Skip to main content

SPECT/CT for Dosimetry

  • Chapter
  • First Online:
Clinical Applications of SPECT-CT
  • 754 Accesses

Abstract

This chapter reviews the clinical applications of SPECT/CT in dosimetry. After introducing the benefits of SPECT/CT versus planar imaging and the challenges inherent to dosimetry assessment, dose–response and dose–toxicity studies are reviewed. Recent breakthroughs in individualized radionuclide therapy planning resulting in significant patient outcome improvements are discussed, especially in the context of international recommendations and rules, and the persistent lobbying of some nuclear medicine boards to prevent their use. New developments in Compton cameras allowing fast SPECT for alpha emitter are presented.

There is no doubt that these breakthroughs in radionuclide therapies will stimulate the nuclear medicine community to move to state-of-the-art individualized dosimetry planning, a strategy which made the success of external beam radiotherapy.

Preamble

Versus the previous 2013 version, recent breakthroughs in the field lead to add 6 new subsections to the “SPECT/CT based dosimetry studies” section, while two new sections have been added to the chapter. The conclusion has thus been fully re-written.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barone R, Borson-Chazot F, Valkema R, Walrand S, Chauvin F, Gogou L, Kvols LK, Krenning EP, Jamar F, Pauwels S. Patient-specific dosimetry in predicting renal toxicity with (90)Y-DOTATOC: relevance of kidney volume and dose rate in finding a dose-effect relationship. J Nucl Med. 2005;46:99S–106S.

    CAS  PubMed  Google Scholar 

  2. Pauwels S, Barone R, Walrand S, Borson-Chazot F, Valkema R, Kvols LK, Krenning EP, Jamar F. Practical dosimetry of peptide receptor radionuclide therapy with (90)Y-labeled somatostatin analogs. J Nucl Med. 2005;46:92S–8S.

    CAS  PubMed  Google Scholar 

  3. Walrand S, Lhommel R, Goffette P, Van den Eynde M, Pauwels S, Jamar F. Hemoglobin level significantly impacts the tumor cell survival fraction in humans after internal radiotherapy. EJNMMI Res. 2012;2:20.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Walrand S, Barone R, Pauwels S, Jamar F. Experimental facts supporting a red marrow uptake due to radiometal transchelation in 90Y-DOTATOC therapy and relationship to the decrease of platelet counts. Eur J Nucl Med Mol Imaging. 2011;38(7):1270–80.

    Article  CAS  PubMed  Google Scholar 

  5. Flamen P, Vanderlinden B, Delatte P, Ghanem G, Ameye L, Van Den Eynde M, Hendlisz A. Multimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolization therapy with Yttrium-90 labeled resin spheres. Phys Med Biol. 2008;53(22):6591–603.

    Article  PubMed  Google Scholar 

  6. Wessels BW, Konijnenberg MW, Dale RG, Breitz HB, Cremonesi M, Meredith RF, Green AJ, Bouchet LG, Brill AB, Bolch WE, Sgouros G, Thomas SR. MIRD pamphlet no. 20: the effect of model assumptions on kidney dosimetry and response—implications for radionuclide therapy. J Nucl Med. 2008;49(11):1884–99.

    Article  PubMed  Google Scholar 

  7. Garin E, Lenoir L, Rolland Y, Edeline J, Mesbah H, Laffont S, Porée P, Clément B, Raoul JL, Boucher E. Dosimetry based on 99mTc-macroaggregated albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y-loaded glass spheres: preliminary results. J Nucl Med. 2012;53(2):255–63.

    Article  CAS  PubMed  Google Scholar 

  8. Strigari L, Sciuto R, Rea S, Carpanese L, Pizzi G, Soriani A, Iaccarino G, Benassi M, Ettorre GM, Maini CL. Efficacy and toxicity related to treatment of hepatocellular carcinoma with 90Y-SIR spheres: radiobiologic considerations. J Nucl Med. 2010;51(9):1377–85.

