Skip to main content

Innate Immunity in Age-Related Macular Degeneration

  • Chapter
  • First Online:
Age-related Macular Degeneration

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1256))

Abstract

Multiple lines of investigation have demonstrated that inflammation plays significant roles in etiology of age-related macular degeneration (AMD). Although interventional trials in AMD therapy targeting inflammatory pathways have been conducted, they have not yet been successful and a detailed understanding as to why some have failed is still elusive. One limitation is the relative dearth of information on how immune cells interact with retinal cells to generate AMD phenotypes at each disease stage. Here, we summarize current research evidence and hypotheses regarding potential pathogenic roles of innate immune cells in the eye, which include resident retinal microglia, macrophages derived from infiltrating systemic monocytes, and macrophages resident in the choroid. We relate recent findings regarding the physiology, function, and cellular interactions involving innate immune cells in the retina and choroid to AMD-related processes, including: (1) drusen formation and regression, (2) the onset and spread of degeneration in late atrophic AMD, and (3) the initiation, growth, and exudation of neovascular vessels in late “wet” AMD. Understanding how innate immune cells contribute to specific AMD phenotypes can assist in generating a comprehensive view on the inflammatory etiology of AMD and aid in identifying anti-inflammatory therapeutic strategies and selecting appropriate clinical outcomes for the planned interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Penfold PL, Killingsworth MC, Sarks SH (1985) Senile macular degeneration: the involvement of immunocompetent cells. Graefes Arch Clin Exp Ophthalmol 223(2):69–76

    Article  CAS  PubMed  Google Scholar 

  2. Ambati J, Atkinson JP, Gelfand BD (2013) Immunology of age-related macular degeneration. Nat Rev Immunol 13(6):438–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fritsche LG, Igl W, Bailey JN, Grassmann F, Sengupta S, Bragg-Gresham JL et al (2016) A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet 48(2):134–143

    Article  CAS  PubMed  Google Scholar 

  4. Fritsche LG, Fariss RN, Stambolian D, Abecasis GR, Curcio CA, Swaroop A (2014) Age-related macular degeneration: genetics and biology coming together. Annu Rev Genomics Hum Genet 15:151–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reis ES, Mastellos DC, Hajishengallis G, Lambris JD (2019) New insights into the immune functions of complement. Nat Rev Immunol 19(8):503–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tenner AJ, Stevens B, Woodruff TM (2018) New tricks for an ancient system: physiological and pathological roles of complement in the CNS. Mol Immunol 102:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen M, Muckersie E, Forrester JV, Xu H (2010) Immune activation in retinal aging: a gene expression study. Invest Ophthalmol Vis Sci 51(11):5888–5896

    Article  PubMed  Google Scholar 

  8. Ma W, Cojocaru R, Gotoh N, Gieser L, Villasmil R, Cogliati T et al (2013) Gene expression changes in aging retinal microglia: relationship to microglial support functions and regulation of activation. Neurobiol Aging 34(10):2310–2321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Natoli R, Fernando N, Jiao H, Racic T, Madigan M, Barnett NL et al (2017) Retinal macrophages synthesize C3 and activate complement in AMD and in models of focal retinal degeneration. Invest Ophthalmol Vis Sci 58(7):2977–2990

    Article  CAS  PubMed  Google Scholar 

  10. Rutar M, Valter K, Natoli R, Provis JM (2014) Synthesis and propagation of complement C3 by microglia/monocytes in the aging retina. PLoS One 9(4):e93343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Silverman SM, Ma W, Wang X, Zhao L, Wong WT (2019) C3- and CR3-dependent microglial clearance protects photoreceptors in retinitis pigmentosa. J Exp Med 216(8):1925–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G et al (2014) Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 17(1):131–143

    Article  CAS  PubMed  Google Scholar 

  13. Ma W, Silverman SM, Zhao L, Villasmil R, Campos MM, Amaral J et al (2019) Absence of TGFbeta signaling in retinal microglia induces retinal degeneration and exacerbates choroidal neovascularization. Elife 8:e42049

    Article  PubMed  PubMed Central  Google Scholar 

  14. Levy O, Calippe B, Lavalette S, Hu SJ, Raoul W, Dominguez E et al (2015) Apolipoprotein E promotes subretinal mononuclear phagocyte survival and chronic inflammation in age-related macular degeneration. EMBO Mol Med 7(2):211–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Levy O, Lavalette S, Hu SJ, Housset M, Raoul W, Eandi C et al (2015) APOE isoforms control pathogenic subretinal inflammation in age-related macular degeneration. J Neurosci 35(40):13568–13576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tato CM, Joyce-Shaikh B, Banerjee A, Chen Y, Sathe M, Ewald SE et al (2012) The myeloid receptor PILRbeta mediates the balance of inflammatory responses through regulation of IL-27 production. PLoS One 7(3):e31680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Penfold PL, Madigan MC, Provis JM (1991) Antibodies to human leucocyte antigens indicate subpopulations of microglia in human retina. Vis Neurosci 7(4):383–388

    Article  CAS  PubMed  Google Scholar 

  18. Kumar A, Zhao L, Fariss RN, McMenamin PG, Wong WT (2014) Vascular associations and dynamic process motility in perivascular myeloid cells of the mouse choroid: implications for function and senescent change. Invest Ophthalmol Vis Sci 55(3):1787–1796

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lee JE, Liang KJ, Fariss RN, Wong WT (2008) Ex vivo dynamic imaging of retinal microglia using time-lapse confocal microscopy. Invest Ophthalmol Vis Sci 49(9):4169–4176

    Article  PubMed  Google Scholar 

  20. Combadiere C, Feumi C, Raoul W, Keller N, Rodero M, Pezard A et al (2007) CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Invest 117(10):2920–2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eandi CM, Charles Messance H, Augustin S, Dominguez E, Lavalette S, Forster V et al (2016) Subretinal mononuclear phagocytes induce cone segment loss via IL-1beta. Elife 5:e16490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Gupta N, Brown KE, Milam AH (2003) Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp Eye Res 76(4):463–471

    Article  CAS  PubMed  Google Scholar 

  23. Sennlaub F, Auvynet C, Calippe B, Lavalette S, Poupel L, Hu SJ et al (2013) CCR2(+) monocytes infiltrate atrophic lesions in age-related macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in Cx3cr1 deficient mice. EMBO Mol Med 5(11):1775–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gocho K, Sarda V, Falah S, Sahel J-A, Sennlaub F, Benchaboune M et al (2013) Adaptive optics imaging of geographic atrophy. Invest Ophthalmol Vis Sci 54(5):3673–3680

