Skip to main content

Bioactive Phytochemicals from Sunflower (Helianthus annuus L.) Oil Processing Byproducts

  • Living reference work entry
  • First Online:
Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-products

Abstract

Sunflower is an oilseed cultivated worldwide as an essential source for oil production. After processing, large amounts of waste are generated. Oil processing byproducts contribute to increased food waste and negative environmental impacts, primarily when not used properly. Press processing generates about 75% of total waste, while chemical extraction, using solvents, produces about 60% of solid waste (which can represent up to 18 million tons of waste/year worldwide depending on the direction of the raw material). Due to its chemical composition, a large part of waste can be directed to animal feed production and used directly in food preparations or extraction of bioactive components due to the nutritional characteristics of the waste. The byproduct generated from oil processing has a high concentration of components of interest, including proteins (40–50 g 100 g−1), fiber (14–17 g 100 g−1), lipid (~3.0 g 100 g−1), and ash (~5.0 g 100 g−1). The byproducts contain high levels of bioactive phytochemicals, including phenolic compounds and other molecules with biological potential such as antioxidant, anti-diabetic, anti-hypertensive, and chemopreventive properties. This chapter provides an overview of the main components, including phytochemical components, found in sunflower oil processing byproducts to provide information and increase the utilization, especially in food products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Seiler GJ, Qi LL, Marek LF (2017) Utilization of sunflower crop wild relatives for cultivated sunflower improvement. Crop Sci 57(3):1083–1101

    Article  Google Scholar 

  2. Hexa Research (2019) Sunflower seeds market size and forecast, by application (Edible Oil, Bakery Products, Snacks), by distribution channel (Offline, Online), by region, and trend analysis, 2019–2025. Available in: https://www.hexaresearch.com/research-report/sunflower-seeds-market. Accessed 3 Nov 2021

  3. MI: Sunflower market – growth, trends, covid-19 impact, and forecasts (2021–2026). https://www.mordorintelligence.com/industry-reports/global-sunflower-market. (2021). Accessed 24 Mar 2021 2021

  4. Pilorgé E (2020) Sunflower in the global vegetable oil system: situation, specificities and perspectives. OCL 27:34

    Article  Google Scholar 

  5. Canistro D, Vivarelli F, Ugolini L, Pinna C, Grandi M, Antonazzo IC et al (2017) Digestibility, toxicity and metabolic effects of rapeseed and sunflower protein hydrolysates in mice. Ital J Anim Sci 16:462–473

    Article  CAS  Google Scholar 

  6. Kartika IA, Pontalier P, Rigal L (2006) Extraction of sunflower oil by twin screw extruder: screw configuration and operating condition effects. Bioresour Technol 97:2302–2310

    Article  Google Scholar 

  7. Carrão-Panizzi M, Mandarino JMG, Leite RMVBC, Brighenti AM, Castro C (2005) Produtos proteicos do girassol -Girassol no Brasil [Sunflower protein products – Sunflower in Brazil]. Embrapa, Londrina, pp 51–68

    Google Scholar 

  8. González-Pérez S, Vereijken JM (2007) Sunflower proteins: overview of their physicochemical, structural and functional properties. J Sci Food Agric 87(12):2173–2191

    Article  Google Scholar 

  9. Dorrell D, Vick B (1997) Properties and processing of oilseed sunflower. Sunflower Technol Product 35:709–745

    Google Scholar 

  10. Lemes AC, Sala L, Ores JC, Braga ARC, Egea MB, Fernandes KF (2016) A review of the latest advances in encrypted bioactive peptides from protein-rich waste. Int J Mol Sci 17:950

    Article  PubMed Central  Google Scholar 

  11. Lemes AC, Paula LCD, de Oliveira Filho JG, de Prado DMF, Medronha GA, Egea MB (2020) Bioactive peptides with antihypertensive property obtained from agroindustrial byproducts – mini-review. Austin J Nutrit Metabol 7(3):1082

