Skip to main content

Carrion Ecology

  • Chapter
  • First Online:
Wildlife Biodiversity Conservation
  • 1699 Accesses

Abstract

Detritus is the term for any source of non-living organic matter and is the basal trophic stage of most food webs, believed to be produced from phototropic sources. While plants make up a good portion of the detrital pool, carrion, also considered detritus, is the decaying flesh of dead animals and has a significant impact on the ecosystem. Carcass decomposition changes the surrounding environment both in the short term and in the long term. Understanding this process is therefore important to understanding the way an environment works as a whole. Decomposition in any given ecosystem includes actions of vertebrate scavengers, invertebrates, plants, and microorganisms. From a physical standpoint, after an animal dies, its molecular structure begins to disaggregate. Scavengers feeding upon carrion help to recycle carcass nutrients and resources throughout the ecosystem. In addition to impacting landscape heterogeneity through decomposition pattern destruction, decomposers such as scavengers also impact the structure of other trophic levels through their encounters with predators, parasites, and other organisms. Spatial and temporal dynamics of detritus subsidies, along with competitive hierarchy of species using these resources, are important drivers of terrestrial system decomposition processes and are ultimately related to necrophages through evolutionary processes. Carrion is an inevitable and ecologically important component of the ecosystem. Understanding its position in the overarching ecological system is crucial to the overall understanding of ecology. Although the importance of carrion decomposition in the atmosphere has long been recognized, the processes behind it have yet to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addy K, Green L (1997) Dissolved oxygen and temperature. Nat Resour Facts 96(3):1–4

    Google Scholar 

  • Alvarez F, de Reyna LA, Hiraldo F (1976) Interactions among avian scavengers in southern Spain. Ornis Scand 7:215–226

    Article  Google Scholar 

  • Anderson GS (1995) The use of insects in death investigations: an analysis of cases in British Columbia over a five year period. J Can Soc Forensic Sci 28(4):277–292

    Article  Google Scholar 

  • Anderson GS (1999) Wildlife forensic entomology: determining time of death in two illegally killed black bear cubs. J Forensic Sci 44(4):856–859

    Article  CAS  PubMed  Google Scholar 

  • Anderson GS (2004) Decomposition of carrion in the marine environment in British Columbia, Canada. Int J Legal Med 118(4):206–209

    Article  CAS  PubMed  Google Scholar 

  • Anderson GS (2009) Factors that influence insect succession on carrion forensic entomology. CRC Press, Boca Raton, FL, pp 225–274

    Google Scholar 

  • Anderson GS (2010) Decomposition and invertebrate colonization of cadavers in coastal marine environments current concepts in forensic entomology. Springer, Dordrecht, Netherlands, pp 223–272

    Google Scholar 

  • Anderson GS (2011) Comparison of decomposition rates and faunal colonization of carrion in indoor and outdoor environments. J Forensic Sci 56(1):136–142

    Article  PubMed  Google Scholar 

  • Anderson NH, Sedell JR (1979) Detritus processing by macroinvertebrates in stream ecosystems. Annu Rev Entomol 24(1):351–377

    Article  Google Scholar 

  • Anderson GS, VanLaerhoven SL (1996) Initial studies on insect succession on carrion in southwestern British Columbia. J Forensic Sci 41(4):617–625

    Article  Google Scholar 

  • Anderson TH, Weigel HJ (2003) On the current debate about soil biodiversity. Landbauforschung Volkenrode 53(4):223–233

    Google Scholar 

  • Asaoka S, Yamamoto T, Yamamoto K (2008) A preliminary study of coastal sediment amendment with granulated coal ash-nutrient elution test and experiment on Skeletonema costatum growth. Mizu Kankyo Gakkaishi/J Jpn Soc WaterEnviron 31(8):455–462

    Article  CAS  Google Scholar 

  • Baldock J, Masiello C, Gelinas Y, Hedges J (2004) Cycling and composition of organic matter in terrestrial and marine ecosystems. Mar Chem 92(1–4):39–64

    Article  CAS  Google Scholar 

  • Barlocher F, Kendrick B (1974) Dynamics of the fungal population on leaves in a stream. J Ecol 62:761–791

    Article  Google Scholar 

  • Barrios M, Wolff M (2011) Initial study of arthropods succession and pig carrion decomposition in two freshwater ecosystems in the Colombian Andes. Forensic Sci Int 212(1–3):164–172