    Article  CAS  PubMed  Google Scholar 

  9. Jamar F, Barone R, Mathieu I, Walrand S, Labar D, Carlier P, de Camps J, Schran H, Chen T, Smith MC, Bouterfa H, Valkema R, Krenning EP, Kvols LK, Pauwels S. 86Y-DOTA0-D-Phe1-Tyr3-octreotide (SMT487)—a phase 1 clinical study: pharmacokinetics, biodistribution and renal protective effect of different regimens of amino acid co-infusion. Eur J Nucl Med Mol Imaging 2003;30(4):510–518.

    Google Scholar 

  10. Gay HA, Niemierko A. A free program for calculating EUD-based NTCP and TCP in external beam radiotherapy. Phys Med. 2007;23:115–25.

    Article  PubMed  Google Scholar 

  11. Adler JR, Chang SD, Murphy MJ, Doty J, Geis P, Hancock SL. The Cyberknife: a frameless robotic system for radiosurgery. In: Stereotactic and functional neurosurgery. 1997;69:124–8.

    Google Scholar 

  12. Devic S. MRI simulation for radiotherapy treatment planning. Med Phys. 2012;39(11):6701–11.

    Article  PubMed  Google Scholar 

  13. Scripes PG, Yaparpalvi R. Technical aspects of positron emission tomography/computed tomography in radiotherapy treatment planning. Semin Nucl Med. 2012;42(5):283–8.

    Article  PubMed  Google Scholar 

  14. Götz L, Spehl TS, Weber WA, Grosu AL. PET and SPECT for radiation treatment planning. Q J Nucl Med Mol Imaging. 2012;56(2):163–72.

    PubMed  Google Scholar 

  15. Taylor ML, Kron T, Franich RD. A contemporary review of stereotactic radiotherapy: inherent dosimetric complexities and the potential for detriment. Acta Oncol. 2011;50(4):483–508.

    Article  PubMed  Google Scholar 

  16. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32013L0059

  17. Berker Y, Goedicke A, Kemerink GJ, Aach T, Schweizer B. Activity quantification combining conjugate-view planar scintigraphies and SPECT/CT data for patient-specific 3-D dosimetry in radionuclide therapy. Eur J Nucl Med Mol Imaging. 2011;38(12):2173–85.

    Article  CAS  PubMed  Google Scholar 

  18. Sandström M, Garske U, Granberg D, Sundin A, Lundqvist H. Individualized dosimetry in patients undergoing therapy with (177)Lu-DOTA-D-Phe (1)-Tyr (3)-octreotate. Eur J Nucl Med Mol Imaging. 2010;37(2):212–25.

    Article  PubMed  Google Scholar 

  19. Garkavij M, Nickel M, Sjögreen-Gleisner K, Ljungberg M, Ohlsson T, Wingårdh K, Strand SE, Tennvall J. 177Lu-[DOTA0,Tyr3] octreotate therapy in patients with disseminated neuroendocrine tumors: Analysis of dosimetry with impact on future therapeutic strategy. Cancer. 2010;116(4):1084–92.

    Article  CAS  PubMed  Google Scholar 

  20. Valkema R, Pauwels S, Kvols LK, Kwekkeboom DJ, Jamar F, de Jong M, et al. Long-term follow-up of renal function after peptide receptor radiation therapy with 90Y-DOTA0, Tyr3-octreotide and 177Lu-DOTA0, Tyr3-octreotate. J Nucl Med. 2005;46:83S–91.

    CAS  PubMed  Google Scholar 

  21. Konijnenberg M, Melis M, Valkema R, Krenning E, de Jong M. Radiation dose distribution in human kidneys by octreotides in peptide receptor radionuclide therapy. J Nucl Med. 2007;48(1):134–42.

    CAS  PubMed  Google Scholar 

  22. Bouchet LG, Bolch WE, Blanco HP, Wessels BW, Siegel JA, Rajon DA, Clairand I, Sgouros G. MIRD pamphlet no 19: absorbed fractions and radionuclide S values for six age-dependent multiregion models of the kidney. J Nucl Med. 2003;44(7):1113–47.