    Google Scholar 

  12. de Prado DMF, Almeida ABD, de Olivera Filho JG, Alves CCF, Egea MB, Lemes AC (2020) Extraction of bioactive proteins from seeds (corn, sorghum, and sunflower) and sunflower byproduct: enzymatic hydrolysis and antioxidant properties. Curr Nutr Food Sci 16:1–11. https://doi.org/10.2174/1573401316999200731005803

    Article  CAS  Google Scholar 

  13. Megías C, Yust MM, Pedroche J, Lquari H, Girón-Calle J, Alaiz M et al (2004) Purification of an ACE inhibitory peptide after hydrolysis of sunflower (Helianthus annuus L.) protein isolates. J Agric Food Chem 52(7):1928–1932. https://doi.org/10.1021/jf034707r

    Article  CAS  PubMed  Google Scholar 

  14. Velliquette RA, Fast DJ, Maly ER, Alashi AM, Aluko RE (2020) Enzymatically derived sunflower protein hydrolysate and peptides inhibit NFκB and promote monocyte differentiation to a dendritic cell phenotype. Food Chem 319:126563

    Google Scholar 

  15. Weisz GM, Kammerer DR, Carle R (2009) Identification and quantification of phenolic compounds from sunflower (Helianthus annuus L.) kernels and shells by HPLC-DAD/ESI-MSN. Food Chem 115:758–765

    Article  CAS  Google Scholar 

  16. Gai F, Karamać M, Janiak MA, Amarowicz R, Peiretti PG (2020) Sunflower (Helianthus annuus L.) plants at various growth stages subjected to extraction-comparison of the antioxidant activity and phenolic profile. Antioxidants 9:535

    Article  CAS  PubMed Central  Google Scholar 

  17. Kachrimanidou V, Kopsahelis N, Alexandri M, Strati A, Gardeli C, Papanikolaou S et al (2015) Integrated sunflower-based biorefinery for the production of antioxidants, protein isolate and poly (3-hydroxybutyrate). Ind Crop Prod 71:106–113

    Article  CAS  Google Scholar 

  18. Megías C, del Mar YM, Pedroche J, Lquari H, Girón-Calle J, Alaiz M et al (2004) Purification of an ACE inhibitory peptide after hydrolysis of sunflower (Helianthus annuus L.) protein isolates. J Agric Food Chem 52:1928–1932. https://doi.org/10.1021/jf034707r

    Article  CAS  PubMed  Google Scholar 

  19. Smith L, Patterson J, Walker L, Verghese M (2016) Chemopreventive potential of sunflower seeds in a human colon cancer cell line. Int J Cancer 12:40–50. https://doi.org/10.3923/ijcr.2016.40.50

    Article  CAS  Google Scholar 

  20. FAO (2013) Food wastage footprint: impacts on natural resources. Food Agriculture Organization of the United Nations, Rome, pp 1–63

    Google Scholar 

  21. de Lima FF, Rodríguez de Oliveira MS, Lidório HF, Farias Menegaes J, Martins Fries LL (2019) Composición química de pétalos de flores de rosa, girasol y caléndula para su uso en la alimentación humana. Cienc Tecnol Agropecu 20:149–168

    Google Scholar 

  22. Della Gatta C, Piergiovanni A (1996) Technological and nutritional aspects in hyperproteic bread prepared with the addition of sunflower meal. Food Chem 57:493–496

    Article  CAS  Google Scholar 

  23. Srilatha K, Krishnakumari K (2003) Proximate composition and protein quality evaluation of recipes containing sunflower cake. Plant Foods Hum Nutr 58:1–11

    Article  Google Scholar 

  24. Grasso S, Omoarukhe E, Wen X, Papoutsis K, Methven L (2019) The use of upcycled defatted sunflower seed flour as a functional ingredient in biscuits. Foods 8:305

    Article  CAS  PubMed Central  Google Scholar 

  25. Grasso S, Liu S, Methven L (2020) Quality of muffins enriched with upcycled defatted sunflower seed flour. LWT 119:108893

