Skip to main content

Immunological Aspects of Age-Related Macular Degeneration

  • Chapter
  • First Online:
Age-related Macular Degeneration

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1256))

Abstract

Increasing evidence over the past two decades points to a pivotal role for immune mechanisms in age-related macular degeneration (AMD) pathobiology. In this chapter, we will explore immunological aspects of AMD, with a specific focus on how immune mechanisms modulate clinical phenotypes of disease and severity and how components of the immune system may serve as triggers for disease progression in both dry and neovascular AMD. We will briefly review the biology of the immune system, defining the role of immune mechanisms in chronic degenerative disease and differentiating from immune responses to acute injury or infection. We will explore current understanding of the roles of innate immunity (especially macrophages), antigen-specific immunity (T cells, B cells, and autoimmunity), immune amplifications systems, especially complement activity and the NLRP3 inflammasome, in the pathogenesis of both dry and neovascular AMD, reviewing data from pathology, experimental animal models, and clinical studies of AMD patients. We will also assess how interactions between the immune system and infectious pathogens could potentially modulate AMD pathobiology via alterations in in immune effector mechanisms. We will conclude by reviewing the paradigm of “response to injury,” which provides a means to integrate various immunologic mechanisms along with nonimmune mechanisms of tissue injury and repair as a model to understand the pathobiology of AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Congdon N, O'Colmain B, Klaver CC, Klein R, Munoz B, Friedman DS et al (2004) Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol 122(4):477–485

    Article  PubMed  Google Scholar 

  2. Friedman DS, O’Colmain BJ, Munoz B, Tomany SC, McCarty C, de Jong PT et al (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122(4):564–572

    Article  PubMed  Google Scholar 

  3. Klein R, Chou CF, Klein BE, Zhang X, Meuer SM, Saaddine JB (2011) Prevalence of age-related macular degeneration in the US population. Arch Ophthalmol 129(1):75–80

    Article  PubMed  Google Scholar 

  4. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C et al (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308(5720):385–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P et al (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308(5720):419–421

    Article  CAS  PubMed  Google Scholar 

  6. Hageman GS, Anderson DH, Johnson LV, Hancox LS, Taiber AJ, Hardisty LI et al (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A 102(20):7227–7232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Edwards AO, Ritter R, Abel KJ, Manning A, Panhuysen C, Farrer LA (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308(5720):421–424

    Article  CAS  PubMed  Google Scholar 

  8. Hyman L, Schachat AP, He Q, Leske MC (2000) Hypertension, cardiovascular disease, and age-related macular degeneration. Age-Related Macular Degeneration Risk Factors Study Group. Arch Ophthalmol 118(3):351–358

    Article  CAS  PubMed  Google Scholar 

  9. Klein R, Peto T, Bird A, Vannewkirk MR (2004) The epidemiology of age-related macular degeneration. Am J Ophthalmol 137(3):486–495

    Article  PubMed  Google Scholar 

  10. Bertram KM, Baglole CJ, Phipps RP, Libby RT (2009) Molecular regulation of cigarette smoke induced-oxidative stress in human retinal pigment epithelial cells: implications for age-related macular degeneration. Am J Physiol Cell Physiol 297(5):C1200–C1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cano M, Thimmalappula R, Fujihara M, Nagai N, Sporn M, Wang AL et al (2009) Cigarette smoking, oxidative stress, the anti-oxidant response through Nrf2 signaling, and age-related macular degeneration. Vis Res 50(7):652–664

    Article  PubMed  CAS  Google Scholar 

  12. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Clarendon Press, Oxford

    Google Scholar 

  13. Oppenheim JJ, Feldman M (2000) Cytokine reference: a compendium of cytokines and other mediators of host defense. Academic Press, London

    Google Scholar 

  14. Male D, Cooke A, Owen M, Trowsdale J, Champion B (1996) Advanced immunology. Mosby, London

    Google Scholar 

  15. Gordon S (1999) Macrophages and the immune response. Lippencott-Raven Publishers, Philadelphia

    Google Scholar 

  16. Moilanen W, Whittle B, Moncada S (1999) Nitric oxide as a factor in inflammation. In: Gallin JI, Synderman R (eds) Inflammation: basic principles and clinical correlates, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  17. Hamrick TS, Havell EA, Horton JR, Orndorff PE (2000) Host and bacterial factors involved in the innate ability of mouse macrophages to eliminate internalized unopsonized Escherichia coli. Infect Immun 68(1):125–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leifer CA, Medvedev AE (2016) Molecular mechanisms of regulation of toll-like receptor signaling. J Leukoc Biol 100(5):927–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kumar MV, Nagineni CN, Chin MS, Hooks JJ, Detrick B (2004) Innate immunity in the retina: toll-like receptor (TLR) signaling in human retinal pigment epithelial cells. J Neuroimmunol 153(1–2):7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Feng L, Ju M, Lee KYV, Mackey A, Evangelista M, Iwata D et al (2017) A proinflammatory function of toll-like receptor 2 in the retinal pigment epithelium as a novel target for reducing choroidal neovascularization in age-related macular degeneration. Am J Pathol 187(10):2208–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wolf AA, Yanez A, Barman PK, Goodridge HS (2019) The ontogeny of monocyte subsets. Front Immunol 10:1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wozniak W (1998) Origin and the functional role of microglia. Folia Morphol (Warsz) 57(4):277–285

    CAS  Google Scholar 

  23. Naito M, Umeda S, Yamamoto T, Moriyama H, Umezu H, Hasegawa G et al (1996) Development, differentiation, and phenotypic heterogeneity of murine tissue macrophages. J Leukoc Biol 59(2):133–138

    Article  CAS  PubMed  Google Scholar 

  24. Faust N, Huber MC, Sippel AE, Bonifer C (1997) Different macrophage populations develop from embryonic/fetal and adult hematopoietic tissues. Exp Hematol 25(5):432–444

    CAS  PubMed  Google Scholar 

  25. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122(3):787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Biswas SK, Chittezhath M, Shalova IN, Lim JY (2012) Macrophage polarization and plasticity in health and disease. Immunol Res 53(1–3):11–24

    Article  CAS  PubMed  Google Scholar 

  27. Cao X, Shen D, Patel MM, Tuo J, Johnson TM, Olsen TW et al (2011) Macrophage polarization in the maculae of age-related macular degeneration: a pilot study. Pathol Int 61(9):528–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang Y, Beller DI, Frendl G, Graves DT (1992) Monocyte chemoattractant protein-1 regulates adhesion molecule expression and cytokine production in human monocytes. J Immunol 148(8):2423–2428

    Article  CAS  PubMed  Google Scholar 

  29. Schumann RR, Latz E (2000) Lipopolysaccharide-binding protein. Chem Immunol 74:42–60

    CAS  PubMed  Google Scholar 

  30. Schlegel RA, Krahling S, Callahan MK, Williamson P (1999) CD14 is a component of multiple recognition systems used by macrophages to phagocytose apoptotic lymphocytes. Cell Death Differ 6(6):583–592

    Article  CAS  PubMed  Google Scholar 

  31. Hammerstrom J (1979) Human macrophage differentiation in vivo and in vitro. A comparison of human peritoneal macrophages and monocytes. Acta Pathol Microbiol Scand 87C(2):113–120

    CAS  Google Scholar 

  32. Takahashi K, Naito M, Takeya M (1996) Development and heterogeneity of macrophages and their related cells through their differentiation pathways. Pathol Int 46(7):473–485

    Article  CAS  PubMed  Google Scholar 

  33. Blackwell JM, Searle S (1999) Genetic regulation of macrophage activation: understanding the function of Nramp1 (=Ity/Lsh/Bcg). Immunol Lett 65(1–2):73–80

    Article  CAS  PubMed  Google Scholar 

  34. Rutherford MS, Witsell A, Schook LB (1993) Mechanisms generating functionally heterogeneous macrophages: chaos revisited. J Leukoc Biol 53(5):602–618

    Article  CAS  PubMed  Google Scholar 

  35. Apte RS (2010) Regulation of angiogenesis by macrophages. Adv Exp Med Biol 664:15–19

    Article  CAS  PubMed  Google Scholar 

  36. Everson MP, Chandler DB (1992) Changes in distribution, morphology, and tumor necrosis factor-alpha secretion of alveolar macrophage subpopulations during the development of bleomycin-induced pulmonary fibrosis. Am J Pathol 140(2):503–512

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chettibi S, Ferguson MJ (1999) Wound repair: an overview. In: Gallin JI, Synderman R (eds) Inflammation: basic principles and clinical correlates, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  38. Arenberg DA, Strieter RM (1999) Fundmental immunology. In: Gallin JI, Synderman R (eds) Inflammation: basic principles and clinical correlates, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  39. Postlewaite AE, Kang AH (1999) Fibroblasts and matrix proteins. In: Gallin JI, Synderman R (eds) Inflammation: basic principles and clinical correlates, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  40. Jackson JR, Seed MP, Kircher CH, Willoughby DA, Winkler JD (1997) The codependence of angiogenesis and chronic inflammation. FASEB J 11(6):457–465

    Article  CAS  PubMed  Google Scholar 

  41. Polverini PJ (1996) How the extracellular matrix and macrophages contribute to angiogenesis-dependent diseases. Eur J Cancer 32A(14):2430–2437

    Article  CAS  PubMed  Google Scholar 

  42. Laskin DL, Laskin JD (1996) Macrophages, inflammatory mediators, and lung injury. Methods 10(1):61–70

    Article  CAS  PubMed  Google Scholar 

  43. Hauser CJ (1996) Regional macrophage activation after injury and the compartmentalization of inflammation in trauma. New Horiz 4(2):235–251

    CAS  PubMed  Google Scholar 

  44. Raines EW, Ross R (1997) Is overamplification of the normal macrophage defensive role critical to lesion development? Ann N Y Acad Sci 811:76–85