    PubMed  Google Scholar 

  23. De Jong M, Valkema R, Van Gameren A, et al. Inhomogeneous localization of radioactivity in the human kidney after injection of [111In-DTPA]octreotide. J Nucl Med. 2004;45:1168–71.

    PubMed  Google Scholar 

  24. Cremonesi M, Ferrari M, Bartolomei M, Orsi F, Bonomo G, Aricò D, Mallia A, De Cicco C, Pedroli G, Paganelli G. Radioembolisation with 90Y-spheres: dosimetric and radiobiological investigation for multi-cycle treatment. Eur J Nucl Med Mol Imaging. 2008;35(11):2088–96.

    Article  CAS  PubMed  Google Scholar 

  25. Chiesa C, Maccauro M, Romito R, Spreafico C, Pellizzari S, Negri A, Sposito C, Morosi C, Civelli E, Lanocita R, Camerini T, Bampo C, Bhoori S, Seregni E, Marchianò A, Mazzaferro V, Bombardieri E. Need, feasibility and convenience of dosimetric treatment planning in liver selective internal radiation therapy with (90)Y spheres: the experience of the National Tumor Institute of Milan. Q J Nucl Med Mol Imaging. 2011;55(2):168–97.

    CAS  PubMed  Google Scholar 

  26. Lhommel R, van Elmbt L, Goffette P, Van den Eynde M, Jamar F, Pauwels S, Walrand S. Feasibility of 90Y TOF PET-based dosimetry in liver metastasis therapy using SIR-spheres. Eur J Nucl Med Mol Imaging. 2010;37(9):1654–62.

    Article  PubMed  Google Scholar 

  27. Brown S, Bailey DL, Willowson K, Baldock C. Investigation of the relationship between linear attenuation coefficients and CT Hounsfield units using radionuclides for SPECT. Appl Radiat Isot. 2008;66(9):1206–12.

    Article  CAS  PubMed  Google Scholar 

  28. Ritt P, Vija H, Hornegger J, Kuwert T. Absolute quantification in SPECT. Eur J Nucl Med Mol Imaging. 2011;38:S69–77.

    Article  PubMed  Google Scholar 

  29. Shcherbinin S, Celler A, Belhocine T, Vanderwerf R, Driedger A. Accuracy of quantitative reconstructions in SPECT/CT imaging. Phys Med Biol. 2008;53:4595–604.

    Article  CAS  PubMed  Google Scholar 

  30. Vandervoort E, Celler A, Harrop R. Implementation of an iterative scatter correction, the influence of attenuation map quality and their effect on absolute quantitation in SPECT. Phys Med Biol. 2007;52:1527–45.

    Article  PubMed  Google Scholar 

  31. Willowson K, Bailey DL, Baldock C. Quantitative SPECT reconstruction using CT-derived corrections. Phys Med Biol. 2008;53(12):3099–112.

    Article  PubMed  Google Scholar 

  32. Beauregard JM, Hofman MS, Pereira JM, Eu P, Hicks RJ. Quantitative (177)Lu SPECT (QSPECT) imaging using a commercially available SPECT/CT system. Cancer Imaging. 2011;11:56–66.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ahmadzadehfar H, Sabet A, Biermann K, Muckle M, Brockmann H, Kuhl C, Wilhelm K, Biersack HJ, Ezziddin S. The significance of 99mTc-MAA SPECT/CT liver perfusion imaging in treatment planning for 90Y-sphere selective internal radiation treatment. Nucl Med. 2010;51(8):1206–12.

    Article  Google Scholar 

  34. Reubi JC, Schär JC, Waser B, Wenger S, Heppeler A, Schmitt JS, Mäcke HR. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27(3):273–82.

    Article  CAS  PubMed  Google Scholar 

  35. Walrand S, Flux GD, Konijnenberg MW, Valkema R, Krenning EP, Lhommel R, Pauwels S, Jamar F. Dosimetry of yttrium-labelled radiopharmaceuticals for internal therapy: 86Y or 90Y imaging? Eur J Nucl Med Mol Imaging. 2011;38:S57–68.