    Article  CAS  Google Scholar 

  26. Grasso S, Pintado T, Pérez-Jiménez J, Ruiz-Capillas C, Herrero AM (2020) Potential of a sunflower seed by-product as animal fat replacer in healthier frankfurters. Foods 9(4):445

    Article  PubMed Central  Google Scholar 

  27. de Oliveira Filho JG, Egea MB (2021) Sunflower seed byproduct and its fractions for food application: an attempt to improve the sustainability of the oil process. J Food Sci. https://doi.org/10.1111/1750-3841.15719

  28. Guo S, Ge Y, Jom K (2017) A review of phytochemistry, metabolite changes, and medicinal uses of the common sunflower seed and sprouts (Helianthus annuus L.). Chem Cent J 11(1):1–10

    Article  CAS  Google Scholar 

  29. Zorzi C, Garske R, Flôres S, Thys R (2020) Sunflower protein concentrate: A possible and beneficial ingredient for gluten-free bread. Innov Food Sci Emerg Technol 66:102539

    Article  CAS  Google Scholar 

  30. Subaşı B, Casanova F, Capanoglu E, Ajalloueian F, Sloth J, Mohammadifar M (2020) Protein extracts from de-oiled sunflower cake: structural, physico-chemical and functional properties after removal of phenolics. Food Biosci 38:100749

    Article  Google Scholar 

  31. Wanjari N, Waghmare J (2015) Phenolic and antioxidant potential of sunflower meal. Adv Appl Sci Res 6:221–229

    CAS  Google Scholar 

  32. Adeleke B, Babalola O (2020) Oilseed crop sunflower (Helianthus annuus) as a source of food: nutritional and health benefits. Food Sci Nutr 8(9):4666–4684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yegorov B, Turpurova Т, Sharabaeva E, Bondar Y (2019) Prospects of using by-products of sunflower oil production in compound feed industry. Food Sci Tech 13(1):106–113

    Article  Google Scholar 

  34. Tavernari F, Albino LFT, Dutrajunior WM, Lelis GR, Nery LR, Maia R (2008) Farelo de girassol: composição e utilização na alimentação de frangos de corte [Sunflower bran: composition and use in broiler feed]. Rev Eletr Nutr 5:638–647

    Google Scholar 

  35. Rosa P, Antoniassi R, Freitas S, Bizzo H, Zanotto D, Oliveira M et al (2009) Chemical composition of Brazilian sunflower varieties. Helia 32:145–155. https://doi.org/10.2298/HEL0950145R

    Article  Google Scholar 

  36. Fernández-Cegrí V, Ángeles De la Rubia M, Raposo F, Borja R (2012) Effect of hydrothermal pretreatment of sunflower oil cake on biomethane potential focusing on fibre composition. Bioresour Technol 123:424–429. https://doi.org/10.1016/j.biortech.2012.07.111

    Article  CAS  PubMed  Google Scholar 

  37. Alexandrino T, Ferrari R, de Oliveira L, Rita de Cássia S, Pacheco M (2017) Fractioning of the sunflower flour components: physical, chemical and nutritional evaluation of the fractions. LWT 84:426–432

    Article  CAS  Google Scholar 

  38. Nasr J, Kheiri F (2012) Effects of lysine levels of diets formulated based on total or digestible amino acids on broiler carcass composition. Rev Bras Cienc Avic 14:249–258

    Article  Google Scholar 

  39. Teodorowicz M, van Neerven J, Savelkoul H (2017) Food processing: the influence of the Maillard reaction on immunogenicity and allergenicity of food proteins. Nutrients 9(8):835. https://doi.org/10.3390/nu9080835

    Article  CAS  PubMed Central  Google Scholar 

  40. Karangwa E, de Habimana JD, Jingyang Y, Murekatete N, Zhang X, Masamba K et al (2017) Sensory characteristics of Maillard reaction products obtained from sunflower protein hydrolysates and different sugar types. Int J Food Eng 13(3):1437–1447

