

  56. Hagenaars A, Vergauwen L, Benoot D, Laukens K, Knapen D. Mechanistic toxicity study of perfluorooctanoic acid in zebrafish suggests mitochondrial dysfunction to play a key role in PFOA toxicity. Chemosphere. 2013;91(6):844–56.

    Article  CAS  Google Scholar 

  57. Peng S, Yan L, Zhang J, Wang Z, Tian M, Shen H. An integrated metabonomics and transcriptomics approach to understanding metabolic pathway disturbance induced by perfluorooctanoic acid. J Pharm Biomed Anal. 2013;86:56–64.

    Article  CAS  Google Scholar 

  58. Krøvel AV, Søfteland L, Torstensen B, Olsvik PA. Transcriptional effects of PFOS in isolated hepatocytes from Atlantic salmon Salmo salar L. Compar Biochem Physiol Pt C Toxicol Pharmacol. 2008;148(1):14–22.

    Article  CAS  Google Scholar 

  59. Lefebvre DE, Curran I, Armstrong C, Coady L, Parenteau M, Liston V, et al. Immunomodulatory effects of dietary potassium perfluorooctane sulfonate (PFOS) exposure in adult Sprague-Dawley rats. J Toxic Environ Health A. 2008;71(23):1516–25.

    Article  CAS  Google Scholar 

  60. Moody CA, Hebert GN, Strauss SH, Field JA. Occurrence and persistence of perfluorooctanesulfonate and other perfluorinated surfactants in groundwater at a fire-training area at Wurtsmith air Force Base, Michigan, USA. J Environ Monit. 2003;5(2):341–5.

    Article  CAS  Google Scholar 

  61. Lein NPH, Fujii S, Tanaka S, Nozoe M, Tanaka H. Contamination of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in surface water of the Yodo River basin (Japan). Desalination. 2008;226(1–3):338–47.

    Article  CAS  Google Scholar 

  62. Kumar KS, Zushi Y, Masunaga S, Gilligan M, Pride C, Sajwan KS. Perfluorinated organic contaminants in sediment and aquatic wildlife, including sharks, from Georgia, USA. Mar Pollut Bull. 2009;58(4):621–9.

    Article  CAS  Google Scholar 

  63. Aimuzi R, Luo K, Chen Q, Wang H, Feng L, Ouyang F, et al. Perfluoroalkyl and polyfluoroalkyl substances and fetal thyroid hormone levels in umbilical cord blood among newborns by prelabor caesarean delivery. Environ Int. 2019;130:104929.

    Article  CAS  Google Scholar 

  64. Stein CR, Wolff MS, Calafat AM, Kato K, Engel SM. Comparison of polyfluoroalkyl compound concentrations in maternal serum and amniotic fluid: a pilot study. Reprod Toxicol. 2012;34(3):312–6.

    Article  CAS  Google Scholar 

  65. Johansson N, Fredriksson A, Eriksson P. Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice. Neurotoxicology. 2008;29(1):160–9.

    Article  CAS  Google Scholar 

  66. Goulding DR, White SS, McBride SJ, Fenton SE, Harry GJ. Gestational exposure to perfluorooctanoic acid (PFOA): alterations in motor related behaviors. Neurotoxicology. 2017;58:110–9.

    Article  CAS  Google Scholar 

  67. Cui L, Zhou QF, Liao CY, Fu JJ, Jiang GB. Studies on the toxicological effects of PFOA and PFOS on rats using histological observation and chemical analysis. Arch Environ Contam Toxicol. 2009;56(2):338.

    Article  CAS  Google Scholar 

  68. Sammi SR, Foguth RM, Nieves CS, De Perre C, Wipf P, McMurray CT, et al. Perfluorooctane Sulfonate (PFOS) produces dopaminergic neuropathology in Caenorhabditis elegans. Toxicol Sci. 2019;172(2):417–34.

    Article  CAS  Google Scholar 

  69. Smith D, Henderson R. Mycotoxins and animal foods. Boca Raton, FL: CRC; 1991.

    Google Scholar 

  70. Frisvad J, Samson R. Filamentous in foods and feeds: ecology, spoilage, and mycotoxin production. In: Handbook of Applied Mycology: “Mycotoxins in Ecological Systems”, vol. 5. New York: Marcel Dekker; 1992. p. 32–57.

    Google Scholar 

  71. Schaeffer J, Hamilton P. Interactions of mycotoxins with feed ingredients. Do safe levels exist. In: Mycotoxins and animal foods. Boca Raton, FL: CRC; 1991. p. 827–43.

    Google Scholar 

  72. Matossian MAK. Poisons of the past: molds, epidemics, and history: Yale University press; 1989.

    Google Scholar 

  73. Mantle P. Miscellaneous toxigenic fungi. In: Mycotoxins and animal foods: CRC, Boca Raton, FL; 1991. p. 141–52.

    Google Scholar 

  74. Sydenham EW. Fumonisins: chromatographic methodology and their role in human and animal health. Cape Town: University of Cape Town; 1994.

    Google Scholar 

  75. Lewis C, Anderson J, Smith J. Health-related aspects of the genus Aspergillus. In: Aspergillus. Berlin: Springer; 1994. p. 219–61.

    Chapter  Google Scholar 

  76. Humans IWGotEoCRt, Cancer IAfRo, Organization WH. Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. Geneva: World Health Organization; 1993.

    Google Scholar 

  77. Groopman JD. Molecular dosimetry methods for assessing human aflatoxin exposures. In: The toxicology of aflatoxins human health, veterinary, and agricultural significance. San Diego: Academic; 1994. p. 259–79.

    Google Scholar 

  78. Nzeribe BN, Crimi M, Mededovic Thagard S, Holsen TM. Physico-chemical processes for the treatment of per-and polyfluoroalkyl substances (PFAS): a review. Crit Rev Environ Sci Technol. 2019;49(10):866–915.

    Article  Google Scholar 

  79. Siegrist RL, Crimi M, Simpkin TJ. In situ chemical oxidation for groundwater remediation. Berlin: Springer Science & Business Media; 2011.

    Book  Google Scholar 

  80. Liu C, Higgins C, Wang F, Shih K. Effect of temperature on oxidative transformation of perfluorooctanoic acid (PFOA) by persulfate activation in water. Sep Purif Technol. 2012;91:46–51.

    Article  CAS  Google Scholar 

  81. Tan C, Gao N, Deng Y, An N, Deng J. Heat-activated persulfate oxidation of diuron in water. Chem Eng J. 2012;203:294–300.

    Article  CAS  Google Scholar 

  82. Fan Y, Ji Y, Kong D, Lu J, Zhou Q. Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process. J Hazard Mater. 2015;300:39–47.

    Article  CAS  Google Scholar 

  83. Ji Y, Dong C, Kong D, Lu J, Zhou Q. Heat-activated persulfate oxidation of atrazine: implications for remediation of groundwater contaminated by herbicides. Chem Eng J. 2015;263:45–54.

    Article  CAS  Google Scholar 

  84. Liang C, Huang C-F, Mohanty N, Lu C-J, Kurakalva RM. Hydroxypropyl-β-cyclodextrin-mediated iron-activated persulfate oxidation of trichloroethylene and tetrachloroethylene. Ind Eng Chem Res. 2007;46(20):6466–79.

    Article  CAS  Google Scholar 

  85. Lin J-C, Hu C-Y, Lo S-L. Effect of surfactants on the degradation of perfluorooctanoic acid (PFOA) by ultrasonic (US) treatment. Ultrason Sonochem. 2016;28:130–5.

    Article  CAS  Google Scholar 

  86. Chen M-J, Lo S-L, Lee Y-C, Huang C-C. Photocatalytic decomposition of perfluorooctanoic acid by transition-metal modified titanium dioxide. J Hazard Mater. 2015;288:168–75.

    Article  CAS  Google Scholar 

  87. Ji Y, Ferronato C, Salvador A, Yang X, Chovelon J-M. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics. Sci Total Environ. 2014;472:800–8.

    Article  CAS  Google Scholar 

  88. Khan S, He X, Khan HM, Boccelli D, Dionysiou DD. Efficient degradation of lindane in aqueous solution by iron (II) and/or UV activated peroxymonosulfate. J Photochem Photobiol A Chem. 2016;316:37–43.

    Article  CAS  Google Scholar 

  89. Lee Y-C, Lo S-L, Chiueh P-T, Liou Y-H, Chen M-L. Microwave-hydrothermal decomposition of perfluorooctanoic acid in water by iron-activated persulfate oxidation. Water Res. 2010;44(3):886–92.

    Article  CAS  Google Scholar 

  90. Park S, Lee LS, Medina VF, Zull A, Waisner S. Heat-activated persulfate oxidation of PFOA, 6: 2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation. Chemosphere. 2016;145:376–83.