    Article  PubMed  Google Scholar 

  36. Minarik D, Sjögreen-Gleisner K, Linden O, Wingårdh K, Tennvall J, Strand SE, Ljungberg M. 90Y bremsstrahlung imaging for absorbed-dose assessment in high-dose Radioimmunotherapy. J Nucl Med. 2010;51:1974–8.

    Article  PubMed  Google Scholar 

  37. Jiang M, Fischman A, Nowakowski FS, Heiba S, Zhang Z, Knesaurek K, Weintraub J, Josef MJ. Segmental perfusion differences on paired Tc-99m macroaggregated albumin (MAA) hepatic perfusion imaging and Yttrium-90 (Y-90) bremsstrahlung imaging studies in SIR-sphere Radioembolization: associations with angiography. J Nucl Med Radiat Ther. 2012;3:1.

    Article  Google Scholar 

  38. Kafrouni M, Allimant C, Fourcade M, Vauclin S, Guiu B, Mariano-Goulart D, Bouallègue FB. Analysis of differences between 99m Tc-MAA SPECT-and 90 Y-microsphere PET-based dosimetry for hepatocellular carcinoma selective internal radiation therapy. EJNMMI Res. 2019;9:62.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gnesin S, Canetti L, Adib S, Cherbuin N, Monteiro MS, Bize P, Denys A, Prior JO, Baechler S, Boubaker A. Partition model–based 99mTc-MAA SPECT/CT predictive dosimetry compared with 90Y TOF PET/CT posttreatment dosimetry in Radioembolization of hepatocellular carcinoma: a quantitative agreement comparison. J Nucl Med. 2016;57:1672–8.

    Article  CAS  PubMed  Google Scholar 

  40. Jadoul A, Bernard C, Lovinfosse P, Gérard L, Lilet H, Cornet O, Hustinx R. Comparative dosimetry between 99m Tc-MAA SPECT/CT and 90 Y PET/CT in primary and metastatic liver tumors. Eur J Nucl Med Mol Imag. 2020;47(4):828–37.

    Article  CAS  Google Scholar 

  41. Smits ML, Dassen MG, Prince JF, Braat AJ, Beijst C, Bruijnen RC, de Jong HW, Lam MG. The superior predictive value of 166 ho-scout compared with 99m Tc-macroaggregated albumin prior to 166 ho-microspheres radioembolization in patients with liver metastases. Eur J Nucl Med Mol Imag. 2019;9:1–9.

    Google Scholar 

  42. Elschot M, Nijsen JF, Lam MG, Smits ML, Prince JF, Viergever MA, van den Bosch MA, Zonnenberg BA, de Jong HW. 99m Tc-MAA overestimates the absorbed dose to the lungs in radioembolization: a quantitative evaluation in patients treated with 166 ho-microspheres. Eur J Nucl Med Mol Imaging. 2014;41:1965–75.

    Article  CAS  PubMed  Google Scholar 

  43. Song YS, Paeng JC, Kim HC, Chung JW, Cheon GJ, Chung JK, Lee DS, Kang KW. PET/CT-based dosimetry in 90Y-microsphere selective internal radiation therapy: single cohort comparison with pretreatment planning on 99mTc-MAA imaging and correlation with treatment efficacy. Medicine. 2015;94(23):e945.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mauxion T, Hobbs R, Herman J, Lodge M, Yue J, Du Y, Wahl R, Geschwind JF, Frey E. Comparison of lung shunt fraction (LSF) from pre-therapy 99mTc MAA and post-therapy quantitative 90Y imaging in microsphere (MS) radioembolization. J Nucl Med. 2015;56:104.

    Google Scholar 

  45. Allred JD, Niedbala J, Mikell JK, Owen D, Frey KA, Dewaraja YK. The value of 99m Tc-MAA SPECT/CT for lung shunt estimation in 90 Y radioembolization: a phantom and patient study. Eur J Nucl Med Mol Imaging Res. 2018;8:50.

    Google Scholar 

  46. Kunnen B, Dietze MM, Braat AJ, Lam MG, Viergever MA, de Jong HW. Feasibility of imaging 90Y microspheres at diagnostic activity levels for hepatic radioembolization treatment planning. Med Phys. 2020;47:1105–14.

    Article  CAS  PubMed  Google Scholar 

  47. Chiesa C, Maccauro M. 166 ho microsphere scout dose for more accurate radioembolization treatment planning. Eur J Nucl Med Mol Imag. 2020;47:744–7.

    Article  CAS  Google Scholar 

  48. Chiesa C, Mira M, Maccauro M, Romito R, Spreafico C, Sposito C, Bhoori S, Morosi C, Pellizzari S, Negri A, Civelli E, Lanocita R, Camerini T, Bampo C, Carrara M, Seregni E, Marchianò A, Mazzaferro V, Bombardieri E. A dosimetric treatment planning strategy in radioembolization of hepatocarcinoma with 90Y glass spheres. Q J Nucl Med Mol Imaging. 2012;56(6):503–8.

    CAS  PubMed  Google Scholar 

  49. Mazzaferro V, Sposito C, Bhoori S, Romito R, Chiesa C, Morosi C, Maccauro M, Marchianò A, Bongini M, Lanocita R, Civelli E, Bombardieri E, Camerini T, Spreafico C. Yttrium-90 radioembolization for intermediate-advanced hepatocellular carcinoma: a phase 2 study. Hepatology. 2012; https://doi.org/10.1002/hep.26014.

  50. Kappadath SC, Mikell J, Balagopal A, Baladandayuthapani V, Kaseb A, Mahvash A. Hepatocellular carcinoma tumor dose response after 90Y-radioembolization with glass microspheres using 90Y-SPECT/CT-based voxel dosimetry. Int J Rad Oncol Biol Phys. 2018;102:451–61.

    Article  Google Scholar 

  51. Walrand S, Hesse M, Chiesa C, Lhommel R, Jamar F. The low hepatic toxicity per gray of 90Y glass microspheres is linked to their transport in the arterial tree favoring a nonuniform trapping as observed in posttherapy PET imaging. J Nucl Med. 2014;55:135–40.

    Article  CAS  PubMed  Google Scholar 

  52. Walrand S, Hesse M, Jamar F, Lhommel R. A hepatic dose-toxicity model opening the way toward individualized radioembolization planning. J Nucl Med. 2014;55:1317–22.

    Article  PubMed  Google Scholar 

  53. Crookston NR, Fung GS, Frey EC. Development of a customizable hepatic arterial tree and particle transport model for use in treatment planning. IEEE Trans Radiat Plasma Med Sci. 2018;3:31–7.

    Article  PubMed  PubMed Central  Google Scholar 

  54. d’Abadie P, Hesse M, Jamar F, Lhommel R, Walrand S. 90Y TOF-PET based EUD reunifies patient survival prediction in resin and glass microspheres radioembolization of HCC tumours. Phys Med Biol 2018;63:245010.

    Google Scholar 

  55. Menda Y, Madsen MT, O’Dorisio TM, Sunderland JJ, Watkins GL, Dillon JS, Mott SL, Schultz MK, Zamba GK, Bushnell DL, O’Dorisio MS. 90Y-DOTATOC dosimetry–based personalized peptide receptor radionuclide therapy. J Nucl Med. 2018;59:1692–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Walrand S, Jamar F, van Elmbt L, Lhommel R, Bekonde EB, Pauwels S. 4-step renal dosimetry dependent on cortex geometry applied to 90Y peptide receptor radiotherapy: evaluation using a fillable kidney phantom imaged by 90Y PET. J Nucl Med. 2010;51:1969–73.

    Article  PubMed  Google Scholar 

  57. Smits ML, Nijsen JF, van den Bosch MA, Lam MG, Vente MA, Mali WP, van Het Schip AD, Zonnenberg BA. Holmium-166 radioembolisation in patients with unresectable, chemorefractory liver metastases (HEPAR trial): a phase 1, dose-escalation study. Lancet Oncol. 2012;13(10):1025–34.

    Article  CAS  PubMed  Google Scholar 

  58. van Roekel C, Bastiaannet R, Smits ML, Bruijnen RC, Braat AJ, de Jong HW, Elias SG, Lam MG. Dose-effect relationships of holmium-166 radioembolization in colorectal cancer. J Nucl Med. 2020;26:120.

    Google Scholar 

  59. Stella M, Braat AJ, Lam MG, de Jong HW, van Rooij R. Quantitative 166Ho-microspheres SPECT derived from a dual-isotope acquisition with 99mTc-colloid is clinically feasible. EJNMMI Phys. 2020;7:48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Woliner-van der Weg W, Schoffelen R, Hobbs RF, Gotthardt M, Goldenberg DM, Sharkey RM, Slump CH, van der Graaf WTA, Oyen WJG, Boerman OC, Sgouros G, Visser EP. Tumor and red bone marrow dosimetry: comparison of methods for prospective treatment planning in pretargeted radioimmunotherapy. Eur J Nucl Med Mol Imaging Phys. 2014;1:104.

    Google Scholar 

  61. Blakkisrud J, Løndalen A, Dahle J, Turner S, Holte H, Kolstad A, Stokke C. Red marrow–absorbed dose for non-hodgkin lymphoma patients treated with 177lu-lilotomab satetraxetan, a novel anti-cd37 antibody–radionuclide conjugate. J Nucl Med. 2017;58:55–61.

    Article  CAS  PubMed  Google Scholar 

  62. Santoro L, Mora-Ramirez E, Trauchessec D, Chouaf S, Eustache P, Pouget JP, Kotzki PO, Bardiès M, Deshayes E. Implementation of patient dosimetry in the clinical practice after targeted radiotherapy using [177 Lu-[DOTA0, Tyr3]-octreotate]. Eur J Nucl Med Mol Imaging Research. 2018;8:103.

    Google Scholar 

  63. Garske-Roman U, Sandström M, Fröss Baron K, Lundin L, Hellman P, Welin S, Johansson S, Khan T, Lundqvist H, Eriksson B, Sundin A, Granberg D. Prospective observational study of 177Lu-DOTA-octreotate therapy in 200 patients with advanced metastasized neuroendocrine tumours (NETs): feasibility and impact of a dosimetry-guided study protocol on outcome and toxicity. Eur J Nucl Med Mol Imaging. 2018;45:970–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hagmarker L, Svensson J, Rydén T, van Essen M, Sundlöv A, Gleisner KS, Gjertsson P, Bernhardt P. Bone marrow absorbed doses and correlations with hematologic response during 177Lu-DOTATATE treatments are influenced by image-based dosimetry method and presence of skeletal metastases. J Nucl Med. 2019;60:1406–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. EW price. Synthesis, evaluation, and application of new ligands for radiometal based radiopharmaceuticals. 2014. Thesis. University British Columbia. https://open.library.ubc.ca/cIRcle/collections/ubctheses/24/items/1.0103411

  66. Hamilton DH, Turcot I, Stintzi A, Raymond KN. Large cooperativity in the removal of iron from transferrin at physiological temperature and chloride ion concentration. JBIC J Biol Inorg Chem. 2004;9:936–44.

    Article  CAS  PubMed  Google Scholar 

  67. Bates GW, Billups C, Saltman P. THE kinetics and mechanism of iron (III) exchange between chelates and transferrin II. THE PRESENTATION AND REMOVAL WITH ETHYLENEDIAMINETETRAACETATE. J Biol Chem. 1967;242:2816–21.

    Article  PubMed  Google Scholar 

  68. Lubberink M, Wilking H, Öst A, Ilan E, Sandström M, Andersson C, Fröss-Baron K, Velikyan I, Sundin A. In vivo instability of 177Lu-DOTATATE during peptide receptor radionuclide therapy. J Nucl Med. 2020;61:1337–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. https://www.ema.europa.eu/en/documents/product-information/lutathera-epar-product-information_en.pdf

  70. Ilan E, Sandström M, Wassberg C, Sundin A, Garske-Román U, Eriksson B, Granberg D, Lubberink M. Dose response of pancreatic neuroendocrine tumors treated with peptide receptor radionuclide therapy using 177Lu-DOTATATE. J Nucl Med. 2015;56:177–82.

    Article  PubMed  Google Scholar 

  71. D’Arienzo M, Cozzella ML, Fazio A, De Felice P, Iaccarino G, D’Andrea M, Ungania S, Cazzato M, Schmidt K, Kimiaei S, Strigari L. Quantitative 177Lu SPECT imaging using advanced correction algorithms in non-reference geometry. Phys Med. 2016;32:1745–52.

    Article  PubMed  Google Scholar 

  72. Rydén T, Heydom Lagerlöf J, Hemmingsson J, Marin I, Svensson J, Bath M, Gjertsson P, Bernhardt P. Fast GPU-based Monte Carlo code for SPECT/CT reconstructions generates improved 177Lu images. Eur J Nul Med Mol Imaging Phys. 2018;5:1.

    Google Scholar 

  73. Ryden T, van Essen M, Marin I, Svensson J, Bernhardt P. Deep learning generation of synthetic intermediate projections improves 177Lu SPECT images reconstructed with sparsely acquired projections. J Nucl Med. 2021;62(4):528–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gregory RA, Murray I, Gear J, Leek F, Chittenden S, Fenwick A, Wevertt J, Scuffham J, Tipping J, Murby B, Jeans S, Stuffins M, Michopoulou S, Guy M, Morgan D, Hallam A, Hall D, Polydor H, Brown C, Gillen G, Dickinson N, Brown S, Wadsley J, Flux G. Standardized quantitative radioiodine SPECT/CT imaging for multicenter dosimetry trials in molecular radiotherapy. Phys Med Biol. 2019;64:245013.

    Article  CAS  PubMed  Google Scholar 

  75. Dewaraja YK, Schipper MJ, Shen J, Smith LB, Murgic J, Savas H, Youssef E, Regan D, Wilderman SJ, Roberson PL, Kaminski MS. Tumor-absorbed dose predicts progression-free survival following 131I-tositumomab radioimmunotherapy. J Nucl Med. 2014;55:1047–53.

    Article  CAS  PubMed  Google Scholar 

  76. Benabdallah N, Bernardini M, Biancardi M, de Labriolle-Vaylet C, Franck D, Desbrée A. 223Ra-dichloride therapy of bone metastasis: optimization of SPECT images for quantification. Eur J Nucl Med Mol Imaging Res 2019;9:20.

    Google Scholar 

  77. https://en.wikipedia.org/wiki/Asepsis

  78. https://en.wikipedia.org/wiki/Timeline_of_peptic_ulcer_disease_and_Helicobacter_pylori

  79. Cremonesi M, Ferrari ME, Bodei L, Chiesa C, Sarnelli A, Garibaldi C, Pacilio M, Strigari L, Summers PE, Orecchia R, Grana CM. Correlation of dose with toxicity and tumour response to 90 Y-and 177 Lu-PRRT provides the basis for optimization through individualized treatment planning. Eur J Nucl Med Mol Imag. 2018;45:2426–41.

    Article  CAS  Google Scholar 

  80. Sundlöv A, Sjögreen-Gleisner K. Peptide receptor radionuclide therapy–prospects for personalised treatment. Clin Oncol. 2021;33(2):92–7.

    Article  Google Scholar 

  81. Cremonesi M, Ferrari M, Botta F. Dosimetry in PRRT. In: Clinical applications of nuclear medicine targeted therapy. Springer International Publishing; 2018. p. 297–313.

    Chapter  Google Scholar 

  82. https://www.icrp.org/page.asp?id=10

  83. Giammarile F, Muylle K, Bolton RD, Kunikowska J, Haberkorn U, Oyen W. Dosimetry in clinical radionuclide therapy: the devil is in the detail. Eur J Nucl Med Mol Imag. 2017;44:1–3.