    Article  PubMed  Google Scholar 

  25. Paques M, Simonutti M, Augustin S, Goupille O, El Mathari B, Sahel JA (2010) In vivo observation of the locomotion of microglial cells in the retina. Glia 58(14):1663–1668

    Article  PubMed  Google Scholar 

  26. Cherepanoff S, McMenamin P, Gillies MC, Kettle E, Sarks SH (2010) Bruch’s membrane and choroidal macrophages in early and advanced age-related macular degeneration. Br J Ophthalmol 94(7):918–925

    Article  CAS  PubMed  Google Scholar 

  27. Gehrs KM, Heriot WJ, de Juan E (1992) Transmission electron microscopic study of a subretinal choroidal neovascular membrane due to age-related macular degeneration. Arch Ophthalmol 110(6):833–837

    Article  CAS  PubMed  Google Scholar 

  28. Oh H, Takagi H, Takagi C, Suzuma K, Otani A, Ishida K et al (1999) The potential angiogenic role of macrophages in the formation of choroidal neovascular membranes. Invest Ophthalmol Vis Sci 40(9):1891–1898

    CAS  PubMed  Google Scholar 

  29. Penfold PL, Madigan MC, Gillies MC, Provis JM (2001) Immunological and aetiological aspects of macular degeneration. Prog Retin Eye Res 20(3):385–414

    Article  CAS  PubMed  Google Scholar 

  30. Penfold PL, Provis JM, Billson FA (1987) Age-related macular degeneration: ultrastructural studies of the relationship of leucocytes to angiogenesis. Graefes Arch Clin Exp Ophthalmol 225(1):70–76

    Article  CAS  PubMed  Google Scholar 

  31. Pennesi ME, Neuringer M, Courtney RJ (2012) Animal models of age related macular degeneration. Mol Asp Med 33(4):487–509

    Article  CAS  Google Scholar 

  32. Fletcher EL, Jobling AI, Greferath U, Mills SA, Waugh M, Ho T et al (2014) Studying age-related macular degeneration using animal models. Optom Vis Sci 91(8):878–886

    Article  PubMed  PubMed Central  Google Scholar 

  33. Datta S, Cano M, Ebrahimi K, Wang L, Handa JT (2017) The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog Retin Eye Res 60:201–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hollyfield JG, Bonilha VL, Rayborn ME, Yang X, Shadrach KG, Lu L et al (2008) Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med 14(2):194–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rutar M, Natoli R, Kozulin P, Valter K, Gatenby P, Provis JM (2011) Analysis of complement expression in light-induced retinal degeneration: synthesis and deposition of C3 by microglia/macrophages is associated with focal photoreceptor degeneration. Invest Ophthalmol Vis Sci 52(8):5347–5358

    Article  CAS  PubMed  Google Scholar 

  36. Suzuki M, Tsujikawa M, Itabe H, Du Z-J, Xie P, Matsumura N et al (2012) Chronic photo-oxidative stress and subsequent MCP-1 activation as causative factors for age-related macular degeneration. J Cell Sci 125(Pt 10):2407–2415

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bhutto IA, Ogura S, Baldeosingh R, McLeod DS, Lutty GA, Edwards MM (2018) An acute injury model for the phenotypic characteristics of geographic atrophy. Invest Ophthalmol Vis Sci 59(4):AMD143–AAMD51

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mones J, Leiva M, Pena T, Martinez G, Biarnes M, Garcia M et al (2016) A swine model of selective geographic atrophy of outer retinal layers mimicking atrophic AMD: a phase I escalating dose of subretinal sodium iodate. Invest Ophthalmol Vis Sci 57(10):3974–3983

    Article  CAS  PubMed  Google Scholar 

  39. Ma W, Zhang Y, Gao C, Fariss RN, Tam J, Wong WT (2017) Monocyte infiltration and proliferation reestablish myeloid cell homeostasis in the mouse retina following retinal pigment epithelial cell injury. Sci Rep 7(1):8433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Moriguchi M, Nakamura S, Inoue Y, Nishinaka A, Nakamura M, Shimazawa M et al (2018) Irreversible photoreceptors and RPE cells damage by intravenous sodium iodate in mice is related to macrophage accumulation. Invest Ophthalmol Vis Sci 59(8):3476–3487

    Article  CAS  PubMed  Google Scholar 

  41. Hu SJ, Calippe B, Lavalette S, Roubeix C, Montassar F, Housset M et al (2015) Upregulation of P2RX7 in Cx3cr1-deficient mononuclear phagocytes leads to increased interleukin-1β secretion and photoreceptor neurodegeneration. J Neurosci 35(18):6987–6996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao L, Zabel MK, Wang X, Ma W, Shah P, Fariss RN et al (2015) Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol Med 7(9):1179–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ban N, Lee TJ, Sene A, Choudhary M, Lekwuwa M, Dong Z et al (2018) Impaired monocyte cholesterol clearance initiates age-related retinal degeneration and vision loss. JCI Insight 3(17):e120824

    Article  PubMed Central  Google Scholar 

  44. Ishibashi T, Sorgente N, Patterson R, Ryan SJ (1986) Pathogenesis of drusen in the primate. Invest Ophthalmol Vis Sci 27(2):184–193

    CAS  PubMed  Google Scholar 

  45. Hope GM, Dawson WW, Engel HM, Ulshafer RJ, Kessler MJ, Sherwood MB (1992) A primate model for age related macular drusen. Br J Ophthalmol 76(1):11–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Engel HM, Dawson WW, Ulshafer RJ, Hines MW, Kessler MJ (1988) Degenerative changes in maculas of rhesus monkeys. Ophthalmologica 196(3):143–150

    Article  CAS  PubMed  Google Scholar 

  47. Ulshafer RJ, Engel HM, Dawson WW, Allen CB, Kessler MJ (1987) Macular degeneration in a community of rhesus monkeys. Ultrastructural observations. Retina (Philadelphia, Pa) 7(3):198–203

