Skip to main content

Physiological and Molecular Responses to Heavy Metal Stresses in Plants

  • Chapter
  • First Online:
Harsh Environment and Plant Resilience

Abstract

In recent times, anthropogenic perturbations (extensive mining, modern agricultural practices, accelerated industrialization, etc.) of environment have led to the accumulation of heavy metals in air, water and soil. Soil pollution with heavy metals (Zn, Cu, Mo, Mn, Co, Ni, As, Pb, Cd, Hg, Cr, Al and Be) prompts various environmental issues and confers harmful effects in plants such as morphological abnormalities, metabolic disorders and production of reactive oxygen species (O2, H2O2 and OH), which ultimately end up in yield loss in plants. With regard to these unfavourable environments, plants develop a wide range of exceptionally complex mechanisms and responses to acquire tolerance and survival, which include activation of various antioxidants, binding to phytochelatins/metallothioneins, sequestration of metal into vacuoles, etc. This chapter describes the plant response to metal stress, signalling molecules, toxic effects, functions and detoxification capabilities of phytochelatins, metallothioneins, amino acids, organic acids and chaperones and the role of plant-associated microbes. Moreover, heavy metal-induced oxidative stress with tolerance and crosstalk is also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alaraidh IA, Alsahli AA, Razik ESA (2018) Alteration of antioxidant gene expression in response to heavy metal stress in Trigonella foenum-graecum L. S Afr J Bot 115:90–93

    Article  CAS  Google Scholar 

  • Aloui A, Recorbet G, Robert F, Schoefs B, Bertrand M, Henry C, Gianinazzi-Pearson V, Dumas-Gaudot E, Aschi-Smiti S (2011) Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula. BMC Plant Biol 11:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade SAL, Silveira APD (2008) Mycorrhiza influence on maize development under Cd stress and P supply. Braz J Plant Physiol 20:39–50

    Article  Google Scholar 

  • Aref F (2011) Concentration and uptake of zinc and boron in corn leaf as affected by zinc sulfate and boric acid fertilizers in a deficient soil. Life Sci 8:26–32

    Google Scholar 

  • Arya SK, Roy BK (2011) Manganese induced changes in growth, chlorophyll content and antioxidants activity in seedlings of broad bean (Vicia faba L.). J Environ Biol 32:707–711

    CAS  PubMed  Google Scholar 

  • Ashraf MY, Roohi M, Iqbal Z, Ashraf M, Ozturk M, Gucel S (2015) Cadmium (Cd) and lead (Pb) induced inhibition in growth and alteration in some biochemical attributes and mineral accumulation in mung bean (Vigna radiata (L.) Wilczek). Commun Soil Sci Plant Anal 47:405–413

    Google Scholar 

  • Aziz H, Sabir M, Ahmad HR, Aziz T, Zia-ur-Rehman M, Hakeem KR, Ozturk M (2015) Alleviating effect of calcium on nickel toxicity in rice. CLEAN-Soil Air Water 43:901–909

    Article  CAS  Google Scholar 

  • Azooz MM, Abou-Elhamd MF, Al-Fredan MA (2012) Biphasic effect of copper on growth, proline, lipid peroxidation and antioxidant enzyme activities of wheat (Triticum aestivum cv. Hasaawi) at early growing stage. Aust J Crop Sci 6:688–694

    CAS  Google Scholar 

  • Bargmann BO, Munnik T (2006) The role of phospholipase D in plant stress responses. Curr Opin Plant Biol 9:515–522

    Article  CAS  PubMed  Google Scholar 

  • Bartels S, Besteiro MAG, Lang D, Ulm R (2010) Emerging functions for plant MAP kinase phosphatases. Trends Plant Sci 15:322–329

    Article  CAS  PubMed  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Bian M, Zhou M, Sun D, Li C (2013) Molecular approaches unravel the mechanism of acid soil tolerance in plants. Crop J 1:91–104

    Article  Google Scholar 

  • Bielen A, Remans T, Vangronsveld J, Cuypers A (2013) The influence of metal stress on the availability and redox state of ascorbate, and possible interference with its cellular functions. Int J Mol Sci 14:6382–6413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouazizi H, Jouili H, Geitmann A, Ferjani EEI (2010) Copper toxicity in expanding leaves of Phaseolus vulgaris L.: antioxidant enzyme response and nutrient element uptake. Ecotoxicol Environ Saf 73:1304–1308

    Article  CAS  PubMed  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  CAS  PubMed  Google Scholar 

  • Brunetti P, Zanella L, Proia A, De Paolis A, Falasca G, Altamura MM, Toppi LS, Costantino P, Cardarelli M (2011) Cadmium tolerance and phytochelatin content of Arabidopsis seedlings over-expressing the phytochelatin synthase gene AtPCS1. J Exp Bot 62:5509–5519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bucher AS, Schenk MK (2000) Toxicity level for phytoavailable zinc in compost-peat substrates. Sci Hortic 83:339–352