    Article  Google Scholar 

  41. Habinshuti I, Chen X, Yu J, Mukeshimana O, Duhoranimana E, Karangwa E et al (2019) Antimicrobial, antioxidant and sensory properties of Maillard reaction products (MRPs) derived from sunflower, soybean and corn meal hydrolysates. LWT 101:694–702

    Article  CAS  Google Scholar 

  42. Luo P, He DP (2018) Preparation of liposome encapsulating angiotensin-I-converting enzyme inhibitory peptides from sunflower protein hydrolysates. Mol Med Rep 17(4):5306–5311

    CAS  PubMed  Google Scholar 

  43. Ren J, Song CL, Zhang HY, Kopparapu NK, Zheng XQ (2017) Effect of hydrolysis degree on structural and interfacial properties of sunflower protein isolates. J Food Process Preserv 41(1):e13092

    Article  Google Scholar 

  44. Parrado J, Bautista J, Machado A (1991) Production of soluble enzymic protein hydrolyzate from industrially defatted nondehulled sunflower meal. J Agric Food Chem 39(3):447–450

    Article  CAS  Google Scholar 

  45. Taha F, Wagdy S, Hassanein M, Hamed S (2012) Evaluation of the biological activity of sunflower hull extracts. Grasas Aceites 63:184–192. https://doi.org/10.3989/gya.072111

    Article  CAS  Google Scholar 

  46. Dabbour M, He R, Mintah B, Golly MK, Ma H (2020) Ultrasound pretreatment of sunflower protein: impact on enzymolysis, ACE-inhibition activity, and structure characterization. J Food Process Preserv 44(4):e14398

    Article  CAS  Google Scholar 

  47. Dabbour M, He R, Mintah B, Xiang J, Ma H (2019) Changes in functionalities, conformational characteristics and antioxidative capacities of sunflower protein by controlled enzymolysis and ultrasonication action. Ultrason Sonochem 58:104625

    Article  CAS  PubMed  Google Scholar 

  48. Dabbour M, He R, Mintah B, Ma H (2019) Antioxidant activities of sunflower protein hydrolysates treated with dual-frequency ultrasonic: optimization study. J Food Process Eng 42(5):e13084

    Article  Google Scholar 

  49. Le Clef E, Kemper T (2015) Sunflower seed preparation and oil extraction. In: Martínez-Force E, Dunford NT, Salas JJ (eds) Sunflower: chemistry, production, processing, and utilization. AOCS Press, pp 187–226

    Google Scholar 

  50. Andrigueto JM (1988) Nutrição animal, 4th edn. Nobel, São Paulo

    Google Scholar 

  51. Sen M, Bhattacharyya D (2000) Nutritional quality of sunflower seed protein fraction extracted with isopropanol. Plant Foods Hum Nutr 55(3):265–278

    Article  CAS  PubMed  Google Scholar 

  52. Tavernari FC, Dutra Junior W, Albino L, Rostagno H, Vieira R, Silva C (2009) Effect of different levels of sunflower meal in diets on the performance of broiler chickens. R Bras Zoot 38(9):1745–1750

    Article  Google Scholar 

  53. Mandarino JMG (1992) Características bioquímicas e nutricionais do óleo e do farelo de girassol [biochemical and nutritional characteristics of sunflower oil and bran]. EMBRAPA-CNPSO, Londrina

    Google Scholar 

  54. Sauvant D, Perez J-M, Tran G (2004) Tables of composition and nutritional value of feed materials: pigs, poultry, cattle, sheep, goats, rabbits, horses and fish. Wageningen Academic Publishers, INRA

    Book  Google Scholar 

  55. Hamed S, Wagdy SM, Megahed M (2012) Chemical characteristics and antioxidant capacity of Egyptian and Chinese sunflower seeds: a case study. Life Sci J 9(2):320–328

    Google Scholar 

  56. Millan F, Vioque E, Maza M (1983) Study of the neutral lipids of sunflower meal and isolates. J Am Oil Chem Soc 60(7):1321–1325