    Article  CAS  Google Scholar 

  48. Umeda S, Suzuki MT, Okamoto H, Ono F, Mizota A, Terao K et al (2005) Molecular composition of drusen and possible involvement of anti-retinal autoimmunity in two different forms of macular degeneration in cynomolgus monkey (Macaca fascicularis). FASEB J 19(12):1683–1685

    Article  CAS  PubMed  Google Scholar 

  49. Francis PJ, Appukuttan B, Simmons E, Landauer N, Stoddard J, Hamon S et al (2008) Rhesus monkeys and humans share common susceptibility genes for age-related macular disease. Hum Mol Genet 17(17):2673–2680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gouras P, Ivert L, Mattison JA, Ingram DK, Neuringer M (2008) Drusenoid maculopathy in rhesus monkeys: autofluorescence, lipofuscin and drusen pathogenesis. Graefes Arch Clin Exp Ophthalmol 246(10):1403–1411

    Article  PubMed  PubMed Central  Google Scholar 

  51. Friedman DS, O'Colmain BJ, Munoz B, Tomany SC, McCarty C, de Jong PT et al (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122(4):564–572

    Article  PubMed  Google Scholar 

  52. Fulop T, Larbi A, Witkowski JM (2019) Human Inflammaging. Gerontology 65:495–504

    Article  PubMed  Google Scholar 

  53. Santoro A, Spinelli CC, Martucciello S, Nori SL, Capunzo M, Puca AA et al (2018) Innate immunity and cellular senescence: the good and the bad in the developmental and aged brain. J Leukoc Biol 103(3):509–524

    Article  CAS  PubMed  Google Scholar 

  54. Damani MR, Zhao L, Fontainhas AM, Amaral J, Fariss RN, Wong WT (2011) Age-related alterations in the dynamic behavior of microglia. Aging Cell 10(2):263–276

    Article  CAS  PubMed  Google Scholar 

  55. Xu H, Chen M, Manivannan A, Lois N, Forrester JV (2008) Age-dependent accumulation of lipofuscin in perivascular and subretinal microglia in experimental mice. Aging Cell 7(1):58–68

    Article  CAS  PubMed  Google Scholar 

  56. Indaram M, Ma W, Zhao L, Fariss RN, Rodriguez IR, Wong WT (2015) 7-Ketocholesterol increases retinal microglial migration, activation, and angiogenicity: a potential pathogenic mechanism underlying age-related macular degeneration. Sci Rep 5:9144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. McLeod DS, Bhutto I, Edwards MM, Silver RE, Seddon JM, Lutty GA (2016) Distribution and quantification of choroidal macrophages in human eyes with age-related macular degeneration. Invest Ophthalmol Vis Sci 57(14):5843–5855

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ma W, Wong WT (2016) Aging changes in retinal microglia and their relevance to age-related retinal disease. Adv Exp Med Biol 854:73–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brendecke SM, Prinz M (2015) Do not judge a cell by its cover—diversity of CNS resident, adjoining and infiltrating myeloid cells in inflammation. Semin Immunopathol 37(6):591–605

    Article  CAS  PubMed  Google Scholar 

  60. Silverman SM, Wong WT (2018) Microglia in the retina: roles in development, maturity, and disease. Annu Rev Vis Sci 4:45–77

    Article  PubMed  Google Scholar 

  61. O'Koren EG, Yu C, Klingeborn M, Wong AYW, Prigge CL, Mathew R et al (2019) Microglial function is distinct in different anatomical locations during retinal homeostasis and degeneration. Immunity 50(3):723–737.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG et al (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16(3):273–280

    Article  CAS  PubMed  Google Scholar 

  64. Réu P, Khosravi A, Bernard S, Mold JE, Salehpour M, Alkass K et al (2017) The lifespan and turnover of microglia in the human brain. Cell Rep 20(4):779–784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FMV (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538

    Article  CAS  PubMed  Google Scholar 

  66. Bruttger J, Karram K, Wörtge S, Regen T, Marini F, Hoppmann N et al (2015) Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity 43(1):92–106

    Article  CAS  PubMed  Google Scholar 

  67. Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA et al (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82(2):380–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Greter M, Lelios I, Pelczar P, Hoeffel G, Price J, Leboeuf M et al (2012) Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity 37(6):1050–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang Y, Zhao L, Wang X, Ma W, Lazere A, Qian H-H et al (2018) Repopulating retinal microglia restore endogenous organization and function under CX3CL1-CX3CR1 regulation. Sci Adv 4(3):eaap8492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Santos AM, Calvente R, Tassi M, Carrasco MC, Martin-Oliva D, Marin-Teva JL et al (2008) Embryonic and postnatal development of microglial cells in the mouse retina. J Comp Neurol 506(2):224–239

    Article  PubMed  Google Scholar 

  71. Boycott BB, Hopkins JM (1981) Microglia in the retina of monkey and other mammals: its distinction from other types of glia and horizontal cells. Neuroscience 6(4):679–688

    Article  CAS  PubMed  Google Scholar 

  72. Fontainhas AM, Wang M, Liang KJ, Chen S, Mettu P, Damani M et al (2011) Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS One 6(1):e15973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liang KJ, Lee JE, Wang YD, Ma W, Fontainhas AM, Fariss RN et al (2009) Regulation of dynamic behavior of retinal microglia by CX3CR1 signaling. Invest Ophthalmol Vis Sci 50(9):4444–4451

    Article  PubMed  Google Scholar 

  74. Wang X, Zhao L, Zhang J, Fariss R, Ma W, Kretschmer F et al (2016) Requirement for microglia for the maintenance of synaptic function and integrity in the mature retina. J Neurosci 36(9):2827–2842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Dubbelaar ML, Kracht L, Eggen BJL, Boddeke E (2018) The kaleidoscope of microglial phenotypes. Front Immunol 9:1753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Okunuki Y, Mukai R, Pearsall EA, Klokman G, Husain D, Park DH et al (2018) Microglia inhibit photoreceptor cell death and regulate immune cell infiltration in response to retinal detachment. Proc Natl Acad Sci U S A 115(27):E6264–E6273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Scholz R, Sobotka M, Caramoy A, Stempfl T, Moehle C, Langmann T (2015) Minocycline counter-regulates pro-inflammatory microglia responses in the retina and protects from degeneration. J Neuroinflammation 12:209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Takeda A, Shinozaki Y, Kashiwagi K, Ohno N, Eto K, Wake H et al (2018) Microglia mediate non-cell-autonomous cell death of retinal ganglion cells. Glia 66(11):2366–2384