    Article  CAS  Google Scholar 

  • Chakravarty B, Srivastava S (1992) Toxicity of some heavy metals in vivo and in vitro in Helianthus annuus. Mutat Res 283:287–294

    Article  CAS  PubMed  Google Scholar 

  • Chaplen FWR (1998) Incidence and potential implications of the toxic metabolite methylglyoxal in cell culture: a review. Cytotechnology 26(3):173–183

    Google Scholar 

  • Chen L, Guo Y, Yang L, Wang Q (2008) Synergistic defensive mechanism of phytochelatins and antioxidative enzymes in Brassica chinensis L. against Cd stress. Chin Sci Bull 53:1503–1511

    CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  PubMed  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobbett C, Goldsbroughn P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  PubMed  Google Scholar 

  • Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144:1052–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham RP (1997) DNA repair: caretakers of the genome? Curr Biol 7:576–579

    Article  Google Scholar 

  • Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347:749–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalvi AA, Bhalerao SA (2013) Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann Plant Sci 2(9):362–368

    Google Scholar 

  • Diáz J, Bernal A, Pomar F, Merino F (2001) Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annum L.) seedlings in response to copper stress and its relation to lignification. Plant Sci 161:179

    Article  Google Scholar 

  • DiDonato RJ, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis Yellow Stripe-Like2(YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant J 39:403–414

    Article  CAS  PubMed  Google Scholar 

  • Du J, Yang J-L, Li C-H (2012) Advances in metallotionein studies in forest trees. Plant OMICS 5:46–51

    CAS  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2:1–18

    Article  Google Scholar 

  • Emery L, Whelan S, Hirschi KD, Pittman JK (2012) Phylogenetic analysis of Ca2+/ cation antiporter genes and insights into their evolution in plants. Front Plant Sci 3:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espartero J, Sanchez-Aguayo I, Pardo JM (1995) Molecular characterization of glyoxalase-I from a higher plant; upregulation by stress. Plant Mol Biol 29(6):1223–1233

    Google Scholar 

  • Fargasova A (2004) Toxicity comparison of some possible toxic metals (Cd, Cu, Pb, Se, Zn) on young seedlings of Sinapis alba L. Plant Soil Environ 50:33–38

    Article  CAS  Google Scholar 

  • Farinati S, Dalcorso G, Varotto S, Furini A (2010) The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants. New Phytol 185:964–978

    Article  CAS  PubMed  Google Scholar 

  • Farshian S, Khara J, Malekzadeh P (2007) Influence of arbuscular mycorrhizal fungus (Glomus etunicatum) with lettuce plants under zinc toxicity in nutrient solution. PJBS 10:2363–2367

    CAS  PubMed  Google Scholar 

  • Fidalgo F, Azenha M, Silva AF, de Sousa A, Santiago A, Ferraz P, Teixeira J (2013) Copper-induced stress in Solanum nigrum L. and antioxidant defense system response. Food Energy Secur 2:70–80

    Article  Google Scholar 

  • Flora SJS (2009) Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative Med Cell Longev 2:191–206

    Article  Google Scholar 

  • Foy CD (1992) Soil chemical factors limiting plant root growth. In: Hatfield JL, Stewart BA (eds) Advances in soil sciences: limitations to plant root growth. Springer International Publishing AG, Verlag, New York, pp 97–149

    Chapter  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freisinger E (2011) Structural features specific to plant metallothioneins. J Biol Inorg Chem 16:1035–1045

    Article  CAS  PubMed  Google Scholar 

  • Fujita M (1985) The presence of two Cd-binding components in the roots of water hyacinth cultivated in a Cd2+− containing medium. Plant Cell Physiol 26:295–300

    CAS  Google Scholar 

  • Gajalakshmi S, Iswarya V, Ashwini R, Divya G, Mythili S, Sathiavelu A (2012) Evaluation of heavy metals in medicinal plants growing in Vellore District. Eur J Exp Biol 2:1457–1461

    CAS  Google Scholar 

  • Garg N, Chandel S (2010) Arbuscular mycorrhizal networks: process and functions. A review. Agron Sustain Dev 30:581–599

    Article  CAS  Google Scholar 

  • Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A, Altay V, Ozturk M (2019) Heavy metal stress and responses in plants. Int J Environ Sci Tech 22:1807–1828

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez A, Steffen KL, Lynch JP (1998) Light and excess manganese - implications for oxidative stress in common bean. Plant Physiol 118:493–504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grennan AK (2011) Metallothioneins, a diverse protein family. Plant Physiol 155:1750–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochem Biophys Acta 1465:190–198

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Xu L, Su Y, Wang H, Gao S, Xu J, Que Y (2013) ScMT2-1-3, a metallothionein gene of sugarcane, plays an important role in the regulation of heavy metal tolerance/accumulation. Biomed Res Int 904769:1–12