    Article  Google Scholar 

  84. Levillain H, Derijckere ID, Ameye L, Guiot T, Braat A, Meyer C, Vanderlinden B, Reynaert N, Hendlisz A, Lam M, Deroose CM. Personalised radioembolization improves outcomes in refractory intra-hepatic cholangiocarcinoma: a multicenter study. Eur J Nucl Med Mol Imag. 2019;46:2270–9.

    Article  Google Scholar 

  85. Garin E, Tselikas L, Guiu B, Chalaye J, Edeline J, de Baere T, Assenat E, Tacher V, Robert C, Terroir-Cassou-Mounat M, Mariano-Goulart D. Personalised versus standard dosimetry approach of selective internal radiation therapy in patients with locally advanced hepatocellular carcinoma (DOSISPHERE-01): a randomised, multicentre, open-label phase 2 trial. Lancet Gastroenterol Hepatol. 2021;6(1):17–29.

    Article  PubMed  Google Scholar 

  86. Del Prete M, Buteau FA, Arsenault F, Saighi N, Bouchard LO, Beaulieu A, Beauregard JM. Personalized 177 Lu-octreotate peptide receptor radionuclide therapy of neuroendocrine tumours: initial results from the P-PRRT trial. Eur J Nucl Med Mol Imag. 2019;46:728–42.

    Article  Google Scholar 

  87. Sundlöv A, Sjögreen-Gleisner K, Svensson J, Ljungberg M, Olsson T, Bernhardt P, Tennvall J. Individualised 177 Lu-DOTATATE treatment of neuroendocrine tumours based on kidney dosimetry. Eur J Nucl Med Mol Imag. 2017;44:1480–9.

    Article  Google Scholar 

  88. Konijnenberg M, Herrmann K, Kobe C, Verburg F, Hindorf C, Hustinx R, Lassmann M. EANM position paper on article 56 of the council directive 2013/59/Euratom (basic safety standards) for nuclear medicine therapy. Eur J Nucl Med Mol Imaging. 2020;15:1–6.

    Google Scholar 

  89. Todd RW, Nightingale JM, Everett DB. A proposed γ camera. Nature. 1974;251:132–4.

    Article  CAS  Google Scholar 

  90. Zaidi H, Sgouros G, editors. Therapeutic applications of Monte Carlo calculations in nuclear medicine. 2nd ed. CRC Press; 2002.

    Google Scholar 

  91. Buzhan P, Dolgoshein B, Ilyin A, Kantserov V, Kaplin V, Karakash A, Pleshko A, Popova E, Smirnov S, Volkov Y, Filatov L. The advanced study of silicon photomultiplier. In: Advanced technology and particle physics; 2002. p. 717–28.

    Chapter  Google Scholar 

  92. Fujieda K, Kataoka J, Mochizuki S, Tagawa L, Sato S, Tanaka R, Matsunaga K, Kamiya T, Watabe T, Kato H, Shimosegawa E. First demonstration of portable Compton camera to visualize 223-Ra concentration for radionuclide therapy. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip. 2020;958:162802.

    Article  CAS  Google Scholar 

  93. Lee T, Kim M, Lee W, Kim B, Lim I, Song K, Kim J. Performance evaluation of a Compton SPECT imager for determining the position and distribution of 225Ac in targeted alpha therapy: a Monte Carlo simulation based phantom study. Appl Radiat Isot. 2019;154:108893.

    Article  CAS  PubMed  Google Scholar 

  94. Nagao Y, Yamaguchi M, Watanabe S, Ishioka NS, Kawachi N, Watabe H. Astatine-211 imaging by a Compton camera for targeted radiotherapy. Appl Radiat Isot. 2018;139:238–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Walrand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walrand, S., Hesse, M. (2022). SPECT/CT for Dosimetry. In: Ahmadzadehfar, H., Biersack, HJ., Herrmann, K. (eds) Clinical Applications of SPECT-CT. Springer, Cham. https://doi.org/10.1007/978-3-030-65850-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65850-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65849-6

  • Online ISBN: 978-3-030-65850-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics