Skip to main content
  • 2080 Accesses

Abstract

Hub network design problems (HNDPs) lie at the heart of network design planning in transportation and telecommunications systems. Hub-based networks provide connections between many origins and destinations via hub facilities that serve as transshipment, consolidation, or sorting points for commodities. Hub facilities help to reduce the number of required arcs to connect all nodes and enable economies of scale due to the consolidation of flows on relatively few arcs. HNDPs can be seen as a class of multicommodity network design problems in which node selection decisions are taken into account. This chapter overviews the key features of hub networks, the types of decisions that are usually considered when designing them, and how these decisions interact between them. We describe commonly considered assumptions and properties and highlight how these impact the formulation and solution of various classes of HNDPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, W. P., & Sherali, H. D. (1990). Linearization strategies for a class of zero-one mixed integer programming problems. Operations Research, 38, 217–226.

    Article  Google Scholar 

  • Alibeyg, A., Contreras, I., & Fernández, E. (2016). Hub network design with profits. Transportation Research Part E: Logistics and Transportation Review 96, 40–59.

    Article  Google Scholar 

  • Alibeyg, A., Contreras, I., & Fernández, E. (2018). Exact solution of hub network design problems with profits. European Journal of Operational Research, 266, 57–71.

    Article  Google Scholar 

  • Alumur, S., & Kara, B. Y. (2008). Network hub location problems: The state of the art. European Journal of Operational Research, 190, 1–21.

    Article  Google Scholar 

  • Boland, N., Krishnamoorthy, M., Ernst, A. T., & Ebery, J. (2004). Preprocessing and cutting for multiple allocation hub location problems. European Journal of Operational Research, 155, 638–653.

    Article  Google Scholar 

  • Bryan, D. L., & O’Kelly, M. E. (1999). Hub-and-spoke networks in air transportation: An analytical review. Journal of Regional Science, 39, 275–295.

    Article  Google Scholar 

  • Camargo, R. S., & Miranda, Jr G. (2012). Single allocation hub location problem under congestion: Network owner and user perspectives. Expert Systems with Applications, 39, 3385–3391.

    Article  Google Scholar 

  • Camargo, R. S., Miranda, Jr G., & Ferreira, R. P. M. (2011). A hybrid outer-approximation/Benders decomposition algorithm for the single allocation hub location problem under congestion. Operations Research Letters, 39, 329–337.

    Article  Google Scholar 

  • Camargo, R. S., Miranda, Jr G., & Lokketagen, A. (2013). A new formulation and an exact approach for the many-to-many hub location-routing problem. Applied Mathematical Modelling, 37, 12–13.

    Article  Google Scholar 

  • Camargo, R. S., Miranda, Jr G., O’Kelly, M., & Campbell, J. F. (2017). Formulations and decomposition methods for the incomplete hub location problem with and without hop-constraints. Applied Mathematical Modelling, 51, 274–301.

    Article  Google Scholar 

  • Campbell, J. F. (1992). Location and allocation for distribution systems with transshipments and transportation economies of scale. Annals of Operations Research, 40, 77–99.

    Article  Google Scholar 

  • Campbell, J. F. (1994a). A survey of network hub location. Studies in Locational Analysis, 6, 31–43.

    Google Scholar 

  • Campbell, J. F., Ernst, A. T., & Krishnamoorthy, M. (2001). Hub location problems. In: Z. Drezner, & H. W. Hamacher (Eds.), Facility location. Applications and Theory (pp. 373–408). Heidelberg: Springer.

    Google Scholar 

  • Campbell, J. F., Ernst, A. T., & Krishnamoorthy, M. (2005a). Hub arc location problems: Part I Introduction and results. Management Science, 51, 1540–55.

    Article  Google Scholar 

  • Campbell, J. F., Ernst, A. T., & Krishnamoorthy, M. (2005b). Hub arc location problems: Part II formulations and optimal algorithms. Management Science, 51, 1556–71.

    Article  Google Scholar 

  • Campbell, J. F., & O’Kelly, M. E. (2012). Twenty-five years of hub location research. Transportation Science, 46, 153–169.

    Article  Google Scholar 

  • Cardoso Lopes, M., Eduardo de Andrade, C. E., Alves de Queiroz, T., Resende, M. G. C., & Miyazawa, F. K. (2016). Heuristics for a hub location-routing problem. Networks, 68, 54–90.

    Article  Google Scholar 

  • Contreras, I., Cordeau, J.-F., & Laporte, G. (2011a). Stochastic uncapacitated hub location. European Journal of Operational Research, 212, 518–528.

    Article  Google Scholar 

  • Contreras, I., Cordeau, J.-F., & Laporte, G. (2012). Exact solution of large-scale hub location problems with multiple capacity levels. Transportation Science, 46, 439–459.

    Article  Google Scholar 

  • Contreras, I., Díaz, J. A., & Fernández, E. (2009a). Lagrangean relaxation for the capacitated hub location problem with single assignment. OR Spectrum, 31, 483–505.

    Article  Google Scholar 

  • Contreras, I., Díaz, J. A., & Fernández, E. (2011b). Branch and price for large-scale capacitated hub location problems with single assignment. INFORMS Journal on Computing, 23, 41–55.

    Article  Google Scholar 

  • Contreras, I., & Fernández, E. (2014). Hub location as the minimization of a supermodular set function. Operations Research, 62, 557–570.

    Article  Google Scholar 

  • Contreras, I., Fernández, E., & Marín, A. (2009b). Tight bounds from a path based formulation for the tree of hubs location problem. Computers & Operations Research, 36, 3117–3127.

    Article  Google Scholar 

  • Contreras, I., Fernández, E., & Marín, A. (2010). The tree of hubs location problem. European Journal of Operational Research, 202, 390–400.

    Article  Google Scholar 

  • Contreras, I., O’Kelly, M. E. (2019). Hub location problems. In G. Laporte, S. Nickel & F. Saldanha da Gama (Eds.), Location science. Heidelberg: Springer.

    Google Scholar 

  • Contreras, I., Tanash, M., & Vidyarthi, N. (2017). Exact and heuristic approaches for the cycle hub location problem. Annals of Operations Research, 258, 655–677.

    Article  Google Scholar 

  • Contreras, I., Zetina, C., Jayawasal, S., & Vidyarthi, N. (2021). An exact algorithm for large-scale non-convex quadratic capacitated facility location. Submitted.

    Google Scholar 

  • Elhedhli, S., & Wu, H. (2010). A Lagrangean heuristic for hub-and-spoke system design with capacity selection and congestion. INFORMS Journal on Computing, 22, 282–296.

    Article  Google Scholar 

  • Ernst, A. T., & Krishnamoorthy, M. (1996). Efficient algorithms for the uncapacitated single allocation p-hub median problem. Location Science, 4, 139–154.

    Article  Google Scholar 

  • Ernst, A. T., & Krishnamoorthy, M. (1998b). Exact and heuristic algorithms for the uncapacitated multiple allocation p-hub median problems. European Journal of Operational Research, 104, 100–112.

    Article  Google Scholar 

  • Gelareh, S., Monemi, R. N., & Nickel, S. (2015). Multi-period hub location problems in transportation. Transportation Research Part E: Logistics and Transportation Review, 75, 67–94.

    Article  Google Scholar 

  • Gelareh, S., & Nickel, S. (2011). Hub location in transportation networks. Transportation Research Part E: Logistics and Transportation Review, 47, 1092–1111.

    Article  Google Scholar 

  • Gelareh, S., Nickel, S., Pisinger, D. (2010). Liner shipping hub network design in a competitive environment.Transportation Research Part E: Logistics and Transportation Review, 46, 991–1004.

    Google Scholar 

  • Hamacher, H. W., Labbé, M., Nickel, S., & Sonneborn, T. (2004). Adapting polyhedral properties from facility to hub location problems. Discrete Applied Mathematics, 145, 104–116.

    Article  Google Scholar 

  • Helme, M. P., & Magnanti, T. L. (1989). Designing satellite communication networks by zero-one quadratic programming. Networks, 19, 427–450.

    Article  Google Scholar 

  • Hu, T. C. (1974). Optimum communication spanning trees. SIAM Journal on Computing, 3, 188–195.

    Article  Google Scholar 

  • Kartal, Z., Hasgul, S., & Ernst, A. T. (2017). Single allocation p-hub median location and routing problem with simultaneous pick-up and delivery. Transportation Research Part E: Logistics and Transportation Review, 108, 141–159.

    Article  Google Scholar 

  • Kim, J.-G., & Tcha, D.-W. (1992). Optimal design of a two-level hierarchical network with tree-star configuration. Computers & Industrial Engineering, 22, 273–281.

    Article  Google Scholar 

  • Klincewicz, J. G. (1998). Hub location in backbone/tributary network design: A review. Location Science, 6, 307–335.

    Article  Google Scholar 

  • Labbé, M., & Yaman, H. (2004). Projecting the flow variables for hub location problems. Networks, 44, 84–93.

    Article  Google Scholar 

  • Labbé, M., & Yaman, H. (2008). Solving the hub location problem in a start-start network. Networks, 51, 19–33.

    Article  Google Scholar 

  • Labbé, M., Yaman, H., & Gourdin, É. (2005). A branch and cut algorithm for hub location problems with single assignment. Mathematical Programming, 102, 371–405.

    Article  Google Scholar 

  • Lari, I., Ricca, F., & Scozzari, A. (2008). Comparing different metaheuristic approaches for the median path problem with bounded length. European Journal of Operational Research, 20, 625–637.

    Google Scholar 

  • Lee, C.-H., Ro, H.-B., & Tcha, D.-W. (1993). Topological design of a two-level network with ring-star configuration. Computers & Operations Research 20, 625–637.

    Article  Google Scholar 

  • Lee, Y., Lim, B. L., & Park, J. S. (1996). A hub location problem in designing digital data service networks: Lagrangian relaxation approach. Location Science, 4, 185–194.

    Article  Google Scholar 

  • Marín, A. (2005a). Uncapacitated Euclidean hub location: Strengthened formulation, new facets and a relax-and-cut algorithm. Journal of Global Optimization, 33, 393–422.

    Article  Google Scholar 

  • Martins de Sá, E., Contreras, I., Cordeau, J.-F., de Camargo, R. S., & de Miranda, R. (2015). The hub line location problem. Transportation Science, 49, 500–518.

    Article  Google Scholar 

  • Martins de Sá, E., de Camargo, R. S., & de Miranda, R. (2013). An improved Benders decomposition algorithm for the tree of hubs location problem. European Journal of Operational Research, 226, 185–202.

    Article  Google Scholar 

  • Masaeli, M., Alumur, S. A., & Bookbinder, J. H. (2018). Shipment scheduling in hub location problems. Transportation Research Part B: Methodological, 115, 126–142.

    Article  Google Scholar 

  • Mirchandani, P. (2000). Projections of the capacitated network loading problem. European Journal of Operational Research, 122, 534–560.

    Article  Google Scholar 

  • O’Kelly, M. E. (1986a). The location of interacting hub facilities. Transportation Science, 20, 92–106.

    Article  Google Scholar 

  • O’Kelly, M. E. (1986b). Activity levels at hub facilities in interacting networks. Geographical Analysis, 18, 343–356.

    Article  Google Scholar 

  • O’Kelly, M. E. (1987). A quadratic integer program for the location of interacting hub facilities. European Journal of Operational Research, 32, 393–404.

    Article  Google Scholar 

  • O’Kelly, M. E., & Miller, H. J. (1994). The hub network design problem: A review and synthesis. Journal of Transport Geography, 2, 31–40.

    Article  Google Scholar 

  • Ortiz-Astorquiza, C., Contreras, I., & Laporte, G. (2015). The minimum flow cost Hamiltonian cycle problem: a comparison of formulations. Discrete Applied Mathematics, 187, 140–154.

    Article  Google Scholar 

  • Pirkul, H., & Schilling, D. A. (1998). An efficient procedure for designing single allocation hub and spoke systems. Management Science, 44, 235–242.

    Article  Google Scholar 

  • Rardin, R. L., & Wolsey, L. A. (1993). Valid inequalities and projecting the multicommodity extended formulation for uncapacitated fixed charge network flow problems. European Journal of Operational Research, 71, 95–109.

    Article  Google Scholar 

  • Rodríguez-Martín, I., Salazar-González, J. J., & Yaman, H. (2014). A branch-and-cut algorithm for the hub location and routing problem. Computers & Operations Research, 50,161–174.

    Article  Google Scholar 

  • Rothenbcher, A.-K., Drexl, M., & Irnich, S. (2016). Branch-and-price-and-cut for a service network design and hub location problem. European Journal of Operational Research, 255, 935–947.

    Article  Google Scholar 

  • Sasaki, M., Campbell, J. F., Krishnamoorthy, M., & Ernst, A. T. (2014). A Stackelberg hub arc location model for a competitive environment. Computers & Operations Research, 47, 27–41.

    Article  Google Scholar 

  • Skorin-Kapov, D., Skorin-Kapov, J., & O’Kelly, M. E. (1997). Tight linear programming relaxations of uncapacitated p-hub median problems. European Journal of Operational Research, 94, 582–593.

    Article  Google Scholar 

  • Tanash, M., Contreras, I., & Vidyarthi, N. (2017). An exact algorithm for the modular hub location problem with single assignments. Computers & Operations Research, 85, 32–44.

    Article  Google Scholar 

  • Xu, J., Chiu, S. Y., & Glover, F. (1999). Optimizing a ring-based private line telecommunication network using tabu search. Management Science, 45, 330–345.

    Article  Google Scholar 

  • Wolsey, L. A. (1983). Fundamental properties of certain discrete location problems. In J. F. Thisse, & H. G. Zoller (Eds.), Locational analysis of public facilities (pp. 331–355). Amsterdam: North-Holland.

    Google Scholar 

  • Yaman, H. (2008). Star p-hub median problem with modular arc capacities. Computers & Operations Research, 35, 3009–3019.

    Article  Google Scholar 

  • Yaman, H., Kara, B. Y., & Tansel, B. Ç. (2007). The latest arrival hub location problem for cargo delivery systems with stopovers. Transportation Research Part B: Methodological, 41, 906–919.

    Article  Google Scholar 

  • Yaman, H., Karasan, O. E., & Kara, B. Y. (2012). Release time scheduling and hub location for next-day delivery. Operations Research, 60, 906–917.

    Article  Google Scholar 

  • Zetina, C., Contreras, I., Fernández, E., & Luna-Mota, C. (2019). Solving the optimum communication spanning tree problem. European Journal of Operational Research, 273, 108–117.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Contreras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Contreras, I. (2021). Hub Network Design. In: Crainic, T.G., Gendreau, M., Gendron, B. (eds) Network Design with Applications to Transportation and Logistics. Springer, Cham. https://doi.org/10.1007/978-3-030-64018-7_18

Download citation

Publish with us

Policies and ethics