    Article  CAS  PubMed  Google Scholar 

  45. Jinnouchi H, Guo L, Sakamoto A, Torii S, Sato Y, Cornelissen A et al (2019) Diversity of macrophage phenotypes and responses in atherosclerosis. Cell Mol Life Sci. https://doi.org/10.1007/s00018-019-03371-3

  46. Chung S, Overstreet JM, Li Y, Wang Y, Niu A, Wang S et al (2018) TGF-beta promotes fibrosis after severe acute kidney injury by enhancing renal macrophage infiltration. JCI Insight 3(21):e123563

    Article  PubMed Central  Google Scholar 

  47. Griffin TM, Scanzello CR (2019) Innate inflammation and synovial macrophages in osteoarthritis pathophysiology. Clin Exp Rheumatol 37(5):57–63

    PubMed  PubMed Central  Google Scholar 

  48. Mahdavian Delavary B, van der Veer WM, van Egmond M, Niessen FB, Beelen RH (2011) Macrophages in skin injury and repair. Immunobiology 216(7):753–762

    Article  PubMed  CAS  Google Scholar 

  49. Warheit-Niemi HI, Hult EM, Moore BB (2019) A pathologic two-way street: how innate immunity impacts lung fibrosis and fibrosis impacts lung immunity. Clin Transl Immunol 8(6):e1065

    Article  Google Scholar 

  50. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71–82

    Article  CAS  PubMed  Google Scholar 

  51. Woollard KJ, Geissmann F (2010) Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol 7(2):77–86

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL et al (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204(12):3037–3047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hanna RN, Shaked I, Hubbeling HG, Punt JA, Wu R, Herrley E et al (2012) NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis. Circ Res 110(3):416–427

    Article  CAS  PubMed  Google Scholar 

  54. Donnelly DJ, Longbrake EE, Shawler TM, Kigerl KA, Lai W, Tovar CA et al (2011) Deficient CX3CR1 signaling promotes recovery after mouse spinal cord injury by limiting the recruitment and activation of Ly6Clo/iNOS+ macrophages. J Neurosci Off J Soc Neurosci 31(27):9910–9922

    Article  CAS  Google Scholar 

  55. Nahrendorf M, Swirski FK (2013) Monocyte and macrophage heterogeneity in the heart. Circ Res 112(12):1624–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ingersoll MA, Spanbroek R, Lottaz C, Gautier EL, Frankenberger M, Hoffmann R et al (2010) Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 115(3):e10-9

    Article  PubMed  CAS  Google Scholar 

  57. Wong KL, Tai JJ, Wong WC, Han H, Sem X, Yeap WH et al (2011) Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood 118(5):e16–e31

    Article  CAS  PubMed  Google Scholar 

  58. Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A et al (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204(5):1057–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ramachandran P, Pellicoro A, Vernon MA, Boulter L, Aucott RL, Ali A et al (2012) Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A 109(46):E3186–E3195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Steinman RM (1999) Dendritic cells. Lippencott-Raven Publishers, Philadelphia

    Google Scholar 

  61. McMenamin PG (1997) The distribution of immune cells in the uveal tract of the normal eye. Eye 11(Pt 2):183–193

    Article  PubMed  Google Scholar 

  62. Forrester JV, Liversidge J, Dick A, McMenamin P, Kuppner M, Crane I et al (1997) What determines the site of inflammation in uveitis and chorioretinitis? Eye 11(Pt 2):162–166

    Article  PubMed  Google Scholar 

  63. Nilsson G (1999) Costa JJ, and Metcalfe DD. In: Gallin JI, Synderman R (eds) Inflammation: basic principles and clinical correlates, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  64. Dines KC, Powell HC (1997) Mast cell interactions with the nervous system: relationship to mechanisms of disease. J Neuropathol Exp Neurol 56(6):627–640

    Article  CAS  PubMed  Google Scholar 

  65. Meininger CJ (1995) Mast cells and tumor-associated angiogenesis. Chem Immunol 62:239–257

    CAS  PubMed  Google Scholar 

  66. Hagiwara K, Khaskhely NM, Uezato H, Nonaka S (1999) Mast cell “densities” in vascular proliferations: a preliminary study of pyogenic granuloma, portwine stain, cavernous hemangioma, cherry angioma, Kaposi’s sarcoma, and malignant hemangioendothelioma. J Dermatol 26(9):577–586

    Article  CAS  PubMed  Google Scholar 

  67. Costa JJ, Galli SJ (1996) Mast cells and basophils. In: Rich R, Flesher TA, Schwartz BD, Shearer WT, Strober W (eds) Clinical immunology: principles and practice, vol 1. Mosby, St. Louis

    Google Scholar 

  68. Kovanen PT (1995) Role of mast cells in atherosclerosis. Chem Immunol 62:132–170

    CAS  PubMed  Google Scholar 

  69. Ignatescu MC, Gharehbaghi-Schnell E, Hassan A, Rezaie-Majd S, Korschineck I, Schleef RR et al (1999) Expression of the angiogenic protein, platelet-derived endothelial cell growth factor, in coronary atherosclerotic plaques: in vivo correlation of lesional microvessel density and constrictive vascular remodeling. Arterioscler Thromb Vasc Biol 19(10):2340–2347

    Article  CAS  PubMed  Google Scholar 

  70. Kaartinen M, van der Wal AC, van der Loos CM, Piek JJ, Koch KT, Becker AE et al (1998) Mast cell infiltration in acute coronary syndromes: implications for plaque rupture. J Am Coll Cardiol 32(3):606–612

    Article  CAS  PubMed  Google Scholar 

  71. Boesiger J, Tsai M, Maurer M, Yamaguchi M, Brown LF, Claffey KP et al (1998) Mast cells can secrete vascular permeability factor/vascular endothelial cell growth factor and exhibit enhanced release after immunoglobulin E-dependent upregulation of fc epsilon receptor I expression. J Exp Med 188(6):1135–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kanbe N, Tanaka A, Kanbe M, Itakura A, Kurosawa M, Matsuda H (1999) Human mast cells produce matrix metalloproteinase 9. Eur J Immunol 29(8):2645–2649

    Article  CAS  PubMed  Google Scholar 

  73. Johnson JL, Jackson CL, Angelini GD, George SJ (1998) Activation of matrix-degrading metalloproteinases by mast cell proteases in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 18(11):1707–1715

    Article  CAS  PubMed  Google Scholar 

  74. May CA (1999) Mast cell heterogeneity in the human uvea. Histochem Cell Biol 112(5):381–386

    Article  CAS  PubMed  Google Scholar 

  75. Bhutto IA, McLeod DS, Jing T, Sunness JS, Seddon JM, Lutty GA (2016) Increased choroidal mast cells and their degranulation in age-related macular degeneration. Br J Ophthalmol 100(5):720–726

    Article  PubMed  Google Scholar 

  76. Penfold P, Killingsworth M, Sarks S (1984) An ultrastructural study of the role of leucocytes and fibroblasts in the breakdown of Bruch’s membrane. Aust J Ophthalmol 12(1):23–31

    Article  CAS  PubMed  Google Scholar 

  77. Tonnesen MG, Feng X, Clark RA (2000) Angiogenesis in wound healing. J Investig Dermatol Symp Proc 5(1):40–46

    Article  CAS  PubMed  Google Scholar 

  78. Azizkhan RG, Azizkhan JC, Zetter BR, Folkman J (1980) Mast cell heparin stimulates migration of capillary endothelial cells in vitro. J Exp Med 152(4):931–944

    Article  CAS  PubMed  Google Scholar 

  79. Tharp MD (1989) The interaction between mast cells and endothelial cells. J Invest Dermatol 93(2 Suppl):107S–112S

    Article  CAS  PubMed  Google Scholar 

  80. Takehana Y, Kurokawa T, Kitamura T, Tsukahara Y, Akahane S, Kitazawa M et al (1999) Suppression of laser-induced choroidal neovascularization by oral tranilast in the rat. Invest Ophthalmol Vis Sci 40(2):459–466

    CAS  PubMed  Google Scholar 

  81. Janeway CA, Tavers P, Walport M (1999) Immunobiology. Academic Press, London

    Google Scholar 

  82. Roitt IM (1999) Roitt’s essential immunology. Blackwell Science Ltd, Oxford

    Google Scholar 

  83. Seder RA, Mosmann TM (1999) Differentiation of effector phenotypes of CD4+ and CD8+ cells. Lippencott-Raven Publishers, Philadelphia

    Google Scholar 

  84. Benoist C, Mathis D (1999) T-lymphocyte differentiation and biology. Lippencott-Raven Publishers, Philadelphia

    Google Scholar 

  85. Croft M (2009) The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol 9(4):271–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dunn DE, Jin JP, Lancki DW, Fitch FW (1989) An alternative pathway of induction of lymphokine production by T lymphocyte clones. J Immunol 142(11):3847–3856

    Article  CAS  PubMed  Google Scholar 

  87. Lee KP, Harlan DM, June CH (1999) Role of costimulation in the host response to infection. In: Gallin JI, Synderman R (eds) Inflammation: basic principles and clinical correlates, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  88. Augustin AA, Julius MH, Cosenza H (1979) Antigen-specific stimulation and trans-stimulation of T cells in long-term culture. Eur J Immunol 9(9):665–670

    Article  CAS  PubMed  Google Scholar 

  89. Penfold PL, Killingsworth MC, Sarks SH (1985) Senile macular degeneration: the involvement of immunocompetent cells. Graefes Arch Clin Exp Ophthalmol 223(2):69–76

    Article  CAS  PubMed  Google Scholar 

  90. Kotake S, Yago T, Kobashigawa T, Nanke Y (2017) The plasticity of Th17 cells in the pathogenesis of rheumatoid arthritis. J Clin Med 6(7):67

    Article  PubMed Central  CAS  Google Scholar 

  91. Clark MR (1997) IgG effector mechanisms. Chem Immunol 65:88–110

    CAS  PubMed  Google Scholar 

  92. Dwyer JM (1996) Immunoglobulins in autoimmunity: history and mechanisms of action. Clin Exp Rheumatol 14(Suppl 15):S3–S7

    PubMed  Google Scholar 

  93. Reichlin M (1998) Cellular dysfunction induced by penetration of autoantibodies into living cells: cellular damage and dysfunction mediated by antibodies to dsDNA and ribosomal P proteins. J Autoimmun 11(5):557–561

    Article  CAS  PubMed  Google Scholar 

  94. Shoenfeld Y, Alarcon-Segovia D, Buskila D, Abu-Shakra M, Lorber M, Sherer Y et al (1999) Frontiers of SLE: review of the 5th international congress of systemic Lupus Erythematosus, Cancun, Mexico, April 20-25, 1998. Semin Arthritis Rheum 29(2):112–130

    Article  CAS  PubMed  Google Scholar 

  95. Adamus G, Machnicki M, Elerding H, Sugden B, Blocker YS, Fox DA (1998) Antibodies to recoverin induce apoptosis of photoreceptor and bipolar cells in vivo. J Autoimmun 11(5):523–533

    Article  CAS  PubMed  Google Scholar 

  96. Rosenberg HF, Gallin JI (1999) Inflammation. Lippencott-Raven Publishers, Philadelphia

    Google Scholar 

  97. Descotes J, Choquet-Kastylevsky G, Van Ganse E, Vial T (2000) Responses of the immune system to injury. Toxicol Pathol 28(3):479–481

    Article  CAS  PubMed  Google Scholar 

  98. Cotran RS, Kumar V, Collins T, Robbins SL (1999) Robbins pathologic basis of disease. W.B. Saunders Company, Philadelphia

    Google Scholar 

  99. Silverstein RL (1999) Age-related macular degeneration. In: Gallin JI, Synderman R (eds) Inflammation: basic principles and clinical correlates, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  100. Mims CA, Nash A, Stephen J (2001) Mims pathogenesis of infectious diseases. Academic Press, London

    Google Scholar 

  101. Blaser MJ, Smith PD (1999) What is inflammation ? In: Gallin JI, Synderman R (eds) Inflammation: basic principles and clinical correlates, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  102. Robman L, Mahdi O, McCarty C, Dimitrov P, Tikellis G, McNeil J et al (2005) Exposure to chlamydia pneumoniae infection and progression of age-related macular degeneration. Am J Epidemiol 161(11):1013–1019

    Article  PubMed  Google Scholar 

  103. Robman L, Mahdi OS, Wang JJ, Burlutsky G, Mitchell P, Byrne G et al (2007) Exposure to chlamydia pneumoniae infection and age-related macular degeneration: the Blue Mountains eye study. Invest Ophthalmol Vis Sci 48(9):4007–4011

    Article  PubMed  Google Scholar 

  104. Guymer R, Robman L (2007) Chlamydia pneumoniae and age-related macular degeneration: a role in pathogenesis or merely a chance association? Clin Exp Ophthalmol 35(1):89–93

    Article  PubMed  Google Scholar 

  105. Cousins SW, Espinosa-Heidmann DG, Miller DM, Pereira-Simon S, Hernandez EP, Chien H et al (2012) Macrophage activation associated with chronic murine cytomegalovirus infection results in more severe experimental choroidal neovascularization. PLoS Pathog 8(4):e1002671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Obonyo M, Sabet M, Cole SP, Ebmeyer J, Uematsu S, Akira S et al (2007) Deficiencies of myeloid differentiation factor 88, toll-like receptor 2 (TLR2), or TLR4 produce specific defects in macrophage cytokine secretion induced by Helicobacter pylori. Infect Immun 75(5):2408–2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ge Y, Mansell A, Ussher JE, Brooks AE, Manning K, Wang CJ et al (2013) Rotavirus NSP4 triggers secretion of Proinflammatory cytokines from macrophages via toll-like receptor 2. J Virol 87(20):11160–11167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Miller DM, Espinosa-Heidmann DG, Legra J, Dubovy SR, Suner IJ, Sedmak DD et al (2004) The association of prior cytomegalovirus infection with neovascular age-related macular degeneration. Am J Ophthalmol 138(3):323–328

    Article  PubMed  Google Scholar 

  109. Weiss A (1999) T-lymphocyte activation. Lippencott-Raven Publishers, Philadelphia

    Google Scholar 

  110. Gregerson DS (1998) Immune privilege in the retina. Ocul Immunol Inflamm 6(4):257–267

    Article  CAS  PubMed  Google Scholar 

  111. Cousins SW, Dix RD (1997) Immunology of the eye. In: Keane RW, WF HI (eds) Immunology of the nervous system. Oxford University Press, New York

    Google Scholar 

  112. Shevach EM (1999) Organ-specific autoimmunity. Lippencott-Raven Publishers, Philadelphia

    Google Scholar 

  113. Singh VK, Kalra HK, Yamaki K, Abe T, Donoso LA, Shinohara T (1990) Molecular mimicry between a uveitopathogenic site of S-antigen and viral peptides. Induction of experimental autoimmune uveitis in Lewis rats. J Immunol 144(4):1282–1287

    Article  CAS  PubMed  Google Scholar 

  114. Levine JS, Koh JS (1999) The role of apoptosis in autoimmunity: immunogen, antigen, and accelerant. Semin Nephrol 19(1):34–47

    CAS  PubMed  Google Scholar 

  115. Berden JH, van Bruggen MC (1997) Nucleosomes and the pathogenesis of lupus nephritis. Kidney Blood Press Res 20(3):198–200

    Article  CAS  PubMed  Google Scholar 

  116. Gregerson DS, Torseth JW, McPherson SW, Roberts JP, Shinohara T, Zack DJ (1999) Retinal expression of a neo-self antigen, beta-galactosidase, is not tolerogenic and creates a target for autoimmune uveoretinitis. J Immunol 163(2):1073–1080

    Article  CAS  PubMed  Google Scholar 

  117. Ross R (1999) Role of costimulation in the host response to infection. In: Gallin JI, Synderman R (eds) Inflammation: basic principles and clinical correlates, 3rd edn. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  118. Wizeman JW, Nicholas AP, Ishigami A, Mohan R (2016) Citrullination of glial intermediate filaments is an early response in retinal injury. Mol Vis 22:1137–1155

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Adler S, Couser W (1985) Immunologic mechanisms of renal disease. Am J Med Sci 289(2):55–60

    Article  CAS  PubMed  Google Scholar 

  120. Dick AD (2000) Immune mechanisms of uveitis: insights into disease pathogenesis and treatment. Int Ophthalmol Clin 40(2):1–18

    Article  CAS  PubMed  Google Scholar 

  121. Smith RE (1997) Commentary on histoplasmosis. Ocul Immunol Inflamm 5(1):69–70

    Article  CAS  PubMed  Google Scholar 

  122. Cooper NR (1999) Biology of complement. In: Gallin JI, Synderman R (eds) Inflammation: basic principles and clinical correlates, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  123. Prodinger WM, Wurzner R, Erdei A, Dietrich MP (1999) Complement. In: Paul WE (ed) Fundamental immunology, 4th edn. Lippencott-Raven Publishers, Philadelphia

    Google Scholar 

  124. Gasque P, Dean YD, McGreal EP, VanBeek J, Morgan BP (2000) Complement components of the innate immune system in health and disease in the CNS. Immunopharmacology 49(1–2):171–186

    Article  CAS  PubMed  Google Scholar 

  125. Juel HB, Kaestel C, Folkersen L, Faber C, Heegaard NH, Borup R et al (2011) Retinal pigment epithelial cells upregulate expression of complement factors after co-culture with activated T cells. Exp Eye Res 92(3):180–188

    Article  CAS  PubMed  Google Scholar 

  126. Gewurz H, Ying SC, Jiang H, Lint TF (1993) Nonimmune activation of the classical complement pathway. Behring Inst Mitt 93:138–147

    CAS  Google Scholar 

  127. Preissner KT, Seiffert D (1998) Role of vitronectin and its receptors in haemostasis and vascular remodeling. Thromb Res 89(1):1–21

    Article  CAS  PubMed  Google Scholar 

  128. Hogasen K, Mollnes TE, Harboe M (1992) Heparin-binding properties of vitronectin are linked to complex formation as illustrated by in vitro polymerization and binding to the terminal complement complex. J Biol Chem 267(32):23076–23082

    Article  CAS  PubMed  Google Scholar 

  129. Sorensen IJ, Nielsen EH, Andersen O, Danielsen B, Svehag SE (1996) Binding of complement proteins C1q and C4bp to serum amyloid P component (SAP) in solid contra liquid phase. Scand J Immunol 44(4):401–407

    Article  CAS  PubMed  Google Scholar 

  130. Boldt AB, Goeldner I, de Messias-Reason IJ (2012) Relevance of the lectin pathway of complement in rheumatic diseases. Adv Clin Chem 56:105–153

    Article  CAS  PubMed  Google Scholar 

  131. Ogawa S, Clauss M, Kuwabara K, Shreeniwas R, Butura C, Koga S et al (1991) Hypoxia induces endothelial cell synthesis of membrane-associated proteins. Proc Natl Acad Sci U S A 88(21):9897–9901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Weinhouse GL, Belloni PN, Farber HW (1993) Effect of hypoxia on endothelial cell surface glycoprotein expression: modulation of glycoprotein IIIa and other specific surface glycoproteins. Exp Cell Res 208(2):465–478

    Article  CAS  PubMed  Google Scholar 

  133. Collard CD, Lekowski R, Jordan JE, Agah A, Stahl GL (1999) Complement activation following oxidative stress. Mol Immunol 36(13–14):941–948

    Article  CAS  PubMed  Google Scholar 

  134. Collard CD, Vakeva A, Morrissey MA, Agah A, Rollins SA, Reenstra WR et al (2000) Complement activation after oxidative stress: role of the lectin complement pathway. Am J Pathol 156(5):1549–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhou J, Jang YP, Kim SR, Sparrow JR (2006) Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium. Proc Natl Acad Sci U S A 103(44):16182–16187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bardenstein DS, Cheyer C, Okada N, Morgan BP, Medof ME (1999) Cell surface regulators of complement, 5I2 antigen, and CD59, in the rat eye and adnexal tissues. Invest Ophthalmol Vis Sci 40(2):519–524