    Article  PubMed  Google Scholar 

  • Barton PS, Cunningham SA, Lindenmayer DB, Manning AD (2012) The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 2012:1–12

    Google Scholar 

  • Barton PS et al (2019) Towards quantifying carrion biomass in ecosystems. Trends Ecol Evol 34(10):950–961

    Article  PubMed  Google Scholar 

  • Bass WM (1997) Outdoor decomposition rates in Tennessee. Forensic taphonomy: the postmortem fate of human remains, 181–186

    Google Scholar 

  • Beasley JC, Olson Z, DeVault T (2012) Carrion cycling in food webs: comparisons among terrestrial and marine ecosystems. Oikos 121(7):1021–1026

    Article  Google Scholar 

  • Behrensmeyer AK (1978) Taphonomic and ecologic information from bone weathering. Paleobiology 4(2):150–162

    Article  Google Scholar 

  • Bellan SE, Turnbull PC, Beyer W, Getz WM (2013) Effects of experimental exclusion of scavengers from carcasses of anthrax-infected herbivores on Bacillus anthracis sporulation, survival, and distribution. Appl Environ Microbiol 79(12):3756–3761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benbow ME, Lewis AJ, Pechal JL, Tomberlin JK (2013) Seasonal necrophagous insect community assembly during vertebrate carrion decomposition. J Med Entomol 50(2):440–450. https://doi.org/10.1603/ME12194

    Article  CAS  PubMed  Google Scholar 

  • Benbow ME, Tomberlin JK, Tarone AM (2015) Carrion ecology, evolution, and their applications. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Benninger LA, Carter DO, Forbes SL (2008) The biochemical alteration of soil beneath a decomposing carcass. Forensic Sci Int 180:70–75

    Article  CAS  PubMed  Google Scholar 

  • Berezina N, Kononenko N, Dvorkina G, Shel’deshov N (1999) Physicochemical Properties of Ion-Exchange Materials. Training Course (Kuban’State University, Krasnodar, 1999) [in Russian]

    Google Scholar 

  • Bo T, Cammarata M, López-Rodríguez MJ, de Figueroa JMT, Baltieri M, Varese P, Fenoglio S (2014) The influence of water quality and macroinvertebrate colonization on the breakdown process of native and exotic leaf types in sub-alpine stream. J Freshw Ecol 29(2):159–169

    Article  CAS  Google Scholar 

  • Bornemissza GF (1957) An analysis of arthropod succession in carrion and the effect of its decomposition on the soil fauna. Aust J Zool 5(1):12

    Article  Google Scholar 

  • Brundage AL (2012) Fitness effects of colonization time of Chrysomya rufifacies and Cochliomyia macellaria, and their response to intra-and inter-specific eggs and egg-associated microbes. Texas A&M University

    Google Scholar 

  • Bump JK, Peterson RO, Vucetich JA (2009) Wolves modulate soil nutrient heterogeneity and foliar nitrogen by configuring the distribution of ungulate carcasses. Ecology 90(11):3159–3167

    Article  PubMed  Google Scholar 

  • Burkepile DE, Hay ME (2006) Herbivore vs. nutrient control of marine primary producers: context-dependent effects. Ecology 87(12):3128–3139

    Article  PubMed  Google Scholar 

  • Carter D, Yellowlees D, Tibbett M (2007) Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94(1):12–24. https://doi.org/10.1007/s00114-006-0159-1

    Article  CAS  PubMed  Google Scholar 

  • Carter DO, Yellowlees D, Tibbett M (2008) Temperature affects microbial decomposition of cadavers (Rattus rattus) in contrasting soils. Appl Soil Ecol 40:129–137

    Article  Google Scholar 

  • Cebrian J (2004) Role of first-order consumers in ecosystem carbon flow. Ecol Lett 7(3):232–240

    Article  Google Scholar 

  • Chidami S, Amyot M (2008) Fish decomposition in boreal lakes and biogeochemical implications. Limnol Oceanogr 53(5):1988–1996

    Article  Google Scholar 

  • Coe M (1978) The decomposition of elephant carcasses in the Tsavo (east) National Park, Kenya. J Arid Environ 1(1):71–86

    Article  Google Scholar 

  • Collins S, Stuart B, Ueland M (2020) Monitoring human decomposition products collected in clothing: an infrared spectroscopy study. Aust J Forensic Sci 52(4):428–438

    Article  Google Scholar 

  • Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326(5960):1694–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahlgren CP, Eggleston DB (2000) Ecological processes underlying ontogenetic habitat shifts in a coral reef fish. Ecology 81(8):2227–2240

    Article  Google Scholar 

  • Danell K, Berteaux D, Bråthen KA (2002) Effect of muskox carcasses on nitrogen concentration in tundra vegetation. Arctic 55:389–392

    Article  Google Scholar 

  • Dent BB (2004) Review of human decomposition processes in soil. Environ Geol 45(4):576–585

    Article  CAS  Google Scholar 

  • Deron EB, Parker JD, Woodson CB, Mills HJ, Kubanek J, Sobecky PA, Hay ME (2006) Chemically mediated competition between microbes and animals: microbes as consumers in food webs. Ecology 87(11):2821–2831

    Article  Google Scholar 

  • Deyrup M, Deyrup N, Eisner M, Eisner T (2005) A caterpillar that eats tortoise shells. Am Entomol 51(4):245–248

    Article  Google Scholar 

  • Evans W (1963) The Microbioloǵical Deǵradation of aromatic compounds. Microbiology 32(2):177–184

    CAS  Google Scholar 

  • Forbes SA (1925) The lake as a microcosm. Ill Nat Hist Surv Bull 15(09):537

    Google Scholar 

  • Frost PC, Hicks AL (2012) Human shoreline development and the nutrient stoichiometry of aquatic plant communities in Canadian shield lakes. Can J Fish Aquat Sci 69(10):1642–1650

    Article  CAS  Google Scholar 

  • Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25(6):372–380

    Article  PubMed  Google Scholar 

  • Gill-King H (1997) Chemical and ultrastructural aspects of decomposition. In: Forensic taphonomy: the postmortem fate of human remains. CRC Press, Boca Raton, FL, pp 93–108

    Google Scholar 

  • Green RE, Newton I, Shultz S, Cunningham AA, Gilbert M, Pain DJ, Prakash V (2004) Diclofenac poisoning as a cause of vulture population declines across the Indian subcontinent. J Appl Ecol 41(5):793–800

    Article  CAS  Google Scholar 

  • Haefner JN, Wallace JR, Merritt RW (2004) Pig decomposition in lotic aquatic systems: the potential use of algal growth in establishing a postmortem submersion interval (PMSI). J Forensic Sci 49(2):1–7

    Article  Google Scholar 

  • Hawlena D, Strickland MS, Bradford MA, Schmitz OJ (2012) Fear of predation slows plant-litter decomposition. Science 336(6087):1434–1438

    Article  CAS  PubMed  Google Scholar 

  • Heinrich B (1974) Thermoregulation in endothermic insects. Science 185(4153):747–756

    Article  CAS  PubMed  Google Scholar 

  • Hewadikaram KA, Goff ML (1991) Effect of carcass size on rate of decomposition and arthropod succession patterns. Am J Forensic Med Pathol 12(3):235–240

    Article  CAS  PubMed  Google Scholar 

  • Hobischak NR (1997) Freshwater invertebrate succession and decompositional studies on carrion in British Columbia. Theses (Department of Biological Sciences)/Simon Fraser University

    Google Scholar 

  • Hocking MD, Reimchen TE (2006) Consumption and distribution of salmon (Oncorhynchus spp.) nutrients and energy by terrestrial flies. Can J Fish Aquat Sci 63(9):2076–2086

    Article  Google Scholar 

  • Houston DC (1979) The adaptations of scavengers. In: Serengeti: dynamics of an ecosystem. University of Chicago Press, Chicago, pp 263–286

    Google Scholar 

  • Houston DC (1986) Scavenging efficiency of Turkey vultures in tropical forest. Condor 88(3):318–323

    Article  Google Scholar 

  • Hunter J, Durant S, Caro T (2007) Patterns of scavenger arrival at cheetah kills in Serengeti National Park Tanzania. Afr J Ecol 45(3):275–281

    Article  Google Scholar 

  • Jennelle CS, Samuel MD, Nolden CA, Berkley EA (2009) Deer carcass decomposition and potential scavenger exposure to chronic wasting disease. J Wildl Manag 73(5):655–662

    Article  Google Scholar 

  • Johnson MD (1975) Seasonal and microseral variations in the insect populations on carrion. Am Midl Nat 93:79–90

    Article  Google Scholar 

  • Kellerman T, Pienaar J, Anderson G, Naude T (1976) A highly fatal tremorgenic mycotoxicosis of cattle caused by Aspergillus clavatus. Onderstepoort J Vet Res 43(3):147–154