    Google Scholar 

  • Gupta DK, Vandenhove H, Inouhe M (2013) Role of phytochelatins in heavy metal stress and detoxification mechanisms in plants. In: Gupta D, Corpas F, Palma J (eds) Heavy metal stress in plants. Springer International Publishing AG, Berlin, pp 73–94

    Chapter  Google Scholar 

  • Hakeem KR, Sabir M, Ozturk M, Akhtar MS, Ibrahim FH (2017) Nitrate and nitrogen oxides: sources, health effects and their remediation. In: Gunther FA, de Voogt P (eds) Reviews of environmental contamination and toxicology. Springer International Publishing AG, Cham, pp 183–217

    Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hameed A, Qadri TN, Zaffar M, Siddiqi TO, Ozturk M, Altay V, Ahmad P (2017) Biochemical and nutritional responses of Abelmoschus esculentus L. exposed to mercury contamination. Fresenius Environ Bull 26:5814–5823

    CAS  Google Scholar 

  • Hansda A, Kumar V (2017) Cu-resistant Kocuria sp. CRB15: a potential PGPR isolated from the dry tailing of Rakha copper mine. 3 Biotech 7:132

    Article  PubMed  PubMed Central  Google Scholar 

  • Harada E, Kim JA, Meyer AJ, Hell R, Clemens S, Choi YE (2010) Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses. Plant Cell Physiol 51:1627–1637

    Article  CAS  PubMed  Google Scholar 

  • Hassan TU, Bano A, Naz I (2017) Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat growth in saline sodic field. Int J Phytoremediation 19:522–529

    Article  PubMed  CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Ahmad A (2013) Proline enhances antioxidative enzyme activity, photosynthesis and yield of Cicer arietinum L. exposed to cadmium stress. Acta Bot Croat 72:323–335

    Article  CAS  Google Scholar 

  • Heiss S, Wachter A, Bogs J, Cobbett C, Rausch T (2003) Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. J Exp Bot 54:1833–1839

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    Article  CAS  PubMed  Google Scholar 

  • Hoque MA, Uraji M, Akhter Banu MN, Mori IC, Nakamura Y, Murata Y (2010) The effects of methylglyoxal on glutathione S-transferase from Nicotiana tabacum. Biosci Biotechnol Biochem 74(10):2124–2126

    Google Scholar 

  • Hossain MA, Hasanuzzaman M, Fujita M (2010) Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol Mol Biol Plants 16:259–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MA, da Silva JAT, Fujita M (2011) Glyoxalase system and reactive oxygen species detoxification system in plant abiotic stress response and tolerance: an intimate relationship. In: Shanker AK, Venkateswarlu B (eds) Abiotic stress in plants-mechanisms and adaptations. Intech-Open Access Publisher, Rijeka, pp 235–266

    Google Scholar 

  • Hossain MA, Piyatida P, Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 12:1–37

    Google Scholar 

  • Hosseini Z, Poorakbar L (2013) Zinc toxicity on antioxidative response in (Zea mays L.) at two different pH. J Stress Physiol Biochem 9:66–73

    Google Scholar 

  • Hou X, Hou HJM (2013) Roles of manganese in photosystem II dynamics to irradiations and temperatures. Front Biol 8:312–322

    Article  CAS  Google Scholar 

  • Huang GY, Wang YS (2009) Expression analysis of type 2 metallothionein gene in mangrove species (Bruguiera gymnorrhiza (L.) Lam.) under heavy metal stress. Chemosphere 77:1026–1029

    Article  CAS  PubMed  Google Scholar 

  • Hue NV, Mai Y (2002) Manganese toxicity in watermelon as affected by lime and compost amended to a Hawaiian acid Oxisol. Hortic Sci 37:656–661

    CAS  Google Scholar 

  • Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang SQ, Hirt H, Wilson C, Heberle-Bors E et al (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308

    Google Scholar 

  • Iyaka YA (2011) Nickel in soils: a review of its distribution and impacts. Sci Res Essays 6:6774–6777

    Google Scholar 

  • Jalmi SK, Bhagat PK, Verma D, Noryang S, Tayyeba S, Singh K, Sharma D, Sinha AK (2018) Traversing the links between heavy metal stress and plant signaling. Front Plant Sci 9:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    Article  CAS  PubMed  Google Scholar 

  • Jonak C, Okresz L, Bogre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 5:415–424

    Article  CAS  PubMed  Google Scholar 

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13:3145–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karplus PA, Daniels MJ, Herriot JR (1999) Atomic structure of ferredoxin-NADPH C reductase, prototype for a structurally novel flavoenzyme family. Science 251:60–66

    Article  Google Scholar 

  • Kasprzak KS (1995) Possible role of oxidative damage in metal induced carcinogenesis. Cancer Investig 13:411–430

    Article  CAS  Google Scholar 

  • Kawachi M, Kobae Y, Mimura T, Maeshima M (2008) Deletion of a histidine-rich loop of AtMTP1, a vacuolar Zn2+/ H+ antiporter of Arabidopsis thaliana, stimulates the transport activity. J Biol Chem 283:8374–8383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MN, Mohammad F, Mobin M, Saqib MA (2014) Tolerance of plants to abiotic stress: a role of nitric oxide and calcium. In: Khan M, Mobin M, Mohammad F, Corpas F (eds) Nitric oxide in plants: metabolism and role in stress physiology. Springer International Publishing AG, Cham, pp 225–242

    Chapter  Google Scholar 

  • Kidd PS, Proctor J (2000) Effects of aluminium on the growth and mineral composition of Betula pendula Roth. J Exp Bot 51:1057–1066

    Article  CAS  PubMed  Google Scholar 

  • Kohler A, Blaudez D, Chalot M, Martin F (2004) Cloning and expression of multiple metallothioneins from hybrid poplar. New Phytol 164:83–93

    Article  CAS  PubMed  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 97:2940–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leszczyszyn OI, Imam HT, Blindauer CA (2013) Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics 5:1146–1169

    Article  CAS  PubMed  Google Scholar 

  • Leung HM, Ye ZH, Wong MH (2007) Survival strategies of plants associated with arbuscular mycorrhizal fungi on toxic mine tailings. Chemosphere 66:905–915

    Article  CAS  PubMed  Google Scholar 

  • Lidon FC, Barreiro MG (2002) An overview into aluminum toxicity in maize. Bulg J Plant Physiol 28:96–112

    Google Scholar 

  • Lin YC, Kao CH (2005) Nickel toxicity of rice seedlings: cell wall peroxidase, lignin, and NiSO4-inhibited root growth. Crop Environ Bioinfo 2:131–136

    CAS  Google Scholar 

  • Liu J, Pineros MA, Kochian LV (2014) The role of aluminum sensing and signaling in plant aluminum resistance. J Integr Plant Biol 56:221–230

    Article  CAS  PubMed  Google Scholar 

  • Lombardi L, Sebastiani L (2005) Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants. Plant Sci 168:797–802

    Article  CAS  Google Scholar 

  • Lopez-Millan AF, Ellis DR, Grusak MA (2005) Effect of zinc and manganese supply on the activities of superoxide dismutase and carbonic anhydrase in Medicago truncatula wild type and raz mutant plants. Plant Sci 168:1015–1022

    Article  CAS  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    Article  CAS  PubMed  Google Scholar 

  • Macovei A, Ventura L, Dona M, Fae M, Balestrazzi A, Carbonera D (2010) Effects of heavy metal treatments on metallothionein expression profiles in white poplar (Populus alba L.) cell suspension cultures. Analele Universitatii din Oradea-Fascicula Biologie 18:274–279

    Google Scholar 

  • Maksimovic JD, Mojovic M, Maksimovic V, Romheld V, Nikolic M (2012) Silicon ameliorates manganese toxicity in cucumber by decreasing hydroxyl radical accumulation in the leaf apoplast. J Exp Bot 63:2411–2420

    Article  PubMed  CAS  Google Scholar 

  • Maksymiec W (1997) Effect of copper on cellular processes in higher plants. Photosynthetica 34:321–342

    Article  CAS  Google Scholar 

  • Malar S, Vikram SS, Favas PJC, Perumal V (2014) Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot Stud Int J 55:54

    Google Scholar 

  • Malar S, Sahi SV, Favas PJC, Venkatachalam P (2015) Mercury heavymetal-induced physiochemical changes and genotoxic alterations in water hyacinths (Eichhornia crassipes Mart). Environ Sci Pollut Res 22:4597–4608

    Article  CAS  Google Scholar 

  • Manara A (2012) Plant responses to heavy metal toxicity. In: Furini A (ed) Plants and heavy metals. Springer International Publishing AG, Dordrecht, pp 27–53

    Chapter  Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kin SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed  PubMed Central  Google Scholar 

  • Meharg AA (1994) Integrated tolerance mechanisms-constitutive and adaptive plant-response to elevated metal concentrations in the environment. Plant Cell Environ 17:989–993

    Article  CAS  Google Scholar 

  • Meharg AA, Macnair MR (1992) Suppression of the high affinity phosphate uptake system; a mechanism of arsenate tolerance in Holcuslanatus L. J Exp Bot 43:519–524

    Article  CAS  Google Scholar 

  • Memon AR, Aktoprakligil D, Zdemur A, Vertii A (2001) Heavy metal accumulation and detoxification mechanisms in plants. Turk J Bot 25:111–121

    Google Scholar 

  • Meyer CL, Pauwels M, Briset L, Godé C, Salis P, Bourceaux A, Souleman D, Frerot H, Verbruggen N (2016) Potential preadaptation to anthropogenic pollution: evidence from a common quantitative trait locus for zinc and cadmium tolerance in metallicolous and nonmetallicolous accessions of Arabidopsis halleri. New Phytol 212:934–943

    Article  CAS  PubMed  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15:523–530

    CAS  Google Scholar 

  • Millaleo R, Reyes-Dıaz M, Ivanov AG, Mora ML, Alberdi M (2010) Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr 10:476–494

    Article  Google Scholar 

  • Mills RF, Krijger GC, Baccarini PJ, Hall JL, Williams LE (2003) Functional expression of AtHMA4, a P1B-type ATPase of the Zn/Co/ Cd/Pb subclass. Plant J 35:164–176

    Article  CAS  PubMed  Google Scholar 

  • Minglin L, Yuxiu Z, Tuanyao C (2005) Identification of genes upregulated in response to Cd exposure in Brassica juncea L. Gene 363:151–158

    Google Scholar 

  • Mishra S, Dubey RS (2006) Heavy metal uptake and detoxification mechanisms in plants. Int J Agric 1:122–141

    Article  CAS  Google Scholar 

  • Mishra PK, Prakash V (2010) Response of non-enzymatic antioxidants to zinc induced stress at different pH in Glycine max L. Merrill J Plant Sci 3:1–10

    Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi K, Khalesro S, Sohrabi Y, Heidari G (2011) A review: beneficial effects of the mycorrhizal fungi for plant growth. JAEBS 1:310–319

    Google Scholar 

  • Mosa KA, Ismail A, Helmy M (2017) Functional genomics combined with other omics approaches for better understanding abiotic stress tolerance in plants. In: Plant stress tolerance (Sunkar and Ramanjulu). Springer International Publishing AG, Cham, pp 55–73

    Chapter  Google Scholar 

  • Mossor-Pietraszewska T (2001) Effect of aluminium on plant growth and metabolism. Acta Biochim Pol 48:673–686

    Article  CAS  PubMed  Google Scholar 

  • Mourato M, Reis R, Martins LL (2012) Characterization of plant antioxidative system in response to abiotic stresses: a focus on heavy metal toxicity. In: Montanaro G, Dichio B (eds) Advances in selected plant physiology aspects. InTech, Vienna, pp 23–44

    Google Scholar 

  • Mullineaux P, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth Res 86:459–474

    Article  CAS  PubMed  Google Scholar 

  • Nabulo G, Black CR, Young SD (2011) Trace metal uptake by tropical vegetables grown on soil amended with urban sewage sludge. Environ Pollut 159:368–376

    Article  CAS  PubMed  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Nevo Y, Nelson N (2006) The NRAMP family of metal-ion transporters. Biochim Biophys Acta 1763:609–620

    Article  CAS  PubMed  Google Scholar 

  • Nocito FF, Lancilli C, Crema B, Fourcroy P, Davidian JC, Sacchi GA (2006) Heavy metal stress and sulfate uptake in maize roots. Plant Physiol 141:1138–1148

    Google Scholar 

  • Opdenakker K, Remans T, Vangronsveld J, Cuypers A (2013) Mitogen- activated protein (MAP) kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses. Int J Mol Sci 13:7828–7853

    Article  CAS  Google Scholar 

  • Ortiz DF, Ruscitti T, McCue KF, Ow DW (1995) Transport of metalbinding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem 270:4721–4728

    Article  CAS  PubMed  Google Scholar 

  • Ouyang H, Vogel HJ (1998) Metal ion binding to calmodulin: NMR and fluorescence studies. Biometals 11:213–222

    Article  CAS  PubMed  Google Scholar 

  • Pahlsson AMB (1990) Influence of aluminium on biomass, nutrients, soluble carbohydrates and phenols in beech (Fagus sylvatica). Physiol Plant 78:79–84

    Article  Google Scholar 

  • Panuccio MR, Sorgona A, Rizzo M, Cacco G (2009) Cadmium adsorption on vermiculite, zeolite and pumice: batch experiment studies. J Environ Manag 90:364–374

    Article  CAS  Google Scholar 

  • Pavl’ıkova D, Pavlık M, Staszkova L, Tlustos P, Szakova J, Bal’ık J (2007) The effect of potentially toxic elements and sewage sludge on the activity of regulatory enzyme glutamate kinase. Plant Soil Environ 53:201–206

    Article  Google Scholar 

  • Pierart A, Shahid M, Séjalon-Delmas N, Dumat C (2015) Antimony bioavailability: knowledge and research perspectives for sustainable agricultures. J Hazard Mater 289:219–234

    Article  CAS  PubMed  Google Scholar 

  • Pitzschke A, Forzani C, Hirt H (2006) Reactive oxygen species signaling in plants. Antioxid Redox Signal 8:1757–1764

    Article  CAS  PubMed  Google Scholar 

  • Pitzschke A, Djamei A, Bitton F, Hirt H (2009) A major role of the MEKK1-MKK1/2-MPK4 pathway in ROS signalling. Mol Plant 2:120–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poonkothai M, Vijayavathi BS (2012) Nickel as an essential element and a toxicant. Int J Environ Sci 1:285–288

    Google Scholar 

  • Pourrut B, Jean S, Silvestre J, Pinelli E (2011) Lead-induced DNA damage in Vicia faba root cells: potential involvement of oxidative stress. Mutat Res 726:123–128

    Article  CAS  PubMed  Google Scholar 

  • Puig S, Thiele DJ (2002) Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6:171–180

    Article  CAS  PubMed  Google Scholar 

  • Queval G, Foyer C (2012) Redox regulation of photosynthetic gene expression. Philos Trans R Soc B 367:3475–3485

    Google Scholar 

  • Rastgoo L, Alemzadeh A, Afsharifar A (2011) Isolation of two novel isoforms encoding zinc and copper-transporting P1BATPase from Gouan (Aeluropus littoralis). Plant Omics 4:377–383

    CAS  Google Scholar 

  • Rauser AWE (1995) Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol 109(4):1141–1149

    Google Scholar 

  • Ray S, Dutta S, Halder J, Ray M (1994) Inhibition of electron flow through complex I of the mitochondrial respiratory chain of Ehrlich ascites carcinoma cells by methylglyoxal. Biochem J 303(1):69–72

    Google Scholar 

  • Reddy KJ (2006) Nutrient stress. In: Madhava KV, Rao A, Raghavendra S, Janardhan RK (eds) Physiology and molecular biology of stress tolerance in plants. Springer International Publishing AG, Dordrecht, pp 187–217

    Chapter  Google Scholar 

  • Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, Knight MR (2004) OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427:858–861

    Article  CAS  PubMed  Google Scholar 

  • Rivetta A, Negrini N, Cocucci M (1997) Involvement of Ca2+− calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant Cell Environ 20:600–608

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Abbas T, Adrees M, Zia-ur-Rehman M, Ibrahim M, Abbas F, Qayyum MF, Nawaz R (2018) Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. J Environ Manag 206:676–683

    Article  CAS  Google Scholar 

  • Roelofs D, Aarts MGM, Schat H, van Straalen NM (2008) Functional ecological genomics to demonstrate general and specific responses to abiotic stress. Funct Ecol 22:8–18

    Google Scholar 

  • Rout GR, Samantaray S, Das P (2001) Aluminium toxicity in plants: a review. Agronomie 21:3–21

    Article  Google Scholar 

  • Saba H, Jyoti P, Neha S (2013) Mycorrhizae and phytochelators as remedy in heavy metal contaminated land remediation. Int J Environ Sci 2:74–78

    Google Scholar 

  • Saito R, Yamamoto H, Makino A, Sugimoto T, Miyake C (2011) Methylglyoxal functions as Hill oxidant and stimulates the photoreduction of O(2) at photosystem I: a symptom of plant diabetes. Plant Cell Environ 34(9):1454–1464

    Google Scholar 

  • Saxena I, Shekhawat GS (2013) Nitric oxide (NO) in alleviation of heavy metal induced phytotoxicity and its role in protein nitration. Nitric Oxide 32:13–20

    Article  CAS  PubMed  Google Scholar 

  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wirén N (2004) ZmYS1 functions as a proton-coupled symporter for phyto siderophore and nicotianamine chelated metals. J Biol Chem 279:9091–9096

    Article  CAS  PubMed  Google Scholar 

  • Schaaf G, Schikora A, Häberle J, Vert G, Ludewig U, Briat JF, Curie C, von Wirén N (2005) A putative function for the Arabidopsis Fe-Phyto siderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant Cell Physiol 46:762–774

    Article  CAS  PubMed  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    CAS  PubMed  Google Scholar 

  • Seregin IV, Kozhevnikova AD, Kazyumina EM, Ivanov VB (2003) Nickel toxicity and distribution in maize roots. Russ J Plant Physiol 50:711–717

    Article  CAS  Google Scholar 

  • Shafeeq A, Butt ZA, Muhammad S (2012) Response of nickel pollution on physiological and biochemical attributes of wheat (Triticum aestivum L.) var. Bhakar-02. Pak J Bot 44(1):111–116

    Google Scholar 

  • Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M, Aslam M, Dumat C (2015) Heavy metal stress and crop productivity. In: Hakeem KR (ed) Crop production and global environmental issues. Springer International Publishing AG, Cham, pp 1–25

    Google Scholar 

  • Shanker AK, Djanaguiraman M, Pathmanabhan G, Sudhagar R, Avudainayagam S (2003) Uptake and phytoaccumulation of chromium by selected tree species. Proceedings of the international conference on water and environment held in Bhopal, India

    Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot, Article ID 217037, 1–26

    Google Scholar 

  • Sheldon AR, Menzies NW (2005) The effect of copper toxicity on the growth and root morphology of Rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant Soil 278:341–349

    Article  CAS  Google Scholar 

  • Shen GM, Zhu C, Du QZ (2010) Genome-wide identification of Phytochelatin and Phytochsynth domain containing phytochelatin family from rice. eJBio 6:73–79

    Google Scholar 

  • Shi Q, Ding F, Wang X, Wei M (2007) Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress. Plant Physiol Biochem 45:542–550

    Article  CAS  PubMed  Google Scholar 

  • Shukla D, Tiwari M, Tripathi RD, Nath P, Trivedi PK (2013) Synthetic phytochelatins complement a phytochelatin deficient Arabidopsis mutant and enhance the accumulation of heavy metal (loid) s. Biochem Bioph Res Co 434:664–669

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Basalah MO (2011) Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248:447–455

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143

    Article  PubMed  PubMed Central  Google Scholar 

  • Snedden WA, Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151:35–66

    Article  CAS  PubMed  Google Scholar 

  • Song WY, Mendoza-Cozatl DG, Lee Y, Schroeder JI, Ahn SN, Lee HS, Wicker T, Martinoia E (2014) Phytochelatin- metal(loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis. Plant Cell Environ 37:1192–1201

    Article  CAS  PubMed  Google Scholar 

  • Steiner F, Zoz T, Junior ASP, Castagnara DD, Dranski JAL (2012) Effects of aluminum on plant growth and nutrient uptake in young physic nut plants. Semina: Ciencias Agrarias, Londrina 33:1779–1788

    CAS  Google Scholar 

  • Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999

    Article  CAS  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Taj ZZ, Rajkumar M (2016) Perspectives of plant growth-promoting actinomycetes in heavy metal phytoremediation. In: Subramaniam G, Arumugam S, Vijayabharti R (eds) Plant growth promoting actinobacteria. Springer International Publishing AG, Singapore, pp 213–231

    Chapter  Google Scholar 

  • Takacs T, Biro B, Voros I (2001) Arbuscular mycorrhizal effect “on heavy metal uptake of ryegrass (Lolium perenne L.) in pot culture with polluted soil. In Plant Nutrition: Food Security and Sustainability of Agro-Ecosystem through Basic and Applied Research. In: Horst WWJ, Scheck MK, Burkert A et al (eds), Dordrecht: Kluwer Academic Publishers, Netherlands, pp 480–481

    Google Scholar 

  • Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:1–31

    Article  Google Scholar 

  • Tauqeer HM, Ali S, Rizwan M, Ali Q, Saeed R, Iftikhar U, Ahmad R, Farid M, Abbasi GH (2016) Phytoremediation of heavy metals by Alternanthera bettzickiana: growth and physiological response. Ecotoxicol Environ Saf 126:138–146

    Article  CAS  PubMed  Google Scholar 

  • Thapa G, Sadhukhan A, Panda SK, Sahoo L (2012) Molecular mechanistic model of plant heavy metal tolerance. Biometals 25:489–505

    Article  CAS  PubMed  Google Scholar 

  • Theriappan P, Gupta AK, Dhasarrathan P (2011) Accumulation of proline under salinity and heavy metal stress in cauliflower seedlings. JASEM 15:251–255

    Article  CAS  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporters family in Arabidopsis with homology to NRAMP genes. Proc Natl Acad Sci 97:4991–4996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Prasad V, Chauhan PS, Lata C (2017) Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Front Plant Sci 8:1510

    Article  PubMed  PubMed Central  Google Scholar 

  • Todorovic S, Giba Z, Simonovic A, Bozic D, Banjanac T, Grubisic D (2009) Manganese effects on in vitro development of lesser centaury (Centaurium pulchellum (Sw.) Druce). Arch Biol Sci 61:279–283

    Article  Google Scholar 

  • Tripathi BN, Gaur JP (2004) Relationship between copperand zinc-induced oxidative stress and proline accumulation in Scenedesmus sp. Planta 219:397–404

    Article  CAS  PubMed  Google Scholar 

  • Turnau K (1998) Heavy metal content and localization in mycorrhizal Euphorbia cyparissias zinc wastes in Southern Poland. Acta Soc Bot Pol 67:105–113

    Article  CAS  Google Scholar 

  • Upadhyaya H, Panda SK, Bhattacharjee MK, Dutta S (2010) Role of arbuscular mycorrhiza in heavy metal tolerance in plants: prospects for phytoremediation. J Phytology 2:16–27

    Google Scholar 

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  PubMed  Google Scholar 

  • Vatansever R, Ozyigit II, Filiz E (2017) Essential and beneficial trace elements in plants, and their transport in roots: a review. Appl Biochem Biotechnol 181:464–482

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Verma PK, Meher AK, Bansiwal AK, Tripathi RD, Chakrabarty D (2017) A novel fungal arsenic methyltransferase, WaarsM reduces grain arsenic accumulation in the transgenic rice plant. J Hazard Mater 344:626–634

    Article  PubMed  CAS  Google Scholar 

  • Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312

    Article  CAS  PubMed  Google Scholar 

  • Viehweger K (2014) How plants cope with heavy metals. Bot Stud 55(35):1–12

    Google Scholar 

  • Wang T, Qin L, Liu B, Liu Y, Wilson B, Eling TE, Langenbach R, Taniura S, Hing JS (2004) Role of reactive oxygen species in LPS-induced production of prostaglandin E2 in microglia. J Neuro Chem 88(4):939–947

    Google Scholar 

  • Wang JP, Raman H, Zhang GP, Mendham N, Zhou MX (2006) Aluminium tolerance in barley (Hordeum vulgare L.): physiological mechanisms, genetics and screening methods. J Zhe Uni Sci B 7:769–787

    Article  CAS  Google Scholar 

  • Wang HC, Wu JS, Chia JC, Yang CC, Wu YJ, Juang RH (2009) Phytochelatin synthase is regulated by protein phosphorylation at a threonine residue near its catalytic site. J Agric Food Chem 57:7348–7355

    Article  CAS  PubMed  Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochem Biophys Acta 77803:1–23

    Google Scholar 

  • Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto (2004) Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol 135:1447–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Juurlink BHJ (2002) Increased methylglyoxal and oxidative stress in hypertensive rat vascular smooth muscle cells. Hypertension 39(3):809–814

    Google Scholar 

  • Xiong T, Leveque T, Shahid M, Foucault Y, Mombo S, Dumat C (2014) Lead and cadmium phytoavailability and human bioaccessibility for vegetables exposed to soil or atmospheric pollution by process ultrafine particles. J Environ Qual 43:1593–1600

    Article  PubMed  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2005a) Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophys Res Commun 337(1):61–67

    Google Scholar 

  • Yadav SK, Singla-Pareek SL, Reddy MK, Sopory SK (2005b) Methylglyoxal detoxification by glyoxalase system: a survival strategy during environmental stresses. Physiol Mol Biol Plants 11(1):1–11

    Google Scholar 

  • Yang Z, Chu C (2011) Towards understanding plant response to heavy metal stress, abiotic stress in plants. In: Shanker A, Venkateswarlu B (eds) Mechanisms and adaptations. InTech, Shanghai, pp 59–78

    Google Scholar 

  • Yang XE, Jin XF, Feng Y, Islam E (2005) Molecular mechanisms and genetic basis of heavy metal tolerance/hyperaccumulation in plants. J Integr Plant Biol 47:1025–1035

    Article  CAS  Google Scholar 

  • Yruela I (2009) Copper in plants: acquisition, transport and interactions. Funct Plant Biol 36:409–430

    Article  CAS  PubMed  Google Scholar 

  • Yuan HM, Liu WC, Jin Y, Lu YT (2013) Role of ROS and auxin in plant response to metal-mediated stress. Plant Signal Behav 8:e24671

    Article  PubMed  PubMed Central  Google Scholar 

  • Yurekli F, Kucukbay Z (2003) Synthesis of phytochelatins in Helianthus annuus is enhanced by cadmium nitrate. Acta Bot Croat 62:21–25

    CAS  Google Scholar 

  • Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14:7405–7432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarei S, Ehsanpour AA, Abbaspour J (2012) The role of over expression of P5CS gene on proline, catalase, ascorbate peroxidase activity and lipid peroxidation of transgenic tobacco (Nicotiana tabacum L.) plant under in vitro drought stress. JCMR 4:43–49

    Google Scholar 

  • Zengin FK, Kirbag S (2007) Effects of copper on chlorophyll, proline, protein and abscisic acid level of sunflower (Helianthus annuus L.) seedlings. J Environ Biol 28:561–566

    CAS  PubMed  Google Scholar 

  • Zhen Y, Qi JL, Wang SS, Jing S, Xu GH, Zhang MS, Miao L, Peng XX, Tian D, Yang YH (2007) Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean. Physiol Plant 131:542–554

    Article  CAS  PubMed  Google Scholar 

  • Zheng C, Jiang D, Liu F, Dai T, Liu W, Jing Q, Cao W (2009) Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environ Exp Bot 67:222–227

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, M., Surti, M., Ashraf, S.A., Adnan, M. (2021). Physiological and Molecular Responses to Heavy Metal Stresses in Plants. In: Husen, A. (eds) Harsh Environment and Plant Resilience. Springer, Cham. https://doi.org/10.1007/978-3-030-65912-7_8

Download citation

Publish with us

Policies and ethics