    CAS  PubMed  Google Scholar 

  137. Lass JH, Walter EI, Burris TE, Grossniklaus HE, Roat MI, Skelnik DL et al (1990) Expression of two molecular forms of the complement decay-accelerating factor in the eye and lacrimal gland. Invest Ophthalmol Vis Sci 31(6):1136–1148

    CAS  PubMed  Google Scholar 

  138. Wasmuth S, Lueck K, Baehler H, Lommatzsch A, Pauleikhoff D (2009) Increased vitronectin production by complement-stimulated human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 50(11):5304–5309

    Article  PubMed  Google Scholar 

  139. Jha S, Brickey WJ, Ting JP (2017) Inflammasomes in myeloid cells: warriors within. Microbiol Spectr 5(1). https://doi.org/10.1128/microbiolspec.MCHD-0049-2016

  140. Ciraci C, Janczy JR, Sutterwala FS, Cassel SL (2012) Control of innate and adaptive immunity by the inflammasome. Microbes Infect 14(14):1263–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Swanson KV, Deng M, Ting JP (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19(8):477–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Killingsworth MC, Sarks JP, Sarks SH (1990) Macrophages related to Bruch’s membrane in age-related macular degeneration. Eye (Lond) 4(Pt 4):613–621

    Article  Google Scholar 

  143. van der Schaft TL, Mooy CM, de Bruijn WC, de Jong PT (1993) Early stages of age-related macular degeneration: an immunofluorescence and electron microscopy study. Br J Ophthalmol 77(10):657–661

    Article  PubMed  PubMed Central  Google Scholar 

  144. Cherepanoff S, McMenamin P, Gillies MC, Kettle E, Sarks SH (2010) Bruch's membrane and choroidal macrophages in early and advanced age-related macular degeneration. Br J Ophthalmol 94(7):918–925

    Article  CAS  PubMed  Google Scholar 

  145. McLeod DS, Bhutto I, Edwards MM, Silver RE, Seddon JM, Lutty GA (2016) Distribution and quantification of choroidal macrophages in human eyes with age-related macular degeneration. Invest Ophthalmol Vis Sci 57(14):5843–5855

    Article  PubMed  PubMed Central  Google Scholar 

  146. Lad EM, Cousins SW, Van Arnam JS, Proia AD (2015) Abundance of infiltrating CD163+ cells in the retina of postmortem eyes with dry and neovascular age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 253(11):1941–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Guillonneau X, Eandi CM, Paques M, Sahel JA, Sapieha P, Sennlaub F (2017) On phagocytes and macular degeneration. Prog Retin Eye Res 61:98–128

    Article  CAS  PubMed  Google Scholar 

  148. Vessey KA, Gu BJ, Jobling AI, Phipps JA, Greferath U, Tran MX et al (2017) Loss of function of P2X7 receptor scavenger activity in aging mice: a novel model for investigating the early pathogenesis of age-related macular degeneration. Am J Pathol 187(8):1670–1685

    Article  CAS  PubMed  Google Scholar 

  149. Gu BJ, Baird PN, Vessey KA, Skarratt KK, Fletcher EL, Fuller SJ et al (2013) A rare functional haplotype of the P2RX4 and P2RX7 genes leads to loss of innate phagocytosis and confers increased risk of age-related macular degeneration. FASEB J 27(4):1479–1487

    Article  CAS  PubMed  Google Scholar 

  150. Mettu PS, Wielgus AR, Ong SS, Cousins SW (2012) Retinal pigment epithelium response to oxidant injury in the pathogenesis of early age-related macular degeneration. Mol Asp Med 33(4):376–398

    Article  CAS  Google Scholar 

  151. Krogh Nielsen M, Subhi Y, Molbech CR, Falk MK, Singh A, Nissen MH et al (2019) Patients with a fast progression profile in geographic atrophy have increased CD200 expression on circulating monocytes. Clin Exp Ophthalmol 47(1):69–78

    Article  PubMed  Google Scholar 

  152. Levy O, Calippe B, Lavalette S, Hu SJ, Raoul W, Dominguez E et al (2015) Apolipoprotein E promotes subretinal mononuclear phagocyte survival and chronic inflammation in age-related macular degeneration. EMBO Mol Med 7(2):211–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Christenbury JG, Folgar FA, O'Connell RV, Chiu SJ, Farsiu S, Toth CA et al (2013) Progression of intermediate age-related macular degeneration with proliferation and inner retinal migration of hyperreflective foci. Ophthalmology 120(5):1038–1045

    Article  PubMed  Google Scholar 

  154. Schuman SG, Koreishi AF, Farsiu S, Jung SH, Izatt JA, Toth CA (2009) Photoreceptor layer thinning over drusen in eyes with age-related macular degeneration imaged in vivo with spectral-domain optical coherence tomography. Ophthalmology 116(3):488–496.e2

    Article  PubMed  Google Scholar 

  155. Sennlaub F, Auvynet C, Calippe B, Lavalette S, Poupel L, Hu SJ et al (2013) CCR2(+) monocytes infiltrate atrophic lesions in age-related macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in Cx3cr1 deficient mice. EMBO Mol Med 5(11):1775–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gocho K, Sarda V, Falah S, Sahel JA, Sennlaub F, Benchaboune M et al (2013) Adaptive optics imaging of geographic atrophy. Invest Ophthalmol Vis Sci 54(5):3673–3680

    Article  PubMed  Google Scholar 

  157. Chinnery HR, McLenachan S, Humphries T, Kezic JM, Chen X, Ruitenberg MJ et al (2012) Accumulation of murine subretinal macrophages: effects of age, pigmentation and CX3CR1. Neurobiol Aging 33(8):1769–1776

    Article  CAS  PubMed  Google Scholar 

  158. Combadiere C, Feumi C, Raoul W, Keller N, Rodero M, Pezard A et al (2007) CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Invest 117(10):2920–2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. O’Koren EG, Mathew R, Saban DR (2016) Fate mapping reveals that microglia and recruited monocyte-derived macrophages are definitively distinguishable by phenotype in the retina. Sci Rep 6:20636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Wang S, Neekhra A, Albert DM, Sorenson CM, Sheibani N (2012) Suppression of thrombospondin-1 expression during uveal melanoma progression and its potential therapeutic utility. Arch Ophthalmol 130(3):336–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ng TF, Turpie B, Masli S (2009) Thrombospondin-1-mediated regulation of microglia activation after retinal injury. Invest Ophthalmol Vis Sci 50(11):5472–5478

    Article  PubMed  Google Scholar 

  162. Gautier EL, Ivanov S, Lesnik P, Randolph GJ (2013) Local apoptosis mediates clearance of macrophages from resolving inflammation in mice. Blood 122(15):2714–2722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Fordham JB, Hua J, Morwood SR, Schewitz-Bowers LP, Copland DA, Dick AD et al (2012) Environmental conditioning in the control of macrophage thrombospondin-1 production. Sci Rep 2:512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Miyajima-Uchida H, Hayashi H, Beppu R, Kuroki M, Fukami M, Arakawa F et al (2000) Production and accumulation of thrombospondin-1 in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 41(2):561–567

    CAS  PubMed  Google Scholar 

  165. Simi A, Tsakiri N, Wang P, Rothwell NJ (2007) Interleukin-1 and inflammatory neurodegeneration. Biochem Soc Trans 35(Pt 5):1122–1126

    Article  CAS  PubMed  Google Scholar 

  166. Allan SM, Tyrrell PJ, Rothwell NJ (2005) Interleukin-1 and neuronal injury. Nat Rev Immunol 5(8):629–640

    Article  CAS  PubMed  Google Scholar 

  167. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140(6):821–832

    Article  CAS  PubMed  Google Scholar 

  168. Eandi CM, Charles Messance H, Augustin S, Dominguez E, Lavalette S, Forster V et al (2016) Subretinal mononuclear phagocytes induce cone segment loss via IL-1β. Elife 5:e16490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Mathis T, Housset M, Eandi C, Beguier F, Touhami S, Reichman S et al (2017) Activated monocytes resist elimination by retinal pigment epithelium and downregulate their OTX2 expression via TNF-alpha. Aging Cell 16(1):173–182

    Article  CAS  PubMed  Google Scholar 

  170. Housset M, Samuel A, Ettaiche M, Bemelmans A, Beby F, Billon N et al (2013) Loss of Otx2 in the adult retina disrupts retinal pigment epithelium function, causing photoreceptor degeneration. J Neurosci 33(24):9890–9904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Hsu ST, Thompson AC, Stinnett SS, Luhmann UFO, Vajzovic L, Horne A et al (2019) Longitudinal study of visual function in dry age-related macular degeneration at 12 months. Ophthalmol Retina 3(8):637–648

    Article  PubMed  PubMed Central  Google Scholar 

  172. Flamendorf J, Agron E, Wong WT, Thompson D, Wiley HE, Doss EL et al (2015) Impairments in dark adaptation are associated with age-related macular degeneration severity and reticular pseudodrusen. Ophthalmology 122(10):2053–2062

    Article  PubMed  Google Scholar 

  173. Caicedo A, Espinosa-Heidmann DG, Pina Y, Hernandez EP, Cousins SW (2005) Blood-derived macrophages infiltrate the retina and activate Muller glial cells under experimental choroidal neovascularization. Exp Eye Res 81(1):38–47

    Article  CAS  PubMed  Google Scholar 

  174. Caicedo A, Espinosa-Heidmann DG, Hamasaki D, Pina Y, Cousins SW (2005) Photoreceptor synapses degenerate early in experimental choroidal neovascularization. J Comp Neurol 483(3):263–277

    Article  PubMed  Google Scholar 

  175. Cousins SW, Espinosa-Heidmann DG, Csaky KG (2004) Monocyte activation in patients with age-related macular degeneration: a biomarker of risk for choroidal neovascularization? Arch Ophthalmol 122(7):1013–1018

    Article  PubMed  Google Scholar 

  176. Shi X, Semkova I, Muther PS, Dell S, Kociok N, Joussen AM (2006) Inhibition of TNF-alpha reduces laser-induced choroidal neovascularization. Exp Eye Res 83(6):1325–1334

    Article  CAS  PubMed  Google Scholar 

  177. Lichtlen P, Lam TT, Nork TM, Streit T, Urech DM (2010) Relative contribution of VEGF and TNF-alpha in the cynomolgus laser-induced CNV model: comparing the efficacy of bevacizumab, adalimumab, and ESBA105. Invest Ophthalmol Vis Sci 51(9):4738–4745

    Article  PubMed  Google Scholar 

  178. Ohta K, Yamagami S, Taylor AW, Streilein JW (2000) IL-6 antagonizes TGF-beta and abolishes immune privilege in eyes with endotoxin-induced uveitis. Invest Ophthalmol Vis Sci 41(9):2591–2599

    CAS  PubMed  Google Scholar 

  179. Krogh Nielsen M, Subhi Y, Molbech CR, Falk MK, Nissen MH, Sorensen TL (2019) Systemic levels of Interleukin-6 correlate with progression rate of geographic atrophy secondary to age-related macular degeneration. Invest Ophthalmol Vis Sci 60(1):202–208

    Article  PubMed  CAS  Google Scholar 

  180. Chalam KV, Grover S, Sambhav K, Balaiya S, Murthy RK (2014) Aqueous interleukin-6 levels are superior to vascular endothelial growth factor in predicting therapeutic response to bevacizumab in age-related macular degeneration. J Ophthalmol 2014:502174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Jiao H, Rutar M, Fernando N, Yednock T, Sankaranarayanan S, Aggio-Bruce R et al (2018) Subretinal macrophages produce classical complement activator C1q leading to the progression of focal retinal degeneration. Mol Neurodegener 13(1):45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Sulahian TH, Hogger P, Wahner AE, Wardwell K, Goulding NJ, Sorg C et al (2000) Human monocytes express CD163, which is upregulated by IL-10 and identical to p155. Cytokine 12(9):1312–1321

    Article  CAS  PubMed  Google Scholar 

  183. Fuentes-Duculan J, Suarez-Farinas M, Zaba LC, Nograles KE, Pierson KC, Mitsui H et al (2010) A subpopulation of CD163-positive macrophages is classically activated in psoriasis. J Invest Dermatol 130(10):2412–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Sarks JP, Sarks SH, Killingsworth MC (1997) Morphology of early choroidal neovascularisation in age-related macular degeneration: correlation with activity. Eye (Lond) 11(Pt 4):515–522

    Article  Google Scholar 

  185. Sheridan CM, Rice D, Hiscott PS, Wong D, Kent DL (2006) The presence of AC133-positive cells suggests a possible role of endothelial progenitor cells in the formation of choroidal neovascularization. Invest Ophthalmol Vis Sci 47(4):1642–1645

    Article  PubMed  Google Scholar 

  186. Krause TA, Alex AF, Engel DR, Kurts C, Eter N (2014) VEGF-production by CCR2-dependent macrophages contributes to laser-induced choroidal neovascularization. PLoS One 9(4):e94313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Liu J, Copland DA, Horie S, Wu WK, Chen M, Xu Y et al (2013) Myeloid cells expressing VEGF and arginase-1 following uptake of damaged retinal pigment epithelium suggests potential mechanism that drives the onset of choroidal angiogenesis in mice. PLoS One 8(8):e72935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Lavalette S, Raoul W, Houssier M, Camelo S, Levy O, Calippe B et al (2011) Interleukin-1beta inhibition prevents choroidal neovascularization and does not exacerbate photoreceptor degeneration. Am J Pathol 178(5):2416–2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Tsutsumi C, Sonoda KH, Egashira K, Qiao H, Hisatomi T, Nakao S et al (2003) The critical role of ocular-infiltrating macrophages in the development of choroidal neovascularization. J Leukoc Biol 74(1):25–32

    Article  CAS  PubMed  Google Scholar 

  190. Ciulla TA, Criswell MH, Danis RP, Fronheiser M, Yuan P, Cox TA et al (2003) Choroidal neovascular membrane inhibition in a laser treated rat model with intraocular sustained release triamcinolone acetonide microimplants. Br J Ophthalmol 87(8):1032–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ciulla TA, Criswell MH, Danis RP, Hill TE (2001) Intravitreal triamcinolone acetonide inhibits choroidal neovascularization in a laser-treated rat model. Arch Ophthalmol 119(3):399–404

    Article  CAS  PubMed  Google Scholar 

  192. Ishibashi T, Miki K, Sorgente N, Patterson R, Ryan SJ (1985) Effects of intravitreal administration of steroids on experimental subretinal neovascularization in the subhuman primate. Arch Ophthalmol 103(5):708–711

    Article  CAS  PubMed  Google Scholar 

  193. Grunin M, Hagbi-Levi S, Rinsky B, Smith Y, Chowers I (2016) Transcriptome analysis on monocytes from patients with neovascular age-related macular degeneration. Sci Rep 6:29046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Grunin M, Burstyn-Cohen T, Hagbi-Levi S, Peled A, Chowers I (2012) Chemokine receptor expression in peripheral blood monocytes from patients with neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 53(9):5292–5300

    Article  CAS  PubMed  Google Scholar 

  195. Singh A, Falk MK, Hviid TV, Sorensen TL (2013) Increased expression of CD200 on circulating CD11b+ monocytes in patients with neovascular age-related macular degeneration. Ophthalmology 120(5):1029–1037

    Article  PubMed  Google Scholar 

  196. Heier JS (2019) Angiongenesis, exudation, and degeneration 2019 annual meeting, Miami, FL

    Google Scholar 

  197. Hirschi KK, Rohovsky SA, Beck LH, Smith SR, D’Amore PA (1999) Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ Res 84(3):298–305

    Article  CAS  PubMed  Google Scholar 

  198. Hirschi KK, Rohovsky SA, D'Amore PA (1998) PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141(3):805–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Espinosa-Heidmann DG, Malek G, Mettu PS, Caicedo A, Saloupis P, Gach S et al (2013) Bone marrow transplantation transfers age-related susceptibility to neovascular remodeling in murine laser-induced choroidal neovascularization. Invest Ophthalmol Vis Sci 54(12):7439–7449

    Article  PubMed  PubMed Central  Google Scholar 

  200. Lad EM, Grunwald L, Mettu PS, Serrano NP, Crowell S, Cousins SW (2012) Lesion morphology on indocyanine green angiography in age-related macular degeneration with classic choroidal neovascular membrane: implications for response to anti-VEGF treatment. Invest Ophthalmol Vis Sci 53(6):5161

    Google Scholar 

  201. Mettu PS, Crowell S, Shaw J, Grunwald L, Lad EM, Serrano N et al (2012) Neovascular morphology on ICG angiography predicts response to anti-VEGF therapy in eyes with serous pigment epithelial detachments and age-related macular degeneration. Invest Ophthalmol Vis Sci 53(6):2654

    Google Scholar 

  202. Serrano NP, Shaw J, Mettu PS, Lad EM, Crowell S, Cousins SW (2012) High-speed indocyanine green angiography in age related macular degeneration with fibrovascular pigment epithelial detachments. Invest Ophthalmol Vis Sci 53(6):1151

    Google Scholar 

  203. Kent D, Sheridan C (2003) Choroidal neovascularization: a wound healing perspective. Mol Vis 9:747–755

    CAS  PubMed  Google Scholar 

  204. Li L, Heiduschka P, Alex AF, Niekamper D, Eter N (2017) Behaviour of CD11b-positive cells in an animal model of laser-induced choroidal neovascularisation. Ophthalmologica 237(1):29–41

    Article  CAS  PubMed  Google Scholar 

  205. Sakurai E, Anand A, Ambati BK, van Rooijen N, Ambati J (2003) Macrophage depletion inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44(8):3578–3585

    Article  PubMed  Google Scholar 

  206. He L, Marneros AG (2013) Macrophages are essential for the early wound healing response and the formation of a fibrovascular scar. Am J Pathol 182(6):2407–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Chen M, Lechner J, Zhao J, Toth L, Hogg R, Silvestri G et al (2016) STAT3 activation in circulating monocytes contributes to neovascular age-related macular degeneration. Curr Mol Med 16(4):412–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Lechner J, Chen M, Hogg RE, Toth L, Silvestri G, Chakravarthy U et al (2017) Peripheral blood mononuclear cells from neovascular age-related macular degeneration patients produce higher levels of chemokines CCL2 (MCP-1) and CXCL8 (IL-8). J Neuroinflammation 14(1):42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Kokame GT, Liu K, Kokame KA, Kaneko KN, Omizo JN (2019) Clinical characteristics of polypoidal choroidal vasculopathy and anti-vascular endothelial growth factor treatment response in caucasians. Ophthalmologica 2019:1–9

    Google Scholar 

  210. Kokame GT, de Carlo TE, Kaneko KN, Omizo JN, Lian R (2019) Anti-vascular endothelial growth factor resistance in exudative macular degeneration and polypoidal choroidal vasculopathy. Ophthalmol Retina 3(9):744–752

    Article  PubMed  Google Scholar 

  211. Grossniklaus HE, Miskala PH, Green WR, Bressler SB, Hawkins BS, Toth C et al (2005) Histopathologic and ultrastructural features of surgically excised subfoveal choroidal neovascular lesions: submacular surgery trials report no. 7. Arch Ophthalmol 123(7):914–921

    Article  PubMed  Google Scholar 

  212. Tatar O, Shinoda K, Kaiserling E, Claes C, Eckardt C, Eckert T et al (2009) Implications of bevacizumab on vascular endothelial growth factor and endostatin in human choroidal neovascularisation. Br J Ophthalmol 93(2):159–165

    Article  CAS  PubMed  Google Scholar 

  213. Reddy VM, Zamora RL, Kaplan HJ (1995) Distribution of growth factors in subfoveal neovascular membranes in age-related macular degeneration and presumed ocular histoplasmosis syndrome. Am J Ophthalmol 120(3):291–301

    Article  CAS  PubMed  Google Scholar 

  214. Klaver CC, Kliffen M, van Duijn CM, Hofman A, Cruts M, Grobbee DE et al (1998) Genetic association of apolipoprotein E with age-related macular degeneration. Am J Hum Genet 63(1):200–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Ross R, Masuda J, Raines EW, Gown AM, Katsuda S, Sasahara M et al (1990) Localization of PDGF-B protein in macrophages in all phases of atherogenesis. Science 248(4958):1009–1012

    Article  CAS  PubMed  Google Scholar 

  216. Rajavashisth TB, Xu XP, Jovinge S, Meisel S, Xu XO, Chai NN et al (1999) Membrane type 1 matrix metalloproteinase expression in human atherosclerotic plaques: evidence for activation by proinflammatory mediators. Circulation 99(24):3103–3109

    Article  CAS  PubMed  Google Scholar 

  217. George SJ (1998) Tissue inhibitors of metalloproteinases and metalloproteinases in atherosclerosis. Curr Opin Lipidol 9(5):413–423

    Article  CAS  PubMed  Google Scholar 

  218. Clinton SK, Underwood R, Hayes L, Sherman ML, Kufe DW, Libby P (1992) Macrophage colony-stimulating factor gene expression in vascular cells and in experimental and human atherosclerosis. Am J Pathol 140(2):301–316

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Kamanna VS, Pai R, Ha H, Kirschenbaum MA, Roh DD (1999) Oxidized low-density lipoprotein stimulates monocyte adhesion to glomerular endothelial cells. Kidney Int 55(6):2192–2202

    Article  CAS  PubMed  Google Scholar 

  220. Hattori M, Nikolic-Paterson DJ, Miyazaki K, Isbel NM, Lan HY, Atkins RC et al (1999) Mechanisms of glomerular macrophage infiltration in lipid-induced renal injury. Kidney Int Suppl 71:S47–S50

    Article  CAS  PubMed  Google Scholar 

  221. Duffield JS, Erwig LP, Wei X, Liew FY, Rees AJ, Savill JS (2000) Activated macrophages direct apoptosis and suppress mitosis of mesangial cells. J Immunol 164(4):2110–2119

    Article  CAS  PubMed  Google Scholar 

  222. Rezar-Dreindl S, Sacu S, Eibenberger K, Pollreisz A, Buhl W, Georgopoulos M et al (2016) The intraocular cytokine profile and therapeutic response in persistent neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 57(10):4144–4150

    Article  PubMed  Google Scholar 

  223. Subhi Y, Krogh Nielsen M, Molbech CR, Kruger Falk M, Singh A, Hviid TVF et al (2019) Association of CD11b+ monocytes and anti-vascular endothelial growth factor injections in treatment of neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. JAMA Ophthalmol 137(5):515–522

    Article  PubMed  PubMed Central  Google Scholar 

  224. Espinosa-Heidmann DG, Suner I, Hernandez EP, Frazier WD, Csaky KG, Cousins SW (2002) Age as an independent risk factor for severity of experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 43(5):1567–1573

    PubMed  Google Scholar 

  225. Mettu PS, Saloupis P, Cousins SW (2014) PAMP stimulation of macrophages promotes neovascular remodeling in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 55(13):1198

    Google Scholar 

  226. Suñer IJ, Espinosa-Heidmann DG, Marin-Castano ME, Hernandez EP, Pereira-Simon S, Cousins SW (2004) Nicotine increases size and severity of experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 45(1):311–317

    Article  PubMed  Google Scholar 

  227. Espinosa-Heidmann DG, Suner IJ, Hernandez EP, Monroy D, Csaky KG, Cousins SW (2003) Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44(8):3586–3592

    Article  PubMed  Google Scholar 

  228. Kelly J, Ali Khan A, Yin J, Ferguson TA, Apte RS (2007) Senescence regulates macrophage activation and angiogenic fate at sites of tissue injury in mice. J Clin Invest 117(11):3421–3426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Apte RS, Richter J, Herndon J, Ferguson TA (2006) Macrophages inhibit neovascularization in a murine model of age-related macular degeneration. PLoS Med 3(8):e310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Nakamura R, Sene A, Santeford A, Gdoura A, Kubota S, Zapata N et al (2015) IL10-driven STAT3 signalling in senescent macrophages promotes pathological eye angiogenesis. Nat Commun 6:7847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Sene A, Khan AA, Cox D, Nakamura RE, Santeford A, Kim BM et al (2013) Impaired cholesterol efflux in senescent macrophages promotes age-related macular degeneration. Cell Metab 17(4):549–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Ambati J, Atkinson JP, Gelfand BD (2013) Immunology of age-related macular degeneration. Nat Rev Immunol 13(6):438–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Schaer DJ, Boretti FS, Schoedon G, Schaffner A (2002) Induction of the CD163-dependent haemoglobin uptake by macrophages as a novel anti-inflammatory action of glucocorticoids. Br J Haematol 119(1):239–243

    Article  CAS  PubMed  Google Scholar 

  234. Izumi-Nagai K, Nagai N, Ozawa Y, Mihara M, Ohsugi Y, Kurihara T et al (2007) Interleukin-6 receptor-mediated activation of signal transducer and activator of transcription-3 (STAT3) promotes choroidal neovascularization. Am J Pathol 170(6):2149–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Sasaki F, Koga T, Ohba M, Saeki K, Okuno T, Ishikawa K et al (2018) Leukotriene B4 promotes neovascularization and macrophage recruitment in murine wet-type AMD models. JCI Insight 3(18):e96902

    Article  PubMed Central  Google Scholar 

  236. Zhao H, Roychoudhury J, Doggett TA, Apte RS, Ferguson TA (2013) Age-dependent changes in FasL (CD95L) modulate macrophage function in a model of age-related macular degeneration. Invest Ophthalmol Vis Sci 54(8):5321–5331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Tan X, Fujiu K, Manabe I, Nishida J, Yamagishi R, Nagai R et al (2015) Choroidal neovascularization is inhibited via an intraocular decrease of inflammatory cells in mice lacking complement component C3. Sci Rep 5:15702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Zandi S, Nakao S, Chun KH, Fiorina P, Sun D, Arita R et al (2015) ROCK-isoform-specific polarization of macrophages associated with age-related macular degeneration. Cell Rep 10(7):1173–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Ueta T, Ishihara K, Notomi S, Lee JJ, Maidana DE, Efstathiou NE et al (2019) RIP1 kinase mediates angiogenesis by modulating macrophages in experimental neovascularization. Proc Natl Acad Sci U S A 116(47):23705–23713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Zawada AM, Rogacev KS, Schirmer SH, Sester M, Bohm M, Fliser D et al (2012) Monocyte heterogeneity in human cardiovascular disease. Immunobiology 217(12):1273–1284

    Article  CAS  PubMed  Google Scholar 

  241. Yang Y, Liu F, Tang M, Yuan M, Hu A, Zhan Z et al (2016) Macrophage polarization in experimental and clinical choroidal neovascularization. Sci Rep 6:30933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Skeie JM, Mullins RF (2009) Macrophages in neovascular age-related macular degeneration: friends or foes? Eye (Lond) 23(4):747–755

    Article  CAS  Google Scholar 

  243. Yu JW, Lee MS (2016) Mitochondria and the NLRP3 inflammasome: physiological and pathological relevance. Arch Pharm Res 39(11):1503–1518

    Article  CAS  PubMed  Google Scholar 

  244. Kerur N, Fukuda S, Banerjee D, Kim Y, Fu D, Apicella I et al (2018) cGAS drives noncanonical-inflammasome activation in age-related macular degeneration. Nat Med 24(1):50–61

    Article  CAS  PubMed  Google Scholar 

  245. Tarallo V, Hirano Y, Gelfand BD, Dridi S, Kerur N, Kim Y et al (2012) DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell 149(4):847–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Mohr LK, Hoffmann AV, Brandstetter C, Holz FG, Krohne TU (2015) Effects of inflammasome activation on secretion of inflammatory cytokines and vascular endothelial growth factor by retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 56(11):6404–6413

    Article  CAS  PubMed  Google Scholar 

  247. Brandstetter C, Holz FG, Krohne TU (2015) Complement component C5a primes retinal pigment epithelial cells for inflammasome activation by lipofuscin-mediated photooxidative damage. J Biol Chem 290(52):31189–31198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Kaneko H, Dridi S, Tarallo V, Gelfand BD, Fowler BJ, Cho WG et al (2011) DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 471(7338):325–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Kerur N, Hirano Y, Tarallo V, Fowler BJ, Bastos-Carvalho A, Yasuma T et al (2013) TLR-independent and P2X7-dependent signaling mediate Alu RNA-induced NLRP3 inflammasome activation in geographic atrophy. Invest Ophthalmol Vis Sci 54(12):7395–7401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Fowler BJ, Gelfand BD, Kim Y, Kerur N, Tarallo V, Hirano Y et al (2014) Nucleoside reverse transcriptase inhibitors possess intrinsic anti-inflammatory activity. Science 346(6212):1000–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Kim Y, Tarallo V, Kerur N, Yasuma T, Gelfand BD, Bastos-Carvalho A et al (2014) DICER1/Alu RNA dysmetabolism induces Caspase-8-mediated cell death in age-related macular degeneration. Proc Natl Acad Sci U S A 111(45):16082–16087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Kosmidou C, Efstathiou NE, Hoang MV, Notomi S, Konstantinou EK, Hirano M et al (2018) Issues with the specificity of immunological reagents for NLRP3: implications for age-related macular degeneration. Sci Rep 8(1):461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. Doyle SL, Campbell M, Ozaki E, Salomon RG, Mori A, Kenna PF et al (2012) NLRP3 has a protective role in age-related macular degeneration through the induction of IL-18 by drusen components. Nat Med 18(5):791–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Doyle SL, Ozaki E, Brennan K, Humphries MM, Mulfaul K, Keaney J et al (2014) IL-18 attenuates experimental choroidal neovascularization as a potential therapy for wet age-related macular degeneration. Sci Transl Med 6(230):230ra44

    Article  PubMed  CAS  Google Scholar 

  255. Nozaki M, Raisler BJ, Sakurai E, Sarma JV, Barnum SR, Lambris JD et al (2006) Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci U S A 103(7):2328–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullins RF (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retina Eye Res 20(6):705–732

    Article  CAS  Google Scholar 

  257. Katschke KJ Jr, Xi H, Cox C, Truong T, Malato Y, Lee WP et al (2018) Classical and alternative complement activation on photoreceptor outer segments drives monocyte-dependent retinal atrophy. Sci Rep 8(1):7348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  258. Wang L, Cano M, Datta S, Wei H, Ebrahimi KB, Gorashi Y et al (2016) Pentraxin 3 recruits complement factor H to protect against oxidative stress-induced complement and inflammasome overactivation. J Pathol 240(4):495–506

    Article  CAS  PubMed  Google Scholar 

  259. Ebrahimi KB, Fijalkowski N, Cano M, Handa JT (2013) Decreased membrane complement regulators in the retinal pigmented epithelium contributes to age-related macular degeneration. J Pathol 229(5):729–742

    Article  CAS  PubMed  Google Scholar 

  260. Yates JR, Sepp T, Matharu BK, Khan JC, Thurlby DA, Shahid H et al (2007) Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med 357(6):553–561

    Article  CAS  PubMed  Google Scholar 

  261. Maller JB, Fagerness JA, Reynolds RC, Neale BM, Daly MJ, Seddon JM (2007) Variation in complement factor 3 is associated with risk of age-related macular degeneration. Nat Genet 39(10):1200–1201

    Article  CAS  PubMed  Google Scholar 

  262. Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K et al (2006) Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 38(4):458–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Fritsche LG, Igl W, Bailey JN, Grassmann F, Sengupta S, Bragg-Gresham JL et al (2016) A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet 48(2):134–143

    Article  CAS  PubMed  Google Scholar 

  264. Fritsche LG, Chen W, Schu M, Yaspan BL, Yu Y, Thorleifsson G et al (2013) Seven new loci associated with age-related macular degeneration. Nat Genet 45(4):433–439e1-2

    Article  CAS  PubMed  Google Scholar 

  265. Fagerness JA, Maller JB, Neale BM, Reynolds RC, Daly MJ, Seddon JM (2009) Variation near complement factor I is associated with risk of advanced AMD. Eur J Hum Genet 17(1):100–104

    Article  CAS  PubMed  Google Scholar 

  266. Taylor RL, Poulter JA, Downes SM, McKibbin M, Khan KN, Inglehearn CF et al (2019) Loss-of-function mutations in the CFH gene affecting alternatively encoded factor H-like 1 protein cause dominant early-onset macular drusen. Ophthalmology 126(10):1410–1421

    Article  PubMed  Google Scholar 

  267. Yu Y, Triebwasser MP, Wong EK, Schramm EC, Thomas B, Reynolds R et al (2014) Whole-exome sequencing identifies rare, functional CFH variants in families with macular degeneration. Hum Mol Genet 23(19):5283–5293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Helgason H, Sulem P, Duvvari MR, Luo H, Thorleifsson G, Stefansson H et al (2013) A rare nonsynonymous sequence variant in C3 is associated with high risk of age-related macular degeneration. Nat Genet 45(11):1371–1374

    Article  CAS  PubMed  Google Scholar 

  269. Zhan X, Larson DE, Wang C, Koboldt DC, Sergeev YV, Fulton RS et al (2013) Identification of a rare coding variant in complement 3 associated with age-related macular degeneration. Nat Genet 45(11):1375–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Geerlings MJ, Kremlitzka M, Bakker B, Nilsson SC, Saksens NT, Lechanteur YT et al (2017) The functional effect of rare variants in complement genes on C3b degradation in patients with age-related macular degeneration. JAMA Ophthalmol 135(1):39–46

    Article  PubMed  Google Scholar 

  271. Yan Q, Ding Y, Liu Y, Sun T, Fritsche LG, Clemons T et al (2018) Genome-wide analysis of disease progression in age-related macular degeneration. Hum Mol Genet 27(5):929–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Schnabolk G, Beon MK, Tomlinson S, Rohrer B (2017) New insights on complement inhibitor CD59 in mouse laser-induced choroidal neovascularization: mislocalization after injury and targeted delivery for protein replacement. J Ocul Pharmacol Ther 33(5):400–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Lyzogubov V, Wu X, Jha P, Tytarenko R, Triebwasser M, Kolar G et al (2014) Complement regulatory protein CD46 protects against choroidal neovascularization in mice. Am J Pathol 184(9):2537–2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Mullins RF, Johnson MN, Faidley EA, Skeie JM, Huang J (2011) Choriocapillaris vascular dropout related to density of drusen in human eyes with early age-related macular degeneration. Invest Ophthalmol Vis Sci 52(3):1606–1612

    Article  PubMed  PubMed Central  Google Scholar 

  275. Zeng S, Whitmore SS, Sohn EH, Riker MJ, Wiley LA, Scheetz TE et al (2016) Molecular response of chorioretinal endothelial cells to complement injury: implications for macular degeneration. J Pathol 238(3):446–456

    Article  CAS  PubMed  Google Scholar 

  276. Weismann D, Hartvigsen K, Lauer N, Bennett KL, Scholl HP, Charbel Issa P et al (2011) Complement factor H binds malondialdehyde epitopes and protects from oxidative stress. Nature 478(7367):76–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Toomey CB, Kelly U, Saban DR, Bowes RC (2015) Regulation of age-related macular degeneration-like pathology by complement factor H. Proc Natl Acad Sci U S A 112(23):E3040–E3049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Ezzat MK, Hann CR, Vuk-Pavlovic S, Pulido JS (2008) Immune cells in the human choroid. Br J Ophthalmol 92(7):976–980

    Article  PubMed  Google Scholar 

  279. Lopez PF, Grossniklaus HE, Lambert HM, Aaberg TM, Capone A Jr, Sternberg P Jr et al (1991) Pathologic features of surgically excised subretinal neovascular membranes in age-related macular degeneration. Am J Ophthalmol 112(6):647–656

    Article  CAS  PubMed  Google Scholar 

  280. Detrick B, Hooks JJ (2010) Immune regulation in the retina. Immunol Res 47(1–3):153–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Penfold PL, Liew SC, Madigan MC, Provis JM (1997) Modulation of major histocompatibility complex class II expression in retinas with age-related macular degeneration. Invest Ophthalmol Vis Sci 38(10):2125–2133

    CAS  PubMed  Google Scholar 

  282. Neuner B, Komm A, Wellmann J, Dietzel M, Pauleikhoff D, Walter J et al (2009) Smoking history and the incidence of age-related macular degeneration--results from the muenster aging and retina study (MARS) cohort and systematic review and meta-analysis of observational longitudinal studies. Addict Behav 34(11):938–947

    Article  PubMed  Google Scholar 

  283. Tuo J, Smith BC, Bojanowski CM, Meleth AD, Gery I, Csaky KG et al (2004) The involvement of sequence variation and expression of CX3CR1 in the pathogenesis of age-related macular degeneration. FASEB J 18(11):1297–1299

    Article  CAS  PubMed  Google Scholar 

  284. Mo FM, Proia AD, Johnson WH, Cyr D, Lashkari K (2010) Interferon gamma-inducible protein-10 (IP-10) and eotaxin as biomarkers in age-related macular degeneration. Invest Ophthalmol Vis Sci 51(8):4226–4236

    Article  PubMed  Google Scholar 

  285. Faber C, Singh A, Kruger Falk M, Juel HB, Sorensen TL, Nissen MH (2013) Age-related macular degeneration is associated with increased proportion of CD56(+) T cells in peripheral blood. Ophthalmology 120(11):2310–2316

    Article  PubMed  Google Scholar 

  286. Falk MK, Singh A, Faber C, Nissen MH, Hviid T, Sorensen TL (2014) Dysregulation of CXCR3 expression on peripheral blood leukocytes in patients with neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 55(7):4050–4056

    Article  CAS  PubMed  Google Scholar 

  287. Lechner J, Chen M, Hogg RE, Toth L, Silvestri G, Chakravarthy U et al (2015) Alterations in circulating immune cells in neovascular age-related macular degeneration. Sci Rep 5:16754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Wu WK, Georgiadis A, Copland DA, Liyanage S, Luhmann UF, Robbie SJ et al (2015) IL-4 regulates specific Arg-1(+) macrophage sFlt-1-mediated inhibition of angiogenesis. Am J Pathol 185(8):2324–2335

    Article  CAS  PubMed  Google Scholar 

  289. Camelo S (2014) Potential sources and roles of adaptive immunity in age-related macular degeneration: shall we rename AMD into autoimmune macular disease? Autoimmune Dis 2014:532487

    PubMed  PubMed Central  Google Scholar 

  290. Camelo S, Lavelette S, Guillonneau X, Raoul W, Sennlaub F (2016) Association of choroidal Interleukin-17-producing T lymphocytes and macrophages with geographic atrophy. Ophthalmologica 236(1):53–58

    Article  CAS  PubMed  Google Scholar 

  291. Wei L, Liu B, Tuo J, Shen D, Chen P, Li Z et al (2012) Hypomethylation of the IL17RC promoter associates with age-related macular degeneration. Cell Rep 2(5):1151–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Liu B, Wei L, Meyerle C, Tuo J, Sen HN, Li Z et al (2011) Complement component C5a promotes expression of IL-22 and IL-17 from human T cells and its implication in age-related macular degeneration. J Transl Med 9:1–12

    Article  CAS  PubMed  Google Scholar 

  293. Oliver VF, Franchina M, Jaffe AE, Branham KE, Othman M, Heckenlively JR et al (2013) Hypomethylation of the IL17RC promoter in peripheral blood leukocytes is not a hallmark of age-related macular degeneration. Cell Rep 5(6):1527–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Hasegawa E, Sonoda KH, Shichita T, Morita R, Sekiya T, Kimura A et al (2013) IL-23-independent induction of IL-17 from gammadeltaT cells and innate lymphoid cells promotes experimental intraocular neovascularization. J Immunol 190(4):1778–1787

    Article  CAS  PubMed  Google Scholar 

  295. Takahashi H, Numasaki M, Lotze MT, Sasaki H (2005) Interleukin-17 enhances bFGF-, HGF- and VEGF-induced growth of vascular endothelial cells. Immunol Lett 98(2):189–193

    Article  CAS  PubMed  Google Scholar 

  296. Sene A, Chin-Yee D, Apte RS (2015) Seeing through VEGF: innate and adaptive immunity in pathological angiogenesis in the eye. Trends Mol Med 21(1):43–51

    Article  CAS  PubMed  Google Scholar 

  297. Johnson LV, Ozaki S, Staples MK, Erickson PA, Anderson DH (2000) A potential role for immune complex pathogenesis in drusen formation. Exp Eye Res 70(4):441–449

    Article  CAS  PubMed  Google Scholar 

  298. Mullins RF, Russell SR, Anderson DH, Hageman GS (2000) Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J 14(7):835–846

    Article  CAS  PubMed  Google Scholar 

  299. Anderson DH, Mullins RF, Hageman GS, Johnson LV (2002) A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 134(3):411–431

    Article  CAS  PubMed  Google Scholar 

  300. Penfold PL, Provis JM, Furby JH, Gatenby PA, Billson FA (1990) Autoantibodies to retinal astrocytes associated with age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 228(3):270–274

    Article  CAS  PubMed  Google Scholar 

  301. Silverman GJ, Shaw PX, Luo L, Dwyer D, Chang M, Horkko S et al (2000) Neo-self antigens and the expansion of B-1 cells: lessons from atherosclerosis-prone mice. Curr Top Microbiol Immunol 252:189–200

    CAS  PubMed  Google Scholar 

  302. Wuttge DM, Bruzelius M, Stemme S (1999) T-cell recognition of lipid peroxidation products breaks tolerance to self proteins. Immunology 98(2):273–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Hammes HP, Hoerauf H, Alt A, Schleicher E, Clausen JT, Bretzel RG et al (1999) N(epsilon)(carboxymethyl)lysin and the AGE receptor RAGE colocalize in age-related macular degeneration. Invest Ophthalmol Vis Sci 40(8):1855–1859

    CAS  PubMed  Google Scholar 

  304. Handa JT, Verzijl N, Matsunaga H, Aotaki-Keen A, Lutty GA, te Koppele JM et al (1999) Increase in the advanced glycation end product pentosidine in Bruch's membrane with age. Invest Ophthalmol Vis Sci 40(3):775–779

    CAS  PubMed  Google Scholar 

  305. Ni J, Yuan X, Gu J, Yue X, Gu X, Nagaraj RH et al (2009) Plasma protein pentosidine and carboxymethyllysine, biomarkers for age-related macular degeneration. Mol Cell Proteomics 8(8):1921–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H et al (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A 99(23):14682–14687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Gu X, Meer SG, Miyagi M, Rayborn ME, Hollyfield JG, Crabb JW et al (2003) Carboxyethylpyrrole protein adducts and autoantibodies, biomarkers for age-related macular degeneration. J Biol Chem 278(43):42027–42035

    Article  CAS  PubMed  Google Scholar 

  308. Hollyfield JG, Bonilha VL, Rayborn ME, Yang X, Shadrach KG, Lu L et al (2008) Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med 14(2):194–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Iannaccone A, Giorgianni F, New DD, Hollingsworth TJ, Umfress A, Alhatem AH et al (2015) Circulating autoantibodies in age-related macular degeneration recognize human macular tissue antigens implicated in autophagy, immunomodulation, and protection from oxidative stress and apoptosis. PLoS One 10(12):e0145323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  310. Adamus G (2017) Can innate and autoimmune reactivity forecast early and advance stages of age-related macular degeneration? Autoimmun Rev 16(3):231–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Adamus G, Chew EY, Ferris FL, Klein ML (2014) Prevalence of anti-retinal autoantibodies in different stages of age-related macular degeneration. BMC Ophthalmol 14:154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  312. Cherepanoff S, Mitchell P, Wang JJ, Gillies MC (2006) Retinal autoantibody profile in early age-related macular degeneration: preliminary findings from the Blue Mountains Eye Study. Clin Exp Ophthalmol 34(6):590–595

    Article  PubMed  Google Scholar 

  313. Kol A, Lichtman AH, Finberg RW, Libby P, Kurt-Jones EA (2000) Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol 164(1):13–17

    Article  CAS  PubMed  Google Scholar 

  314. Kol A, Bourcier T, Lichtman AH, Libby P (1999) Chlamydial and human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and macrophages. J Clin Invest 103(4):571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Kalayoglu MV, Bula D, Arroyo J, Gragoudas ES, D’Amico D, Miller JW (2005) Identification of chlamydia pneumoniae within human choroidal neovascular membranes secondary to age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 243(11):1080–1090

    Article  PubMed  Google Scholar 

  316. Kalayoglu MV, Galvan C, Mahdi OS, Byrne GI, Mansour S (2003) Serological association between chlamydia pneumoniae infection and age-related macular degeneration. Arch Ophthalmol 121(4):478–482

    Article  PubMed  Google Scholar 

  317. Tezel G, Wax MB (2000) The mechanisms of hsp27 antibody-mediated apoptosis in retinal neuronal cells. J Neurosci 20(10):3552–3562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Wick G, Perschinka H, Xu Q (1999) Autoimmunity and atherosclerosis. Am Heart J 138(5 Pt 2):S444–S449

    Article  CAS  PubMed  Google Scholar 

  319. Zhu J, Quyyumi AA, Norman JE, Csako G, Waclawiw MA, Shearer GM et al (2000) Effects of total pathogen burden on coronary artery disease risk and C-reactive protein levels. Am J Cardiol 85(2):140–146

    Article  CAS  PubMed  Google Scholar 

  320. Wagley S, Marra KV, Salhi RA, Gautam S, Campo R, Veale P et al (2015) Periodontal disease and age-related macular degeneration: results from the National Health and nutrition examination survey III. Retina 35(5):982–988

    Article  PubMed  Google Scholar 

  321. Saeed AM, Duffort S, Ivanov D, Wang H, Laird JM, Salomon RG et al (2014) The oxidative stress product carboxyethylpyrrole potentiates TLR2/TLR1 inflammatory signaling in macrophages. PLoS One 9(9):e106421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  322. Hahn G, Jores R, Mocarski ES (1998) Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc Natl Acad Sci U S A 95(7):3937–3942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Stenberg RM (1996) The human cytomegalovirus major immediate-early gene. Intervirology 39(5–6):343–349

    Article  CAS  PubMed  Google Scholar 

  324. Slobedman B, Mocarski ES, Arvin AM, Mellins ED, Abendroth A (2002) Latent cytomegalovirus down-regulates major histocompatibility complex class II expression on myeloid progenitors. Blood 100(8):2867–2873

    Article  CAS  PubMed  Google Scholar 

  325. Cinatl J Jr, Vogel JU, Kotchetkov R, Scholz M, Doerr HW (1999) Proinflammatory potential of cytomegalovirus infection. Specific inhibition of cytomegalovirus immediate-early expression in combination with antioxidants as a novel treatment strategy? Intervirology 42(5–6):419–424

    CAS  PubMed  Google Scholar 

  326. Leinonen M, Saikku P (2000) Infections and atherosclerosis. Scand Cardiovasc J 34(1):12–20

    Article  CAS  PubMed  Google Scholar 

  327. High KP (1999) Atherosclerosis and infection due to chlamydia pneumoniae or cytomegalovirus: weighing the evidence. Clin Infect Dis 28(4):746–749

    Article  CAS  PubMed  Google Scholar 

  328. Epstein SE, Zhou YF, Zhu J (1999) Potential role of cytomegalovirus in the pathogenesis of restenosis and atherosclerosis. Am Heart J 138(5 Pt 2):S476–S478

    Article  CAS  PubMed  Google Scholar 

  329. Kain HL, Reuter U (1995) Release of lysosomal protease from retinal pigment epithelium and fibroblasts during mechanical stresses. Graefes Arch Clin Exp Ophthalmol 233(4):236–243

    Article  CAS  PubMed  Google Scholar 

  330. Marin-Castaño ME, Striker GE, Alcazar O, Catanuto P, Espinosa-Heidmann DG, Cousins SW (2006) Repetitive nonlethal oxidant injury to retinal pigment epithelium decreased extracellular matrix turnover in vitro and induced sub-RPE deposits in vivo. Invest Ophthalmol Vis Sci 47(9):4098–4112

    Article  PubMed  Google Scholar 

  331. Malorni W, Iosi F, Mirabelli F, Bellomo G (1991) Cytoskeleton as a target in menadione-induced oxidative stress in cultured mammalian cells: alterations underlying surface bleb formation. Chem Biol Interact 80(2):217–236

    Article  CAS  PubMed  Google Scholar 

  332. Campochiaro PA, Soloway P, Ryan SJ, Miller JW (1999) The pathogenesis of choroidal neovascularization in patients with age-related macular degeneration. Mol Vis 5:34

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyatham S. Mettu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Allingham, M.J., Loksztejn, A., Cousins, S.W., Mettu, P.S. (2021). Immunological Aspects of Age-Related Macular Degeneration. In: Chew, E.Y., Swaroop, A. (eds) Age-related Macular Degeneration. Advances in Experimental Medicine and Biology, vol 1256. Springer, Cham. https://doi.org/10.1007/978-3-030-66014-7_6

Download citation

Publish with us

Policies and ethics