    Article  CAS  Google Scholar 

  91. Huang K-C, Zhao Z, Hoag GE, Dahmani A, Block PA. Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere. 2005;61(4):551–60.

    Article  CAS  Google Scholar 

  92. Tsitonaki A, Petri B, Crimi M, Mosbæk H, Siegrist RL, Bjerg PL. In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Crit Rev Environ Sci Technol. 2010;40(1):55–91.

    Article  CAS  Google Scholar 

  93. Fedrizzi F, Ramos DBT, Lazzarin HS, Fernandes M, Larose C, Vogel TM, et al. A modified approach for in situ chemical oxidation coupled to biodegradation enhances light nonaqueous phase liquid source-zone remediation. Environ Sci Technol. 2017;51(1):463–72.

    Article  CAS  Google Scholar 

  94. Costanza J, Otano G, Callaghan J, Pennell KD. PCE oxidation by sodium persulfate in the presence of solids. Environ Sci Technol. 2010;44(24):9445–50.

    Article  CAS  Google Scholar 

  95. Radjenovic J, Bagastyo A, Rozendal RA, Mu Y, Keller J, Rabaey K. Electrochemical oxidation of trace organic contaminants in reverse osmosis concentrate using RuO2/IrO2-coated titanium anodes. Water Res. 2011;45(4):1579–86.

    Article  CAS  Google Scholar 

  96. Murugananthan M, Yoshihara S, Rakuma T, Uehara N, Shirakashi T. Electrochemical degradation of 17β-estradiol (E2) at boron-doped diamond (Si/BDD) thin film electrode. Electrochim Acta. 2007;52(9):3242–9.

    Article  CAS  Google Scholar 

  97. Trautmann A, Schell H, Schmidt K, Mangold K-M, Tiehm A. Electrochemical degradation of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in groundwater. Water Sci Technol. 2015;71(10):1569–75.

    Article  CAS  Google Scholar 

  98. Ochiai T, Iizuka Y, Nakata K, Murakami T, Tryk DA, Fujishima A, et al. Efficient electrochemical decomposition of perfluorocarboxylic acids by the use of a boron-doped diamond electrode. Diamond Relat Mater. 2011;20(2):64–7.

    Article  CAS  Google Scholar 

  99. Niu J, Lin H, Gong C, Sun X. Theoretical and experimental insights into the electrochemical mineralization mechanism of perfluorooctanoic acid. Environ Sci Technol. 2013;47(24):14341–9.

    Article  CAS  Google Scholar 

  100. Niu J, Li Y, Shang E, Xu Z, Liu J. Electrochemical oxidation of perfluorinated compounds in water. Chemosphere. 2016;146:526–38.

    Article  CAS  Google Scholar 

  101. Song S, Fan J, He Z, Zhan L, Liu Z, Chen J, et al. Electrochemical degradation of azo dye CI reactive red 195 by anodic oxidation on Ti/SnO2–Sb/PbO2 electrodes. Electrochim Acta. 2010;55(11):3606–13.

    Article  CAS  Google Scholar 

  102. Lin H, Niu J, Ding S, Zhang L. Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2–Sb, Ti/SnO2–Sb/PbO2 and Ti/SnO2–Sb/MnO2 anodes. Water Res. 2012;46(7):2281–9.

    Article  CAS  Google Scholar 

  103. Zhou M, Chi M, Wang H, Jin T. Anode modification by electrochemical oxidation: a new practical method to improve the performance of microbial fuel cells. Biochem Eng J. 2012;60:151–5.

    Article  CAS  Google Scholar 

  104. Chaplin BP. Critical review of electrochemical advanced oxidation processes for water treatment applications. Environ Sci: Processes Impacts. 2014;16(6):1182–203.

    CAS  Google Scholar 

  105. Radjenovic J, Sedlak DL. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environ Sci Technol. 2015;49(19):11292–302.

    Article  CAS  Google Scholar 

  106. Schaefer CE, Andaya C, Urtiaga A, McKenzie ER, Higgins CP. Electrochemical treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater impacted by aqueous film forming foams (AFFFs). J Hazard Mater. 2015;295:170–5.

    Article  CAS  Google Scholar 

  107. Xu B, Ahmed MB, Zhou JL, Altaee A, Wu M, Xu G. Photocatalytic removal of perfluoroalkyl substances from water and wastewater: mechanism, kinetics and controlling factors. Chemosphere. 2017;189:717–29.

    Article  CAS  Google Scholar 

  108. Oller I, Malato S, Sánchez-Pérez J. Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ. 2011;409(20):4141–66.

    Article  CAS  Google Scholar 

  109. Lin AYC, Reinhard M. Photodegradation of common environmental pharmaceuticals and estrogens in river water. Environ Toxicol Chem. 2005;24(6):1303–9.

    Article  CAS  Google Scholar 

  110. Jing C. ZHANG P-y, Jian L. Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light. J Environ Sci. 2007;19(4):387–90.

    Article  Google Scholar 

  111. Liu X, Zhong J, Fang L, Wang L, Ye M, Shao Y, et al. Trichloroacetic acid reduction by an advanced reduction process based on carboxyl anion radical. Chem Eng J. 2016;303:56–63.

    Article  CAS  Google Scholar 

  112. Hawley EL, Deeb RA, Kavanaugh MC, Jacobs JA. Treatment technologies for Chromium (VI). In: Chromium (VI) handbook, vol. 275. Boca Raton, FL: CRC; 2004. p. 309.

    Google Scholar 

  113. Vellanki BP, Batchelor B, Abdel-Wahab A. Advanced reduction processes: a new class of treatment processes. Environ Eng Sci. 2013;30(5):264–71.

    Article  CAS  Google Scholar 

  114. Elliott DW, Lien HL, Wx Z. Zerovalent iron nanoparticles for treatment of ground water contaminated by hexachlorocyclohexanes. J Environ Qual. 2008;37(6):2192–201.

    Article  CAS  Google Scholar 

  115. Sun H, Wang L, Zhang R, Sui J, Xu G. Treatment of groundwater polluted by arsenic compounds by zero valent iron. J Hazard Mater. 2006;129(1–3):297–303.

    Article  CAS  Google Scholar 

  116. Arvaniti OS, Hwang Y, Andersen HR, Stasinakis AS, Thomaidis NS, Aloupi M. Reductive degradation of perfluorinated compounds in water using Mg-aminoclay coated nanoscale zero valent iron. Chem Eng J. 2015;262:133–9.

    Article  CAS  Google Scholar 

  117. Vecitis CD, Park H, Cheng J, Mader BT, Hoffmann MR. Kinetics and mechanism of the sonolytic conversion of the aqueous perfluorinated surfactants, perfluorooctanoate (PFOA), and perfluorooctane sulfonate (PFOS) into inorganic products. J Phys Chem A. 2008;112(18):4261–70.

    Article  CAS  Google Scholar 

  118. Furuta M, Yamaguchi M, Tsukamoto T, Yim B, Stavarache C, Hasiba K, et al. Inactivation of Escherichia coli by ultrasonic irradiation. Ultrason Sonochem. 2004;11(2):57–60.

    Article  CAS  Google Scholar 

  119. Rayaroth MP, Aravind UK, Aravindakumar CT. Degradation of pharmaceuticals by ultrasound-based advanced oxidation process. Environ Chem Lett. 2016;14(3):259–90.

    Article  CAS  Google Scholar 

  120. Chowdhury P, Viraraghavan T. Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes—a review. Sci Total Environ. 2009;407(8):2474–92.

    Article  CAS  Google Scholar 

  121. Cheng J, Vecitis CD, Park H, Mader BT, Hoffmann MR. Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater: environmental matrix effects. Environ Sci Technol. 2008;42(21):8057–63.

    Article  CAS  Google Scholar 

  122. Campbell T, Hoffmann MR. Sonochemical degradation of perfluorinated surfactants: power and multiple frequency effects. Sep Purif Technol. 2015;156:1019–27.

    Article  CAS  Google Scholar 

  123. Hao F, Guo W, Wang A, Leng Y, Li H. Intensification of sonochemical degradation of ammonium perfluorooctanoate by persulfate oxidant. Ultrason Sonochem. 2014;21(2):554–8.

    Article  CAS  Google Scholar 

  124. Kanthale P, Ashokkumar M, Grieser F. Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: frequency and power effects. Ultrason Sonochem. 2008;15(2):143–50.

    Article  CAS  Google Scholar 

  125. Adewuyi YG. Sonochemistry: environmental science and engineering applications. Ind Eng Chem Res. 2001;40(22):4681–715.

    Article  CAS  Google Scholar 

  126. Moriwaki H, Takagi Y, Tanaka M, Tsuruho K, Okitsu K, Maeda Y. Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid. Environ Sci Technol. 2005;39(9):3388–92.

    Article  CAS  Google Scholar 

  127. Lin J-C, Lo S-L, Hu C-Y, Lee Y-C, Kuo J. Enhanced sonochemical degradation of perfluorooctanoic acid by sulfate ions. Ultrason Sonochem. 2015;22:542–7.

    Article  CAS  Google Scholar 

  128. Latruffe N, Malki MC, Nicolas-Frances V, Clemencet M-C, Jannin B, Berlot J-P. Regulation of the peroxisomal β-oxidation-dependent pathway by peroxisome proliferator-activated receptor α and kinases. Biochem Pharmacol. 2000;60(8):1027–32.

    Article  CAS  Google Scholar 

  129. Takacs ML, Abbott BD. Activation of mouse and human peroxisome proliferator–activated receptors (α, β/δ, γ) by perfluorooctanoic acid and perfluorooctane sulfonate. Toxicol Sci. 2007;95(1):108–17.

    Article  CAS  Google Scholar 

  130. Liu C, Du Y, Zhou B. Evaluation of estrogenic activities and mechanism of action of perfluorinated chemicals determined by vitellogenin induction in primary cultured tilapia hepatocytes. Aquat Toxicol. 2007;85(4):267–77.

    Article  CAS  Google Scholar 

  131. Kjeldsen LS, Bonefeld-Jørgensen EC. Perfluorinated compounds affect the function of sex hormone receptors. Environ Sci Pollut Res. 2013;20(11):8031–44.

    Article  CAS  Google Scholar 

  132. Jain RB. Association between thyroid profile and perfluoroalkyl acids: data from NHNAES 2007–2008. Environ Res. 2013;126:51–9.

    Article  CAS  Google Scholar 

  133. Darrow LA, Stein CR, Steenland K. Serum perfluorooctanoic acid and perfluorooctane sulfonate concentrations in relation to birth outcomes in the mid-Ohio Valley, 2005–2010. Environ Health Perspect. 2013;121(10):1207–13.

    Article  Google Scholar 

  134. Sakr CJ, Leonard RC, Kreckmann KH, Slade MD, Cullen MR. Longitudinal study of serum lipids and liver enzymes in workers with occupational exposure to ammonium perfluorooctanoate. J Occup Environ Med. 2007;49(8):872–9.

    Article  CAS  Google Scholar 

  135. Costa G, Sartori S, Consonni D. Thirty years of medical surveillance in perfluooctanoic acid production workers. J Occup Environ Med. 2009;51(3):364–72.

    Article  CAS  Google Scholar 

  136. Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL, et al. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect. 2007;115(9):1298–305.

    Article  CAS  Google Scholar 

  137. Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J. Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci. 2007;99(2):366–94.

    Article  CAS  Google Scholar 

  138. Sakr CJ, Kreckmann KH, Green JW, Gillies PJ, Reynolds JL, Leonard RC. Cross-sectional study of lipids and liver enzymes related to a serum biomarker of exposure (ammonium perfluorooctanoate or APFO) as part of a general health survey in a cohort of occupationally exposed workers. J Occup Environ Med. 2007;49(10):1086–96.

    Article  CAS  Google Scholar 

  139. Steenland K, Tinker S, Frisbee S, Ducatman A, Vaccarino V. Association of perfluorooctanoic acid and perfluorooctane sulfonate with serum lipids among adults living near a chemical plant. Am J Epidemiol. 2009;170(10):1268–78.

    Article  Google Scholar 

  140. Shankar A, Xiao J, Ducatman A. Perfluorooctanoic acid and cardiovascular disease in US adults. Arch Intern Med. 2012;172(18):1397–403.

    Article  CAS  Google Scholar 

  141. Shankar A, Xiao J, Ducatman A. Perfluoroalkyl chemicals and elevated serum uric acid in US adults. Clin Epidemiol. 2011;3:251.

    Article  Google Scholar 

  142. Melzer D, Rice N, Depledge MH, Henley WE, Galloway TS. Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the US National Health and nutrition examination survey. Environ Health Perspect. 2010;118(5):686–92.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niazi, S.G., Javed, C., Suleman, T., Sadiq, S., Tahir, I.M. (2021). Perfluoroalkyl Chemicals and Neurological Disorders: From Exposure to Preventive Interventions. In: Akash, M.S.H., Rehman, K. (eds) Environmental Contaminants and Neurological Disorders. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-66376-6_14

Download citation

Publish with us

Policies and ethics