    CAS  PubMed  Google Scholar 

  • Kjorlien YP, Beattie OB, Peterson AE (2009) Scavenging activity can produce predictable patterns in surface skeletal remains scattering: observations and comments from two experiments. Forensic Sci Int 188(1–3):103–106

    Article  PubMed  Google Scholar 

  • Kreitlow K (2010) Insect succession in a natural environment. In: Byrd JH, Castner JL (eds) Forensic entomology: the utility of arthropods in legal investigations. CRC Press, Boca Raton, FL

    Google Scholar 

  • Krofel M, Kos I, Jerina K (2012) The noble cats and the big bad scavengers: effects of dominant scavengers on solitary predators. Behav Ecol Sociobiol 66(9):1297–1304

    Article  Google Scholar 

  • Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23(4):399–417

    Article  Google Scholar 

  • Lyman RL, Lyman C (1994) Vertebrate taphonomy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Mann RW (1990) Time since death and decomposition of the human body - variables and observations in case and experimental field studies. J Forensic Sci 35(1):103–111

    Article  CAS  PubMed  Google Scholar 

  • Markandya A, Taylor T, Longo A, Murty M, Murty S, Dhavala K (2008) Counting the cost of vulture decline—an appraisal of the human health and other benefits of vultures in India. Ecol Econ 67(2):194–204

    Article  Google Scholar 

  • Marzolf ER, Mulholland PJ, Steinman AD (1994) Improvements to the diurnal upstream–downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Can J Fish Aquat Sci 51(7):1591–1599

    Article  Google Scholar 

  • Melis A (2007) Photosynthetic H 2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta 226(5):1075–1086

    Article  CAS  PubMed  Google Scholar 

  • Menon LML, Prado KFB, Silva RHA d (2011) Histological evaluation of dentine and cementum after different periods of burial: an in vitro study. RSBO (Online) 8(2):131–137

    Google Scholar 

  • Merritt RW, Wallace JR (2001) The role of aquatic insects in forensic investigations. In: Forensic entomology: the utility of arthropods in legal investigations, pp 177–222

    Google Scholar 

  • Metcalf JL, Carter DO, Knight R (2015) Microbiome studies of carrion decomposition. In: Carrion ecology, evolution, and their applications. CRC Press, Boca Raton, FL, pp 421–432

    Google Scholar 

  • Micozzi MS (1986) Experimental study of postmortem change under field conditions: effects of freezing, thawing, and mechanical injury. J Forensic Sci 31(3):953–961

    Article  CAS  PubMed  Google Scholar 

  • Mondor E, Tremblay M, Tomberlin J, Benbow E, Tarone A, Crippen T (2012) The ecology of carrion decomposition. Nat Educ Knowledge 3:21

    Google Scholar 

  • Moore JC, Berlow EL, Coleman DC, de Ruiter PC, Dong Q, Hastings A et al (2004) Detritus, trophic dynamics and biodiversity. Ecol Lett 7(7):584–600

    Article  Google Scholar 

  • Murphy SM, Wimp GM, Lewis D, Denno RF (2012) Nutrient presses and pulses differentially impact plants, herbivores, detritivores and their natural enemies. PLoS One 7(8):e43929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA et al (2004) Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427(6975):630–633

    Article  CAS  PubMed  Google Scholar 

  • Odum EP (2014) The strategy of ecosystem development the ecological design and planning reader. Springer, New York, pp 203–216

    Book  Google Scholar 

  • Ogada DL, Keesing F, Virani MZ (2012) Dropping dead: causes and consequences of vulture population declines worldwide. Ann N Y Acad Sci 1249(1):57–71

    Article  PubMed  Google Scholar 

  • Osmond C, Grace S (1995) Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis? J Exp Bot 46:1351–1362

    Article  CAS  Google Scholar 

  • Paczkowski S (2011) Post-mortem volatiles of vertebrate tissue. Appl Microbiol Biotechnol 91(4):917–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pain DJ, Cunningham A, Donald P, Duckworth J, Houston D, Katzner T, Round P (2003) Causes and effects of temporospatial declines of Gyps vultures in Asia. Conserv Biol 17(3):661–671

    Article  Google Scholar 

  • Paine RT (1969) A note on trophic complexity and community stability. Am Nat 103(929):91–93

    Article  Google Scholar 

  • Paletta M (1999) Coral farming. Seascope, Spring, 1, 2

    Google Scholar 

  • Parmenter RR, Lamarra VA (1991) Nutrient cycling in a freshwater marsh: the decomposition of fish and waterfowl carrion. Limnol Oceanogr 36(5):976–987

    Article  Google Scholar 

  • Parmenter RR, MacMahon JA (2009) Carrion decomposition and nutrient cycling in a semiarid shrub-steppe ecosystem. Ecol Monogr 79(4):637–662

    Article  Google Scholar 

  • Payne JA (1965) A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46(5):592–602

    Article  Google Scholar 

  • Payne LX, Moore JW (2006) Mobile scavengers create hotspots of freshwater productivity. Oikos 115(1):69–80

    Article  CAS  Google Scholar 

  • Pepin P, Myers RA (1991) Significance of egg and larval size to recruitment variability of temperate marine fish. Can J Fish Aquat Sci 48(10):1820–1828

    Article  Google Scholar 

  • Piombino-Mascali D, Gill-Frerking H, Beckett RG (2017) The taphonomy of natural mummies. In: Taphonomy of human remains: forensic analysis of the dead and the depositional environment: forensic analysis of the dead and the depositional environment. Wiley, Hoboken, pp 101–119

    Chapter  Google Scholar 

  • Polis GA (1981) The evolution and dynamics of intraspecific predation. Annu Rev Ecol Syst 12(1):225–251

    Article  Google Scholar 

  • Polis GA, Strong DR (1996) Food web complexity and community dynamics. Am Nat 147(5):813–846

    Article  Google Scholar 

  • Pomeroy LR, Wiebe WJ (2001) Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat Microb Ecol 23(2):187–204

    Article  Google Scholar 

  • Potapov AM et al (2019) Trophic position of consumers and size structure of food webs across aquatic and terrestrial ecosystems. Am Nat 194(6):823–839

    Article  PubMed  Google Scholar 

  • Prado E, Castro C, Serrano A, Martins Da Silva P, GarcÍA MD (2012) Carrion flies of forensic interest: a study of seasonal community composition and succession in Lisbon, Portugal. Med Vet Entomol 26(4):417–431. https://doi.org/10.1111/j.1365-2915.2012.01031.x

    Article  Google Scholar 

  • Putman RJ (1977) Dynamics of blowfly, Calliphora erythrocephala, within carrion. J Anim Ecol 46(3):853–866

    Article  Google Scholar 

  • Putman R (1978) Flow of energy and organic matter from a carcase during decomposition: decomposition of small mammal carrion in temperate systems 2. Oikos 31:58–68

    Article  CAS  Google Scholar 

  • Reeves NM (2009) Taphonomic effects of vulture scavenging. J Forensic Sci 54(3):523–528

    Article  PubMed  Google Scholar 

  • Richards CS, Villet MH (2009) Data quality in thermal summation development models for forensically important blowflies. Med Vet Entomol 23:269–276

    Article  CAS  PubMed  Google Scholar 

  • Risch AC et al (2020) Effects of elk and bison carcasses on soil microbial communities and ecosystem functions in Yellowstone, USA. Funct Ecol

    Google Scholar 

  • Rodriguez WC, Bass WM (1985) Decomposition of buried bodies and methods that may aid in their location. J Forensic Sci 30(3):836–852

    Article  PubMed  Google Scholar 

  • Sagara N (1995) Association of ectomycorrhizal fungi with decomposed animal wastes in forest habitats: a cleaning symbiosis? Can J Bot 73(S1):1423–1433

    Article  Google Scholar 

  • Sagara N, Yamanaka T, Tibbett M (2008) Soil fungi associated with graves and latrines: toward a forensic mycology. In: Soil analysis in forensic taphonomy. CRC Press, Boca Raton, FL, pp 79–120

    Google Scholar 

  • Schindler D (1991) Aquatic ecosystems and global ecology. In: Fundamental of aquatic ecology, pp 108–122

    Chapter  Google Scholar 

  • Schlacher TA, Strydom S, Connolly RM (2013) Multiple scavengers respond rapidly to pulsed carrion resources at the land–ocean interface. Acta Oecol 48:7–12

    Article  Google Scholar 

  • Schoenly K (1983) Microclimate observations and Diel activities of certain carrion arthropods in the Chihuahuan Desert. J N Y Entomol Soc 91(4):342–347

    Google Scholar 

  • Shivik JA (2006) Tools for the edge: what's new for conserving carnivores. Bioscience 56(3):253–259

    Article  Google Scholar 

  • Smith KG (1975) The faunal succession of insects and other invertebrates on a dead fox. Entomol Gazette 26:277

    Google Scholar 

  • Smith KG (1986) A manual of forensic entomology

    Google Scholar 

  • Smith CR, Baco AR (2003) Ecology of whale falls at the deep-sea floor. Oceanogr Mar Biol 41:311–354

    Google Scholar 

  • Spicka A (2011) Carcass mass can influence rate of decomposition and release of ninhydrin-reactive nitrogen into gravesoil. Forensic Sci Int

    Google Scholar 

  • Stockton WL, DeLaca TE (1982) Food falls in the deep sea: occurrence, quality, and significance. Deep Sea Res Part A Oceanogr Res Papers 29(2):157–169

    Article  Google Scholar 

  • Sweeney BW, Vannote RL (1978) Size variation and the distribution of hemimetabolous aquatic insects: two thermal equilibrium hypotheses. Science 200(4340):444–446

    Article  CAS  PubMed  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM, Anderson J (1979) Decomposition in terrestrial ecosystems, vol 5. University of California Press, Berkeley, CA

    Google Scholar 

  • Tibbett M, Carter DO (2003) Mushrooms and taphonomy: the fungi that mark woodland graves. Mycologist 17(1):20–24

    Article  Google Scholar 

  • Towne EG (2000) Prairie vegetation and soil nutrient responses to ungulate carcasses. Oecologia 122(2):232–239

    Article  CAS  PubMed  Google Scholar 

  • Tunnicliffe V, Juniper SK, Sibuet M (2003) Reducing environments of the deep-sea floor. In: Ecosystems of the world. Elsevier, Amsterdam, pp 81–110

    Google Scholar 

  • Van Belle LE, Carter DO, Forbes SL (2009) Measurement of ninhydrin reactive nitrogen influx into gravesoil during aboveground and belowground carcass (Sus domesticus) decomposition. Forensic Sci Int 193(1–3):37–41

    Article  PubMed  CAS  Google Scholar 

  • Vucetich JA, Peterson RO (2004) The influence of top–down, bottom–up and abiotic factors on the moose (Alces alces) population of Isle Royale. Proc R Soc Lond Ser B Biol Sci 271(1535):183–189

    Article  Google Scholar 

  • Wallace JR (2015) Aquatic vertebrate carrion decomposition. In: Benbow ME, Tomberlin JK, Tarone AM (eds) Carrion ecology, evolution, and their applications. CRC Press, Boca Raton, FL, pp 247–272

    Google Scholar 

  • Wallace JR, Merritt RW, Kimbirauskas R, Benbow ME, McIntosh M (2008) Caddisflies assist with homicide case: determining a postmortem submersion interval using aquatic insects. J Forensic Sci 53(1):219–221

    Article  PubMed  Google Scholar 

  • Ward JV, Stanford JA (1982) Thermal responses in the evolutionary ecology of aquatic insects. Annu Rev Entomol 27(1):97–117

    Article  Google Scholar 

  • Webster N, Negri A (2006) Site-specific variation in Antarctic marine biofilms established on artificial surfaces. Environ Microbiol 8:1177–1190

    Article  CAS  PubMed  Google Scholar 

  • White PA, Kalff J, Rasmussen JB, Gasol JM (1991) The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats. Microb Ecol 21(1):99–118

    Article  CAS  PubMed  Google Scholar 

  • Wilmers CC, Stahler DR, Crabtree RL, Smith DW, Getz WM (2003) Resource dispersion and consumer dominance: scavenging at wolf-and hunter-killed carcasses in greater Yellowstone, USA. Ecol Lett 6(11):996–1003

    Article  Google Scholar 

  • Wilson EE, Wolkovich EM (2011) Scavenging: how carnivores and carrion structure communities. Trends Ecol Evol 26(3):129–135

    Article  PubMed  Google Scholar 

  • Yang LH, Bastow JL, Spence KO, Wright AN (2008) What can we learn from resource pulses. Ecology 89(3):621–634

    Article  PubMed  Google Scholar 

  • Yang X, Quan Y, Vogt N, Looger LL, Lily Yeh J, Yuh Nung J (2010) Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature 468(7326):921–926

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrienne Brundage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brundage, A. (2021). Carrion Ecology. In: Underkoffler, S.C., Adams, H.R. (eds) Wildlife Biodiversity Conservation. Springer, Cham. https://doi.org/10.1007/978-3-030-64682-0_9

Download citation

Publish with us

Policies and ethics