    Article  CAS  Google Scholar 

  57. Millan F, Vioque E, Maza M (1984) Polar lipids of sunflower meal and isolates. J Am Oil Chem Soc 61(8):1347–1350

    Article  CAS  Google Scholar 

  58. Dorrell DG, Vick BA (1997) Properties and processing of oilseed sunflower. In: Sunflower technology and production, pp 709–745. https://doi.org/10.2134/agronmonogr35.c15

  59. Le Clef E, Kemper T (2015) Chap. 8 – Sunflower seed preparation and oil extraction. In: Martínez-Force E, Dunford NT, Salas JJ (eds) Sunflower. AOCS Press, pp 187–226. https://doi.org/10.1016/B978-1-893997-94-3.50014-3

  60. Kimiaeitalab MV, Cámara L, Mirzaie Goudarzi S, Jiménez-Moreno E, Mateos GG (2017) Effects of the inclusion of sunflower hulls in the diet on growth performance and digestive tract traits of broilers and pullets fed a broiler diet from zero to 21 d of age. A comparative study1. Poult Sci 96(3):581–592. https://doi.org/10.3382/ps/pew263

    Article  CAS  PubMed  Google Scholar 

  61. Rodríguez M, Nolasco S, Izquierdo N, Mascheroni R, Madrigal MS, Flores DC et al (2019) Microwave-assisted extraction of antioxidant compounds from sunflower hulls. Heat Mass Transf 55(10):3017–3027. https://doi.org/10.1007/s00231-019-02648-4

    Article  CAS  Google Scholar 

  62. Bhise S, Kaur A (2013) Development of functional chapatti from texturized deoiled cake of sunflower, soybean and flaxseed. Int J Eng Res Appl 3(5):1581–1587

    Google Scholar 

  63. Sanz A, Morales AE, de la Higuera M, Gardenete G (1994) Sunflower meal compared with soybean meals as partial substitutes for fish meal in rainbow trout (Oncorhynchus mykiss) diets: protein and energy utilization. Aquaculture 128(3):287–300. https://doi.org/10.1016/0044-8486(94)90318-2

    Article  Google Scholar 

  64. Perez EE, Carelli AA, Crapiste GH (2004) Chemical characterization of oils and meals from wild sunflower (Helianthus petiolaris nutt). J Am Oil Chem Soc 81(3):245–249. https://doi.org/10.1007/s11746-004-0890-y

    Article  CAS  Google Scholar 

  65. Fafiolu AO, Oduguwa OO, Jegede AV, Tukura CC, Olarotimi ID, Teniola AA et al (2015) Assessment of enzyme supplementation on growth performance and apparent nutrient digestibility in diets containing undecorticated sunflower seed meal in layer chicks. Poult Sci 94(8):1917–1922. https://doi.org/10.3382/ps/pev136

    Article  CAS  PubMed  Google Scholar 

  66. Ramachandran S, Singh SK, Larroche C, Soccol CR, Pandey A (2007) Oil cakes and their biotechnological applications- a review. Bioresour Technol 98(10):2000–2009. https://doi.org/10.1016/j.biortech.2006.08.002

    Article  CAS  PubMed  Google Scholar 

  67. Casoni AI, Gutierrez VS, Volpe MA (2019) Conversion of sunflower seed hulls, waste from edible oil production, into valuable products. J Environ Chem Eng 7(1):102893. https://doi.org/10.1016/j.jece.2019.102893

    Article  CAS  Google Scholar 

  68. Cui X, Yang J, Shi X, Lei W, Huang T, Bai C (2019) Pelletization of sunflower seed husks: evaluating and optimizing energy consumption and physical properties by response surface methodology (RSM). PRO 7(9):591

    CAS  Google Scholar 

  69. Demirbas A (2006) Effect of temperature on pyrolysis products from four nut shells. J Anal Appl Pyrolysis 76(1):285–289. https://doi.org/10.1016/j.jaap.2005.12.012

