Skip to main content
Log in

Microwave-assisted extraction of antioxidant compounds from sunflower hulls

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The objective was to determine the adequate conditions for the microwave-assisted extraction of antioxidant compounds from the seed hull of sunflower hybrids. The existence of genetic and environmental variability in the phenolic content obtained under the selected extraction conditions was also analyzed. The extractions were carried out at 70 °C-20 and 90 °C-10 min, using water as solvent and a power of 600 W. The total phenol, flavonoid and antioxidant activity were evaluated. The microwave extraction process at 90 °C-10 min gave significantly higher values of total phenol (407.13 ± 6.11–512.71 ± 23.54 mg gallic acid⋅100 g−1 hull), flavonoids (210.09 ± 6.15–297.64 ± 5.68 mg catechin⋅100 g−1 hull) and antioxidant activity (76.73 ± 4.40–110.80 ± 3.51 μmol TE⋅g−1 hull) than those obtained at 70 °C-20 min. The cultivation environment also significantly affected the antioxidant yield, with total phenol and flavonoid contents being significantly higher for the hybrids grown in Balcarce than for those from Tandil. A significant interaction between hybrids and cultivation environmental was also observed for the antioxidant activity, indicating that the environmental effects were not similar among hybrids. The results of this study provide valuable information related to giving added value to a residue of the oil industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. De Leonardis A, Macciola V, Di Domenico N (2005) A first pilot study to produce a food antioxidant from sunflower seed shells (Helianthus annuus L). Eur J Lipid Sci Technol 107:220–227

    Article  Google Scholar 

  2. Taha FS, Wagdy SM, Hassanein MMM, Hamed SF (2012) Evaluation of the biological activity of sunflower hull extracts. Grasas Aceites 63(2):184–192

    Article  Google Scholar 

  3. Cancalon P (1971) Chemical composition of sunflower seed hulls. J Am Oil Chem Soc 48:629–632

    Article  Google Scholar 

  4. Weisz GM, Kammerer DR, Carle R (2009) Identification and quantification of phenolic compounds from sunflower (Helianthus annuus L) kernels and shells by HPLC-DAD/ESI-MSn. Food Chem 115:758–765

    Article  Google Scholar 

  5. Hamed SF, Wagdy SM, Megahed MG (2012) Chemical characteristics and antioxidant capacity of Egyptian and Chinese sunflower seeds: a case study. Life Science Journal 9(2):320–328

    Google Scholar 

  6. Karamać M, Kosin A, Estrella I, Hernandez T, Dueñas M (2012) Antioxidant activity of phenolic compounds identified in sunflower seeds. Eur Food Res Technol 235:221–230

    Article  Google Scholar 

  7. Pedrosa MM, Muzquiz M, García-Vallejo C, Burbano C, Cuadrado C, Ayet G, Robredo LM (2000) Determination of caffeic and chlorogenic acids and their derivatives in different sunflower seeds. J Sci Food Agric 80:459–464

    Article  Google Scholar 

  8. Szydłowska-Czerniak A, Trokowski K, Szłyk E (2011) Optimization of extraction conditions of antioxidants from sunflower shells (Helianthus annuus L) before and after enzymatic treatment. Ind Crop Prod 33:123–131

    Article  Google Scholar 

  9. Shahidi F, Ambigaipalan P (2015) Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects - a review. J Funct Foods 18:820–897

    Article  Google Scholar 

  10. Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and Agri-industrial by products: antioxidan.T activity, occurrence, and potential uses. Food Chem 99:191–203

    Article  Google Scholar 

  11. Lattanzio V, Lattanzio VMT, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal photogenes and insects. In “Phytochemistry: Advances in Resarch”. Phillipo Emperato Ed., chapter 2: 23–69, Reseach Signpost Publisher, India

  12. Nkhili E, Tomao V, El Hajji H, El Boustani E, Chemat F, Dangles O (2009) Microwave-assisted water extraction of green tea polyphenols. Phytochem Anal 20:408–415

    Article  Google Scholar 

  13. Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17:300–312

    Article  Google Scholar 

  14. Oroian M, Escriche I (2015) Antioxidants: characterization, natural sources, extraction and analysis. Food Res Int 74:10–36

    Article  Google Scholar 

  15. Krishnaswamy K, Orsat V, Gariépy Y, Thangav K (2013) Optimization of microwave-assisted extraction of phenolic antioxidants from grape seeds (Vitis vinifera). Food Bioprocess Technol 6(2):441–455

    Article  Google Scholar 

  16. Cao J, Hao L, Zhang L, Xu M, Ge H, Kang C, Yu J, Wang Z (2017) Optimization of microwave-assisted extraction of Total flavonoids from China-hemp leaves and evaluation of its antioxidant activities. Advances in Applied Biotechnology 555–567

  17. Kumar M, Dahuja A, Sachdev A, Kaur C, Varghese E, SahaK S, Sairam KVSS (2019) Valorisation of black carrot pomace: microwave assisted extraction of bioactive phytoceuticals and antioxidant activity using box–Behnken design. J Food Sci Technol 56(29):995–1007

    Article  Google Scholar 

  18. Dorta E, Lobo MG, González M (2013) Improving the efficiency of antioxidant extraction from mango Peel by using microwave-assisted extraction. Plant Foods Hum Nutr 68:190–199

    Article  Google Scholar 

  19. Mishra A, Mishra S, Bhargav S, Bhargava CS, Thakur M (2015) Microwave assisted extraction, antioxidant potential and chromatographic studies of some Rasayana drugs. Chinese Journal of Integrative Medicine 21(7):523–529

    Article  Google Scholar 

  20. Reis L, Carneiro L, Branco C, Branco A (2015) Comparison of conventional microwave and focused microwave-assisted extraction to enhance the efficiency of the extraction of antioxidant Flavonols from Jocote pomace (Spondias purpurea L.). Plant Foods Hum Nutr 70(2):160–169

    Article  Google Scholar 

  21. Nguyen VT, Bowyer MC, van Altena IA, Scarlett CJ (2016) Optimisation of microwave-assisted extraction from Phyllanthus amarus for phenolic compounds-enriched extracts and antioxidant capacity. Chem Pap. https://doi.org/10.1515/chempap-2016-0009

  22. Simić VM, Rajković KM, Stojičević SS, Veličković DT, Nikolić NČ, Lazić ML, Karabegović IT (2016) Optimization of microwave-assisted extraction of total polyphenolic compounds from chokeberries by response surface methodology and artificial neural network. Sep Purif Technol 160:89–97

    Article  Google Scholar 

  23. Abedi A-S, Rismanchi M, Shahdoostkhany M, Mohammadi A, Mortazavian AM (2017) Microwave-assisted extraction of Nigella sativa L. essential oil and evaluation of its antioxidant activity. J Food Sci Technol 54(12):3779–3790

    Article  Google Scholar 

  24. Vu H, Scarlett C, Vuong Q (2019) Maximising recovery of phenolic compounds and antioxidant properties from banana peel using microwave assisted extraction and water. J Food Sci Technol 56(3):1360–1370

    Article  Google Scholar 

  25. Li H, Deng Z, Wu T, Liu R, Loewen S, Tsao R (2012) Microwave-assisted extraction of phenolics with maximal antioxidant activities in tomatoes. Food Chem 130:928–936

    Article  Google Scholar 

  26. Chen Y, Xie MY, Gong XF (2007) Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum. J Food Eng 81(1):162–170

    Article  Google Scholar 

  27. De Figueiredo AK, Baümler E, Riccobene IC, Nolasco SM (2011) Moisture-dependent engineering properties of sunflower seeds with different structural characteristics. J Food Eng 102:58–65

    Article  Google Scholar 

  28. Fanesi D, Rodríguez M, Nolasco S Extracción de compuestos antioxidantes en cáscaras de girasol (Helianthus annuus L.). World Congress on Oils & Fats and 31st ISF Lectureship Series. Rosario, Argentina, 2–4/11/2015

  29. AOCS (1998) Official methods and recommended practices of the American oil chemists’ society. AOCS Press, Champaign

    Google Scholar 

  30. IUPAC (1992) Standard Methods for the Analysis of oils, Fats and Derivates. (7th ed.) Eds. Paquot C, Hautffenne A. International Union of Pure and Applied Chemistry, Blackwell Scientific Publications Inc., Oxford, UK

  31. AOAC (1990) Official methods of analysis, 15th edn. AOAC International, Gaithersburg, USA, 1067p

  32. Nkhili E, Tomao V, El Hajji H, Boustani ES, Chemat F, Dangles O (2009) Microwaveassisted water extraction of green tea polyphenols. Phytochem Anal 20:408–415

    Article  Google Scholar 

  33. Rodríguez MM, Rodriguez A, Mascheroni RH (2015) Compounds of plums partially osmodehydrated and finish-dried by hot air. Journal of Food Processing and Preservation 39(6):2647–2662

    Article  Google Scholar 

  34. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with hosphomolibdicphosphotungstic acid reagent. Am J Enol Vitic 16:144–158

    Google Scholar 

  35. Molina-Quijada DMA, Medina-Juárez LA, González-Aguilar GA, Robles-Sánchez RM, Gámez-Meza N (2010) Compuestos fenólicos y actividad antioxidante de cáscara de uva (Vitis vinifera L) de mesa cultivada en el noroeste de México. Ciencia y Tecnología de Alimentos - Journal of Food 8:57–63

    Google Scholar 

  36. Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302

    Article  Google Scholar 

  37. InfoStat Group (2004) Facultad de Ciencias Agrarias, Universidad Nacional de Córdoba, Argentina 2004

  38. Hayat K, Hussain S, Abbas S, Farooq U, Ding B, Xia S et al (2009) Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Sep Purif Technol 70(1):63–70

    Article  Google Scholar 

  39. Ballard TS, Mallikarjunan P, Zhou K, O’Keefe S (2010) Microwaveassisted extraction of phenolic antioxidant compounds from peanut skins. Food Chem 120:1185–1192

    Article  Google Scholar 

  40. Zielinski H, Kozlowska H (2000) Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J Agric Food Chem 48:2008–2016

    Article  Google Scholar 

  41. Žilic S, Maksimovic Dragišic J, Maksimovic V, Maksimovic M, Basic Z, Crevar M, Stankovic G (2010) The content of antioxidants in sunflower seed and kernel. HELIA 33(52):75–84

    Article  Google Scholar 

  42. Chun OK, Kim D (2004) Consideration on equivalent chemicals in total phenolic assay of chlorogenic acid-rich plums. Food Res Int 37:337–342

    Article  Google Scholar 

  43. Gürbüz O, Göҫmen D, Dağdelen F, Gürsoym M, Aydin S (2007) Determination of flavan-3-ols and trans-resveratrol in grapes and wine using HPLC with fluorescence detection. Food Chem 100(2):518–525

    Article  Google Scholar 

  44. Zheng W, Wang SY (2001) Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem 49:5165–5170

    Article  Google Scholar 

  45. Kähkönen M, Copia AI, Heinonen M (2001) Berry fenolics and their antioxidant activity. J Agric Food Chem 49:4076–4082

    Article  Google Scholar 

  46. Pinelo M, Rubilar M, Jerez M, Sineiro J, Núñez MJ (2005) Effect of solvent, temperature and solvent–to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J Agric Food Chem 53:2111–2117

    Article  Google Scholar 

  47. Chemat F, Cravotto G (2013) In F. Chemat, & G. Cravotto (Eds.), Microwaveassisted extraction for bioactive compounds. US: Springer

  48. Domínguez H, Núñez MJ, Lema JM (1993) Eliminación de ácido clorogénico durante el procesado acuoso de las almendras de girasol. Grasas Aceites 44:235–242

    Article  Google Scholar 

  49. Paladino SC (2008) Actividad antioxidante de los compuestos fenólicos contenidos en las semillas de la vid (Vitis vinifera L). (Tesis presentada para acceder al grado académico de Magister en Alimentos). Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo. Mendoza, Argentina

Download references

Acknowledgements

The authors would like to thank Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA) (Buenos Aires, Argentina), Facultad de Ciencias Químicas de la Universidad Nacional de Chihuahua (UACH) and Centro de Investigación de Materiales Avanzados (CIMAV), laboratorio de Biohidrometalurgia (Chihuahua, Mexico). This work has been financially supported with funds from the following project grant: PICT-2012-1443: “Calidad de granos: Nuevas aplicaciones y alternativas tecnológicas”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela Rodríguez.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, M., Nolasco, S., Izquierdo, N. et al. Microwave-assisted extraction of antioxidant compounds from sunflower hulls. Heat Mass Transfer 55, 3017–3027 (2019). https://doi.org/10.1007/s00231-019-02648-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02648-4

Navigation