    Article  PubMed  Google Scholar 

  79. Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M et al (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10(12):1544–1553

    Article  CAS  PubMed  Google Scholar 

  80. O'Koren EG, Mathew R, Saban DR (2016) Fate mapping reveals that microglia and recruited monocyte-derived macrophages are definitively distinguishable by phenotype in the retina. Sci Rep 6:20636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Reyes NJ, O’Koren EG, Saban DR (2017) New insights into mononuclear phagocyte biology from the visual system. Nat Rev Immunol 17(5):322–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM (2011) Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 14(9):1142–1149

    Article  CAS  PubMed  Google Scholar 

  83. Cronk JC, Filiano AJ, Louveau A, Marin I, Marsh R, Ji E et al (2018) Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia. J Exp Med 215(6):1627–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. London A, Itskovich E, Benhar I, Kalchenko V, Mack M, Jung S et al (2011) Neuroprotection and progenitor cell renewal in the injured adult murine retina requires healing monocyte-derived macrophages. J Exp Med 208(1):23–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kohno H, Koso H, Okano K, Sundermeier TR, Saito S, Watanabe S et al (2015) Expression pattern of Ccr2 and Cx3cr1 in inherited retinal degeneration. J Neuroinflammation 12:188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Karlen SJ, Miller EB, Wang X, Levine ES, Zawadzki RJ, Burns ME (2018) Monocyte infiltration rather than microglia proliferation dominates the early immune response to rapid photoreceptor degeneration. J Neuroinflammation 15(1):344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB et al (2016) New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci U S A 113(12):E1738–E1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen M, Zhao J, Luo C, Pandi SP, Penalva RG, Fitzgerald DC et al (2012) Para-inflammation-mediated retinal recruitment of bone marrow-derived myeloid cells following whole-body irradiation is CCL2 dependent. Glia 60(5):833–842

    Article  PubMed  Google Scholar 

  89. Nakazawa T, Hisatomi T, Nakazawa C, Noda K, Maruyama K, She H et al (2007) Monocyte chemoattractant protein 1 mediates retinal detachment-induced photoreceptor apoptosis. Proc Natl Acad Sci U S A 104(7):2425–2430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Xi H, Katschke KJ Jr, Li Y, Truong T, Lee WP, Diehl L et al (2016) IL-33 amplifies an innate immune response in the degenerating retina. J Exp Med 213(2):189–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Guo C, Otani A, Oishi A, Kojima H, Makiyama Y, Nakagawa S et al (2012) Knockout of ccr2 alleviates photoreceptor cell death in a model of retinitis pigmentosa. Exp Eye Res 104:39–47

    Article  CAS  PubMed  Google Scholar 

  92. Rangasamy S, McGuire PG, Franco Nitta C, Monickaraj F, Oruganti SR, Das A (2014) Chemokine mediated monocyte trafficking into the retina: role of inflammation in alteration of the blood-retinal barrier in diabetic retinopathy. PLoS One 9(10):e108508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Rutar M, Natoli R, Provis JM (2012) Small interfering RNA-mediated suppression of Ccl2 in Muller cells attenuates microglial recruitment and photoreceptor death following retinal degeneration. J Neuroinflammation 9:221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Forrester JV, McMenamin PG, Holthouse I, Lumsden L, Liversidge J (1994) Localization and characterization of major histocompatibility complex class II-positive cells in the posterior segment of the eye: implications for induction of autoimmune uveoretinitis. Invest Ophthalmol Vis Sci 35(1):64–77

    CAS  PubMed  Google Scholar 

  95. Butler TL, McMenamin PG (1996) Resident and infiltrating immune cells in the uveal tract in the early and late stages of experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci 37(11):2195–2210

    CAS  PubMed  Google Scholar 

  96. Goldmann T, Wieghofer P, Jordao MJ, Prutek F, Hagemeyer N, Frenzel K et al (2016) Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol 17(7):797–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Van Hove H, Martens L, Scheyltjens I, De Vlaminck K, Pombo Antunes AR, De Prijck S et al (2019) A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat Neurosci 22(6):1021–1035

    Article  PubMed  CAS  Google Scholar 

  98. Jager RD, Mieler WF, Miller JW (2008) Age-related macular degeneration. N Engl J Med 358(24):2606–2617

    Article  CAS  PubMed  Google Scholar 

  99. Davis MD, Gangnon RE, Lee LY, Hubbard LD, Klein BE, Klein R et al (2005) The age-related eye disease study severity scale for age-related macular degeneration: AREDS report no. 17. Arch Ophthalmol 123(11):1484–1498

    Article  PubMed  Google Scholar 

  100. Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H et al (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A 99(23):14682–14687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mullins RF, Russell SR, Anderson DH, Hageman GS (2000) Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J 14(7):835–846

    Article  CAS  PubMed  Google Scholar 

  102. Wang L, Clark ME, Crossman DK, Kojima K, Messinger JD, Mobley JA et al (2010) Abundant lipid and protein components of drusen. PLoS One 5(4):e10329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Johnson LV, Forest DL, Banna CD, Radeke CM, Maloney MA, Hu J et al (2011) Cell culture model that mimics drusen formation and triggers complement activation associated with age-related macular degeneration. Proc Natl Acad Sci U S A 108(45):18277–18282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pilgrim MG, Lengyel I, Lanzirotti A, Newville M, Fearn S, Emri E et al (2017) Subretinal pigment epithelial deposition of drusen components including hydroxyapatite in a primary cell culture model. Invest Ophthalmol Vis Sci 58(2):708–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bergen AA, Arya S, Koster C, Pilgrim MG, Wiatrek-Moumoulidis D, van der Spek PJ et al (2019) On the origin of proteins in human drusen: the meet, greet and stick hypothesis. Prog Retin Eye Res 70:55–84

    Article  CAS  PubMed  Google Scholar 

  106. Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullins RF (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 20(6):705–732

    Article  CAS  PubMed  Google Scholar 

  107. Johnson LV, Leitner WP, Staples MK, Anderson DH (2001) Complement activation and inflammatory processes in Drusen formation and age related macular degeneration. Exp Eye Res 73(6):887–896

    Article  CAS  PubMed  Google Scholar 

  108. Lad EM, Cousins SW, Van Arnam JS, Proia AD (2015) Abundance of infiltrating CD163+ cells in the retina of postmortem eyes with dry and neovascular age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 253(11):1941–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Greferath U, Guymer RH, Vessey KA, Brassington K, Fletcher EL (2016) Correlation of histologic features with in vivo imaging of reticular pseudodrusen. Ophthalmology 123(6):1320–1331

    Article  PubMed  Google Scholar 

  110. Anderson DH, Mullins RF, Hageman GS, Johnson LV (2002) A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 134(3):411–431

    Article  CAS  PubMed  Google Scholar 

  111. Chinnery HR, McLenachan S, Humphries T, Kezic JM, Chen X, Ruitenberg MJ et al (2012) Accumulation of murine subretinal macrophages: effects of age, pigmentation and CX3CR1. Neurobiol Aging 33(8):1769–1776

    Article  CAS  PubMed  Google Scholar 

  112. Ma W, Coon S, Zhao L, Fariss RN, Wong WT (2013) A2E accumulation influences retinal microglial activation and complement regulation. Neurobiol Aging 34(3):943–960

    Article  CAS  PubMed  Google Scholar 

  113. Spencer WJ, Ding JD, Lewis TR, Yu C, Phan S, Pearring JN et al (2019) PRCD is essential for high-fidelity photoreceptor disc formation. Proc Natl Acad Sci U S A 116(26):13087–13096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gu BJ, Baird PN, Vessey KA, Skarratt KK, Fletcher EL, Fuller SJ et al (2013) A rare functional haplotype of the P2RX4 and P2RX7 genes leads to loss of innate phagocytosis and confers increased risk of age-related macular degeneration. FASEB J 27(4):1479–1487

    Article  CAS  PubMed  Google Scholar 

  115. Complications of Age-Related Macular Degeneration Prevention Trial Study Group (2004) The complications of age-related macular degeneration prevention trial (CAPT): rationale, design and methodology. Clin Trials 1(1):91–107

    Article  Google Scholar 

  116. Guymer RH, Wu Z, Hodgson LAB, Caruso E, Brassington KH, Tindill N et al (2019) Subthreshold nanosecond laser intervention in age-related macular degeneration: the LEAD randomized controlled clinical trial. Ophthalmology 126(6):829–838

    Article  PubMed  Google Scholar 

  117. Duvall J, Tso MO (1985) Cellular mechanisms of resolution of drusen after laser coagulation. An experimental study. Arch Ophthalmol 103(5):694–703

    Article  CAS  PubMed  Google Scholar 

  118. Jobling AI, Guymer RH, Vessey KA, Greferath U, Mills SA, Brassington KH et al (2015) Nanosecond laser therapy reverses pathologic and molecular changes in age-related macular degeneration without retinal damage. FASEB J 29(2):696–710

    Article  CAS  PubMed  Google Scholar 

  119. Sene A, Apte RS (2014) Eyeballing cholesterol efflux and macrophage function in disease pathogenesis. Trends Endocrinol Metab 25(3):107–114

    Article  CAS  PubMed  Google Scholar 

  120. Biesemeier A, Taubitz T, Julien S, Yoeruek E, Schraermeyer U (2014) Choriocapillaris breakdown precedes retinal degeneration in age-related macular degeneration. Neurobiol Aging 35(11):2562–2573

    Article  PubMed  Google Scholar 

  121. Keenan TD, Klein B, Agron E, Chew EY, Cukras CA, Wong WT (2019) Choroidal thickness and vascularity vary with disease severity and subretinal drusenoid deposit presence in nonadvanced age-related macular degeneration. Retina (Philadelphia, Pa). https://doi.org/10.1097/IAE.0000000000002434

  122. Lee JY, Lee DH, Lee JY, Yoon YH (2013) Correlation between subfoveal choroidal thickness and the severity or progression of nonexudative age-related macular degeneration. Invest Ophthalmol Vis Sci 54(12):7812–7818

    Article  PubMed  Google Scholar 

  123. Mullins RF, Johnson MN, Faidley EA, Skeie JM, Huang J (2011) Choriocapillaris vascular dropout related to density of drusen in human eyes with early age-related macular degeneration. Invest Ophthalmol Vis Sci 52(3):1606–1612

    Article  PubMed  PubMed Central  Google Scholar 

  124. Lengyel I, Tufail A, Hosaini HA, Luthert P, Bird AC, Jeffery G (2004) Association of drusen deposition with choroidal intercapillary pillars in the aging human eye. Invest Ophthalmol Vis Sci 45(9):2886–2892

    Article  PubMed  Google Scholar 

  125. Whitmore SS, Sohn EH, Chirco KR, Drack AV, Stone EM, Tucker BA et al (2015) Complement activation and choriocapillaris loss in early AMD: implications for pathophysiology and therapy. Prog Retin Eye Res 45:1–29

    Article  CAS  PubMed  Google Scholar 

  126. Zeng S, Whitmore SS, Sohn EH, Riker MJ, Wiley LA, Scheetz TE et al (2016) Molecular response of chorioretinal endothelial cells to complement injury: implications for macular degeneration. J Pathol 238(3):446–456

    Article  CAS  PubMed  Google Scholar 

  127. Mullins RF, Schoo DP, Sohn EH, Flamme-Wiese MJ, Workamelahu G, Johnston RM et al (2014) The membrane attack complex in aging human Choriocapillaris. Am J Pathol 184(11):3142–3153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ma YY, Yang MQ, He ZG, Fan MH, Huang M, Teng F et al (2017) Upregulation of heme oxygenase-1 in Kupffer cells blocks mast cell degranulation and inhibits dendritic cell migration in vitro. Mol Med Rep 15(6):3796–3802

    Article  CAS  PubMed  Google Scholar 

  129. Dong H, Zhang X, Wang Y, Zhou X, Qian Y, Zhang S (2017) Suppression of brain mast cells degranulation inhibits microglial activation and central nervous system inflammation. Mol Neurobiol 54(2):997–1007

    Article  CAS  PubMed  Google Scholar 

  130. Bhutto IA, McLeod DS, Jing T, Sunness JS, Seddon JM, Lutty GA (2016) Increased choroidal mast cells and their degranulation in age-related macular degeneration. Br J Ophthalmol 100(5):720–726

    Article  PubMed  Google Scholar 

  131. Penfold PL, Liew SC, Madigan MC, Provis JM (1997) Modulation of major histocompatibility complex class II expression in retinas with age-related macular degeneration. Invest Ophthalmol Vis Sci 38(10):2125–2133

    CAS  PubMed  Google Scholar 

  132. Sadigh S, Cideciyan AV, Sumaroka A, Huang WC, Luo X, Swider M et al (2013) Abnormal thickening as well as thinning of the photoreceptor layer in intermediate age-related macular degeneration. Invest Ophthalmol Vis Sci 54(3):1603–1612

    Article  PubMed  Google Scholar 

  133. Ferris FL, Davis MD, Clemons TE, Lee LY, Chew EY, Lindblad AS et al (2005) A simplified severity scale for age-related macular degeneration: AREDS report no. 18. Arch Ophthalmol 123(11):1570–1574

    Article  PubMed  Google Scholar 

  134. Wang JJ, Foran S, Smith W, Mitchell P (2003) Risk of age-related macular degeneration in eyes with macular drusen or hyperpigmentation: the Blue Mountains Eye Study cohort. Arch Ophthalmol 121(5):658–663

    Article  PubMed  Google Scholar 

  135. Christenbury JG, Folgar FA, O’Connell RV, Chiu SJ, Farsiu S, Toth CA et al (2013) Progression of intermediate age-related macular degeneration with proliferation and inner retinal migration of hyperreflective foci. Ophthalmology 120(5):1038–1045

    Article  PubMed  Google Scholar 

  136. Raoul W, Feumi C, Keller N, Lavalette S, Houssier M, Behar-Cohen F et al (2008) Lipid-bloated subretinal microglial cells are at the origin of drusen appearance in CX3CR1-deficient mice. Ophthalmic Res 40(3–4):115–119

    Article  CAS  PubMed  Google Scholar 

  137. Kim SY, Yang HJ, Chang YS, Kim JW, Brooks M, Chew EY et al (2014) Deletion of aryl hydrocarbon receptor AHR in mice leads to subretinal accumulation of microglia and RPE atrophy. Invest Ophthalmol Vis Sci 55(9):6031–6040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ma W, Zhao L, Fontainhas AM, Fariss RN, Wong WT (2009) Microglia in the mouse retina alter the structure and function of retinal pigmented epithelial cells: a potential cellular interaction relevant to AMD. PLoS One 4(11):e7945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Dong ZZ, Li J, Gan YF, Sun XR, Leng YX, Ge J (2018) Amyloid beta deposition related retinal pigment epithelium cell impairment and subretinal microglia activation in aged APPswePS1 transgenic mice. Int J Ophthalmol 11(5):747–755

    PubMed  PubMed Central  Google Scholar 

  140. Leclaire MD, Nettels-Hackert G, Konig J, Hohn A, Grune T, Uhlig CE et al (2019) Lipofuscin-dependent stimulation of microglial cells. Graefes Arch Clin Exp Ophthalmol 257(5):931–952

    Article  CAS  PubMed  Google Scholar 

  141. Toy BC, Krishnadev N, Indaram M, Cunningham D, Cukras CA, Chew EY et al (2013) Drusen regression is associated with local changes in fundus autofluorescence in intermediate age-related macular degeneration. Am J Ophthalmol 156(3):532–542.e1

    Article  PubMed  PubMed Central  Google Scholar 

  142. Holmen IC, Aul B, Pak JW, Trane RM, Blodi B, Klein M et al (2019) Precursors and development of geographic atrophy with autofluorescence imaging: age-related eye disease study 2 report number 18. Ophthalmol Retina. https://doi.org/10.1016/j.oret.2019.04.011

  143. Klein ML, Ferris FL 3rd, Armstrong J, Hwang TS, Chew EY, Bressler SB et al (2008) Retinal precursors and the development of geographic atrophy in age-related macular degeneration. Ophthalmology 115(6):1026–1031

    Article  PubMed  Google Scholar 

  144. Cukras C, Agron E, Klein ML, Ferris FL 3rd, Chew EY, Gensler G et al (2010) Natural history of drusenoid pigment epithelial detachment in age-related macular degeneration: age-related eye disease study report no. 28. Ophthalmology 117(3):489–499

    Article  PubMed  Google Scholar 

  145. Wu Z, Luu CD, Ayton LN, Goh JK, Lucci LM, Hubbard WC et al (2014) Optical coherence tomography-defined changes preceding the development of drusen-associated atrophy in age-related macular degeneration. Ophthalmology 121(12):2415–2422

    Article  PubMed  Google Scholar 

  146. Lindblad AS, Lloyd PC, Clemons TE, Gensler GR, Ferris FL 3rd, Klein ML et al (2009) Change in area of geographic atrophy in the age-related eye disease study: AREDS report number 26. Arch Ophthalmol 127(9):1168–1174

    Article  PubMed  Google Scholar 

  147. Keenan TD, Agron E, Domalpally A, Clemons TE, van Asten F, Wong WT et al (2018) Progression of geographic atrophy in age-related macular degeneration: AREDS2 report number 16. Ophthalmology 125(12):1913–1928

    Article  PubMed  Google Scholar 

  148. Grunwald JE, Metelitsina TI, Dupont JC, Ying GS, Maguire MG (2005) Reduced foveolar choroidal blood flow in eyes with increasing AMD severity. Invest Ophthalmol Vis Sci 46(3):1033–1038

    Article  PubMed  Google Scholar 

  149. Sohn EH, Flamme-Wiese MJ, Whitmore SS, Workalemahu G, Marneros AG, Boese EA et al (2019) Choriocapillaris degeneration in geographic atrophy. Am J Pathol 189(7):1473–1480

    Article  PubMed  PubMed Central  Google Scholar 

  150. Petrou PA, Cunningham D, Shimel K, Harrington M, Hammel K, Cukras CA et al (2014) Intravitreal sirolimus for the treatment of geographic atrophy: results of a phase I/II clinical trial. Invest Ophthalmol Vis Sci 56(1):330–338

    Article  PubMed  CAS  Google Scholar 

  151. Wong WT, Dresner S, Forooghian F, Glaser T, Doss L, Zhou M et al (2013) Treatment of geographic atrophy with subconjunctival sirolimus: results of a phase I/II clinical trial. Invest Ophthalmol Vis Sci 54(4):2941–2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yaspan BL, Williams DF, Holz FG, Regillo CD, Li Z, Dressen A et al (2017) Targeting factor D of the alternative complement pathway reduces geographic atrophy progression secondary to age-related macular degeneration. Sci Transl Med 9(395):eaaf1443

    Article  PubMed  CAS  Google Scholar 

  153. Zhao R, Hu W, Tsai J, Li W, Gan WB (2017) Microglia limit the expansion of beta-amyloid plaques in a mouse model of Alzheimer's disease. Mol Neurodegener 12(1):47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Hawkes CA, McLaurin J (2009) Selective targeting of perivascular macrophages for clearance of beta-amyloid in cerebral amyloid angiopathy. Proc Natl Acad Sci U S A 106(4):1261–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gabande-Rodriguez E, Keane L, Capasso M (2019) Microglial phagocytosis in aging and Alzheimer’s disease. J Neurosci Res 98(2):284–298

    Article  PubMed  CAS  Google Scholar 

  156. Combs CK, Karlo JC, Kao SC, Landreth GE (2001) Beta-amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 21(4):1179–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Baik SH, Kang S, Lee W, Choi H, Chung S, Kim JI et al (2019) A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease. Cell Metab 30(3):493–507

    Article  CAS  PubMed  Google Scholar 

  158. Li M, Dolz-Marco R, Messinger JD, Wang L, Feist RM, Girkin CA et al (2018) Clinicopathologic correlation of anti-vascular endothelial growth factor-treated type 3 neovascularization in age-related macular degeneration. Ophthalmology 125(2):276–287

    Article  PubMed  Google Scholar 

  159. Sleiman K, Veerappan M, Winter KP, McCall MN, Yiu G, Farsiu S et al (2017) Optical coherence tomography predictors of risk for progression to non-neovascular atrophic age-related macular degeneration. Ophthalmology 124(12):1764–1777

    Article  PubMed  Google Scholar 

  160. Nassisi M, Fan W, Shi Y, Lei J, Borrelli E, Ip M et al (2018) Quantity of intraretinal hyperreflective foci in patients with intermediate age-related macular degeneration correlates with 1-year progression. Invest Ophthalmol Vis Sci 59(8):3431–3439

    Article  CAS  PubMed  Google Scholar 

  161. Guillonneau X, Eandi C, Paques M, Sahel J, Sapieha P, Sennlaub F (2017) On phagocytes and macular degeneration. Prog Retin Eye Res 61:98–128

    Article  CAS  PubMed  Google Scholar 

  162. Calippe B, Augustin S, Beguier F, Charles-Messance H, Poupel L, Conart JB et al (2017) Complement factor H inhibits CD47-mediated resolution of inflammation. Immunity 46(2):261–272

    Article  CAS  PubMed  Google Scholar 

  163. Mathis T, Housset M, Eandi C, Beguier F, Touhami S, Reichman S et al (2017) Activated monocytes resist elimination by retinal pigment epithelium and downregulate their OTX2 expression via TNF-alpha. Aging Cell 16(1):173–182

    Article  CAS  PubMed  Google Scholar 

  164. Devarajan G, Niven J, Forrester JV, Crane IJ (2016) Retinal pigment epithelial cell apoptosis is influenced by a combination of macrophages and soluble mediators present in age-related macular degeneration. Curr Eye Res 41(9):1235–1244

    Article  CAS  PubMed  Google Scholar 

  165. Sarks JP, Sarks SH, Killingsworth MC (1997) Morphology of early choroidal neovascularisation in age-related macular degeneration: correlation with activity. Eye (Lond) 11(Pt 4):515–522

    Article  Google Scholar 

  166. Roisman L, Zhang Q, Wang RK, Gregori G, Zhang A, Chen CL et al (2016) Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration. Ophthalmology 123(6):1309–1319

    Article  PubMed  Google Scholar 

  167. Yang J, Zhang Q, Motulsky EH, Thulliez M, Shi Y, Lyu C et al (2019) Two-year risk of exudation in eyes with non-exudative AMD and subclinical neovascularization detected with swept source OCT angiography. Am J Ophthalmol. https://doi.org/10.1016/j.ajo.2019.06.017

  168. Heiferman MJ, Fawzi AA (2019) Progression of subclinical choroidal neovascularization in age-related macular degeneration. PLoS One 14(6):e0217805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. McLeod DS, Grebe R, Bhutto I, Merges C, Baba T, Lutty GA (2009) Relationship between RPE and choriocapillaris in age-related macular degeneration. Invest Ophthalmol Vis Sci 50(10):4982–4991

    Article  PubMed  Google Scholar 

  170. Moult EM, Waheed NK, Novais EA, Choi W, Lee B, Ploner SB et al (2016) Swept-source optical coherence tomography angiography reveals choriocapillaris alterations in eyes with nascent geographic atrophy and drusen-associated geographic atrophy. Retina (Philadelphia, Pa) (36 Suppl 1):S2–S11

    Google Scholar 

  171. Seddon JM, McLeod DS, Bhutto IA, Villalonga MB, Silver RE, Wenick AS et al (2016) Histopathological insights into choroidal vascular loss in clinically documented cases of age-related macular degeneration. JAMA Ophthalmol 134(11):1272–1280

    Article  PubMed  PubMed Central  Google Scholar 

  172. Kamei M, Yoneda K, Kume N, Suzuki M, Itabe H, Matsuda K et al (2007) Scavenger receptors for oxidized lipoprotein in age-related macular degeneration. Invest Ophthalmol Vis Sci 48(4):1801–1807

    Article  PubMed  Google Scholar 

  173. Lopez PF, Lambert HM, Grossniklaus HE, Sternberg P Jr (1993) Well-defined subfoveal choroidal neovascular membranes in age-related macular degeneration. Ophthalmology 100(3):415–422

    Article  CAS  PubMed  Google Scholar 

  174. Agarwal A, Invernizzi A, Singh RB, Foulsham W, Aggarwal K, Handa S et al (2018) An update on inflammatory choroidal neovascularization: epidemiology, multimodal imaging, and management. J Ophthalmic Inflamm Infect 8(1):13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Martini B, Ryan SJ (1992) Argon laser lesions of the retina; occurrence and origin of macrophages. Eur J Ophthalmol 2(2):51–57

    Article  CAS  PubMed  Google Scholar 

  176. Jawad S, Liu B, Li Z, Katamay R, Campos M, Wei L et al (2013) The role of macrophage class a scavenger receptors in a laser-induced murine choroidal neovascularization model. Invest Ophthalmol Vis Sci 54(9):5959–5970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sakurai E, Anand A, Ambati BK, van Rooijen N, Ambati J (2003) Macrophage depletion inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44(8):3578–3585

    Article  PubMed  Google Scholar 

  178. Nagai N, Lundh von Leithner P, Izumi-Nagai K, Hosking B, Chang B, Hurd R et al (2014) Spontaneous CNV in a novel mutant mouse is associated with early VEGF-A-driven angiogenesis and late-stage focal edema, neural cell loss, and dysfunction. Invest Ophthalmol Vis Sci 55(6):3709–3719

    Article  PubMed  PubMed Central  Google Scholar 

  179. Espinosa-Heidmann DG, Malek G, Mettu PS, Caicedo A, Saloupis P, Gach S et al (2013) Bone marrow transplantation transfers age-related susceptibility to neovascular remodeling in murine laser-induced choroidal neovascularization. Invest Ophthalmol Vis Sci 54(12):7439–7449

    Article  PubMed  PubMed Central  Google Scholar 

  180. Espinosa-Heidmann DG, Suner IJ, Hernandez EP, Monroy D, Csaky KG, Cousins SW (2003) Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44(8):3586–3592

    Article  PubMed  Google Scholar 

  181. Liu J, Copland DA, Horie S, Wu WK, Chen M, Xu Y et al (2013) Myeloid cells expressing VEGF and arginase-1 following uptake of damaged retinal pigment epithelium suggests potential mechanism that drives the onset of choroidal angiogenesis in mice. PLoS One 8(8):e72935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Krause TA, Alex AF, Engel DR, Kurts C, Eter N (2014) VEGF-production by CCR2-dependent macrophages contributes to laser-induced choroidal neovascularization. PLoS One 9(4):e94313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Grossniklaus HE, Ling JX, Wallace TM, Dithmar S, Lawson DH, Cohen C et al (2002) Macrophage and retinal pigment epithelium expression of angiogenic cytokines in choroidal neovascularization. Mol Vis 8:119–126

    CAS  PubMed  Google Scholar 

  184. Lu Z, Lin V, May A, Che B, Xiao X, Shaw DH et al (2019) HTRA1 synergizes with oxidized phospholipids in promoting inflammation and macrophage infiltration essential for ocular VEGF expression. PLoS One 14(5):e0216808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Otani A, Takagi H, Oh H, Koyama S, Matsumura M, Honda Y (1999) Expressions of angiopoietins and Tie2 in human choroidal neovascular membranes. Invest Ophthalmol Vis Sci 40(9):1912–1920

    CAS  PubMed  Google Scholar 

  186. Balser C, Wolf A, Herb M, Langmann T (2019) Co-inhibition of PGF and VEGF blocks their expression in mononuclear phagocytes and limits neovascularization and leakage in the murine retina. J Neuroinflammation 16(1):26

    Article  PubMed  PubMed Central  Google Scholar 

  187. Crespo-Garcia S, Corkhill C, Roubeix C, Davids AM, Kociok N, Strauss O et al (2017) Inhibition of placenta growth factor reduces subretinal mononuclear phagocyte accumulation in choroidal neovascularization. Invest Ophthalmol Vis Sci 58(12):4997–5006

    Article  CAS  PubMed  Google Scholar 

  188. Dou GR, Li N, Chang TF, Zhang P, Gao X, Yan XC et al (2016) Myeloid-specific blockade of notch signaling attenuates choroidal neovascularization through compromised macrophage infiltration and polarization in mice. Sci Rep 6:28617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Semkova I, Muether PS, Kuebbeler M, Meyer KL, Kociok N, Joussen AM (2011) Recruitment of blood-derived inflammatory cells mediated via tumor necrosis factor-alpha receptor 1b exacerbates choroidal neovascularization. Invest Ophthalmol Vis Sci 52(9):6101–6108

    Article  CAS  PubMed  Google Scholar 

  190. Luckoff A, Caramoy A, Scholz R, Prinz M, Kalinke U, Langmann T (2016) Interferon-beta signaling in retinal mononuclear phagocytes attenuates pathological neovascularization. EMBO Mol Med 8(6):670–678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Kvanta A, Shen WY, Sarman S, Seregard S, Steen B, Rakoczy E (2000) Matrix metalloproteinase (MMP) expression in experimental choroidal neovascularization. Curr Eye Res 21(3):684–690

    Article  CAS  PubMed  Google Scholar 

  192. Ebrahem Q, Qi JH, Sugimoto M, Ali M, Sears JE, Cutler A et al (2011) Increased neovascularization in mice lacking tissue inhibitor of metalloproteinases-3. Invest Ophthalmol Vis Sci 52(9):6117–6123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Xu J, Zhu D, Sonoda S, He S, Spee C, Ryan SJ et al (2012) Over-expression of BMP4 inhibits experimental choroidal neovascularization by modulating VEGF and MMP-9. Angiogenesis 15(2):213–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Grebe R, Mughal I, Bryden W, McLeod S, Edwards M, Hageman GS et al (2019) Ultrastructural analysis of submacular choriocapillaris and its transport systems in AMD and aged control eyes. Exp Eye Res 181:252–262

    Article  CAS  PubMed  Google Scholar 

  195. He L, Marneros AG (2013) Macrophages are essential for the early wound healing response and the formation of a fibrovascular scar. Am J Pathol 182(6):2407–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Shao Z, Friedlander M, Hurst CG, Cui Z, Pei DT, Evans LP et al (2013) Choroid sprouting assay: an ex vivo model of microvascular angiogenesis. PLoS One 8(7):e69552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Becerra EM, Morescalchi F, Gandolfo F, Danzi P, Nascimbeni G, Arcidiacono B et al (2011) Clinical evidence of intravitreal triamcinolone acetonide in the management of age-related macular degeneration. Curr Drug Targets 12(2):149–172

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wai T. Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y., Wong, W.T. (2021). Innate Immunity in Age-Related Macular Degeneration. In: Chew, E.Y., Swaroop, A. (eds) Age-related Macular Degeneration. Advances in Experimental Medicine and Biology, vol 1256. Springer, Cham. https://doi.org/10.1007/978-3-030-66014-7_5

Download citation

Publish with us

Policies and ethics