    Article  CAS  Google Scholar 

  70. Kamireddy S, Schaefer C, Defrese M, Degenstein J, Ji Y (2012) Pretreatment and enzymatic hydrolysis of sunflower hulls for fermentable sugar production. Int J Agr Biol Eng 5:62–70

    CAS  Google Scholar 

  71. Matute RG, Figlas D, Curvetto N (2011) Agaricus blazei production on non-composted substrates based on sunflower seed hulls and spent oyster mushroom substrate. World J Microbiol Biotechnol 27(6):1331–9. https://doi.org/10.1007/s11274-010-0582-5

  72. Geneau-Sbartaï C, Leyris J, Silvestre F, Rigal L (2008) Sunflower cake as a natural composite: composition and plastic properties. J Agric Food Chem 56:11198–11208. https://doi.org/10.1021/jf8011536

    Article  CAS  PubMed  Google Scholar 

  73. Tavares B, Sene L, Christ D (2016) Valorization of sunflower meal through the production of ethanol from the hemicellulosic fraction. Rev Bras de Eng Agricola e Ambient 20:1036–1042

    Article  Google Scholar 

  74. Rajput AA, Zeshan, Hassan M (2021) Enhancing biogas production through co-digestion and thermal pretreatment of wheat straw and sunflower meal. Renew Energy 168:1–10. https://doi.org/10.1016/j.renene.2020.11.149

    Article  CAS  Google Scholar 

  75. Monlau F, Latrille E, Da Costa AC, Steyer J-P, Carrère H (2013) Enhancement of methane production from sunflower oil cakes by dilute acid pretreatment. Appl Energy 102:1105–1113. https://doi.org/10.1016/j.apenergy.2012.06.042

    Article  CAS  Google Scholar 

  76. Malathi V, Devegowda G (2001) In vitro evaluation of nonstarch polysaccharide digestibility of feed ingredients by enzymes. Poult Sci 80(3):302–305. https://doi.org/10.1093/ps/80.3.302

    Article  CAS  PubMed  Google Scholar 

  77. Camargo D, Sene L (2014) Production of ethanol from the hemicellulosic fraction of sunflower meal biomass. Biomass Convers Biorefin 4(2):87–93. https://doi.org/10.1007/s13399-013-0096-0

    Article  CAS  Google Scholar 

  78. Weisz GM, Carle R, Kammerer DR (2013) Sustainable sunflower processing—II. Recovery of phenolic compounds as a by-product of sunflower protein extraction. Innov Food Sci Emerg Technol 17:169–179

    Article  CAS  Google Scholar 

  79. Tanase C, Coșarcă S, Muntean D-L (2019) A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules 24(6):1182

    Article  PubMed Central  Google Scholar 

  80. Gaur S, Agnihotri R (2014) Green tea: a novel functional food for the oral health of older adults. Geriatr Gerontol Int 14(2):238–250

    Article  PubMed  Google Scholar 

  81. Saraf S, Kaur C (2010) Phytoconstituents as photoprotective novel cosmetic formulations. Pharmacogn Rev 4(7):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Laguna O, Odinot E, Bisotto A, Barea B, Villeneuve P, Sigoillot J-C et al (2019) Release of phenolic acids from sunflower and rapeseed meals using different carboxylic esters hydrolases from Aspergillus niger. Ind Crop Prod 139:111579

    Article  CAS  Google Scholar 

  83. Santana-Gálvez J, Cisneros-Zevallos L, Jacobo-Velázquez DA (2017) Chlorogenic acid: recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 22(3):358

    Article  PubMed Central  Google Scholar 

  84. Martínez G, Regente M, Jacobi S, Del Rio M, Pinedo M, de la Canal L (2017) Chlorogenic acid is a fungicide active against phytopathogenic fungi. Pestic Biochem Physiol 140:30–35

    Article  PubMed  Google Scholar 

  85. Verma R, Hansch C (2004) An approach towards the quantitative structure-activity relationships of caffeic acid and its derivatives. Chembiochem 5(9):1188–1195

    Article  CAS  PubMed  Google Scholar 

  86. Tošović J (2017) Spectroscopic features of caffeic acid: theoretical study. Kragujevac J Sci 39:99–108

    Article  Google Scholar 

  87. Genaro-Mattos T, Maurício Â, Rettori D, Alonso A, Hermes-Lima M (2015) Antioxidant activity of caffeic acid against iron-induced free radical generation-A chemical approach. PLoS One 10(6):e0129963

    Article  PubMed  PubMed Central  Google Scholar 

  88. Huang Q, Lin Y, Yan Y (2013) Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain. Biotechnol Bioeng 110(12):3188–3196

    Article  CAS  PubMed  Google Scholar 

  89. Santos J, Bispo V, Filho ABC, Pinto I, Dantas L, Vasconcelos D et al (2013) Evaluation of chemical constituents and antioxidant activity of coconut water (Cocus nucifera L.) and caffeic acid in cell culture. An Acad Bras Cienc 85(4):1235–1247

    Article  CAS  PubMed  Google Scholar 

  90. Kilani-Jaziri S, Mokdad-Bzeouich I, Krifa M, Nasr N, Ghedira K, Chekir-Ghedira L (2017) Immunomodulatory and cellular anti-oxidant activities of caffeic, ferulic, and p-coumaric phenolic acids: a structure-activity relationship study. Drug Chem Toxicol 40(4):416–424

    Article  CAS  PubMed  Google Scholar 

  91. Rodrigues J, Araújo R, Prather KL, Kluskens L, Rodrigues L (2015) Heterologous production of caffeic acid from tyrosine in Escherichia coli. Enzyme Microb 71:36–44

    Article  CAS  Google Scholar 

  92. Agunloye O, Oboh G, Ademiluyi A, Ademosun A, Akindahunsi A, Oyagbemi A et al (2019) Cardio-protective and antioxidant properties of caffeic acid and chlorogenic acid: mechanistic role of angiotensin converting enzyme, cholinesterase and arginase activities in cyclosporine induced hypertensive rats. Biomed Pharmacother 109:450–458

    Article  CAS  PubMed  Google Scholar 

  93. Xie J, Yang F, Zhang M, Lam C, Qiao Y, Xiao J et al (2017) Antiproliferative activity and SARs of caffeic acid esters with mono-substituted phenylethanols moiety. Bioorg Med Chem Lett 27(2):131–134

    Article  CAS  PubMed  Google Scholar 

  94. Yang S-Y, Hong C-O, Lee G, Kim C-T, Lee K-W (2013) The hepatoprotection of caffeic acid and rosmarinic acid, major compounds of Perilla frutescens, against t-BHP-induced oxidative liver damage. Food Chem Toxicol 55:92–99

    Article  CAS  PubMed  Google Scholar 

  95. Bispo V, Dantas L, Chaves Filho A, Pinto I, Silva R, Otsuka F et al (2017) Reduction of the DNA damages, hepatoprotective effect and antioxidant potential of the coconut water, ascorbic and caffeic acids in oxidative stress mediated by ethanol. An Acad Bras Cienc 89(2):1095–1109

    Article  CAS  PubMed  Google Scholar 

  96. Szydłowska-Czerniak A, Trokowski K, Szłyk E (2011) Optimization of extraction conditions of antioxidants from sunflower shells (Helianthus annuus L.) before and after enzymatic treatment. Ind Crop Prod 33(1):123–131

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Buranelo Egea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Egea, M.B., de Oliveira Filho, J.G., Bertolo, M.R.V., de Araújo, J.C., Gautério, G.V., Lemes, A.C. (2021). Bioactive Phytochemicals from Sunflower (Helianthus annuus L.) Oil Processing Byproducts. In: Ramadan Hassanien, M.F. (eds) Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-products. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-63961-7_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63961-7_4-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63961-7

  • Online ISBN: 978-3-030-63961-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics