Skip to main content

Mechanisms of Plant Defense and Trade-Offs Between Them: Bioanalytics in Chemistry and Biology

  • Living reference work entry
  • First Online:
Handbook of Bioanalytics

Abstract

Plant defense against herbivores and pathogens includes a number of physical and chemical means. Chemical defense is based on secondary metabolism, and it is classified as constitutive (continuous) or induced, which is temporary and depends on the presence of herbivores/pathogens. It is assumed that limited resource availability leads to so-called trade-offs between resource allocation to defense and other functions, like growth and reproduction, as well as between different types of defense. Metabolic cost of various defense strategies is briefly discussed. The examples of different adaptations of higher plants to environmental conditions, resulting in much different balances between defense and growth, are described. Effects of trade-offs between constitutive and induced chemical defenses are also reported.

Protective plant secondary metabolites show a huge structural variability, which is reflected in their various physicochemical properties. The importance of the chemical analysis by using numerous complementary analytical techniques is highlighted and described in details using a model of wild and cultivated tomato species. The usefulness of spectrophotometry, chromatography, and mass spectrometry in the analysis of secondary metabolites is also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ESI :

Electrospray ionization (in mass spectrometry)

GC-FID :

Gas chromatography with flame ionization detector

GC-MS :

Gas chromatography coupled with mass spectrometry

HPLC :

High-performance liquid chromatography

HPLC-ELSD :

High-performance liquid chromatography with evaporative light-scattering detector

HPLC-PAD :

High-performance liquid chromatography with pulsed amperometric detection

HPLC-UV :

high-performance liquid chromatography with ultraviolet spectrophotometric detector

LC-MS :

High-performance liquid chromatography coupled with mass spectrometry

LC-MS/MS :

High-performance liquid chromatography coupled with tandem mass spectrometry

MALDI-TOF/MS:

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

SPME:

Solid-phase microextraction

UV-Vis:

Ultraviolet-visible spectrophotometry

References

  1. Huot, B., Yao, J., Montgomery, B. L., & He, S. Y. (2014). Growth-defense tradeoffs in plants: A balancing act to optimize fitness. Molecular Plant, 7, 1267–1287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moles, A. T., Peco, B., Wallis, I. R., et al. (2012). Correlations between physical and chemical defences in plants: Tradeoffs, syndromes, or just many different ways to skin a herbivorous cat? The New Phytologist, 198, 252–263.

    Article  Google Scholar 

  3. Messina, F. J., Durham, S. L., Richards, J. H., & McArthur, E. D. (2002). Trade-off between plant growth and defense? A comparison of sagebrush populations. Oecologia, 131, 43–51.

    Article  PubMed  Google Scholar 

  4. Dortort, F. (2007). Under discussion: Mexican oddities Strombocactus, Pelecyphora, Obregonia, Aztekium, Geohintonia and Lophophora. Cactus and Succulent Journal, 79, 21–29.

    Article  Google Scholar 

  5. Heiser, C. B. (1988). Aspects of unconscious selection and the evolution of domesticated plants. Euphytica, 37, 77–81.

    Article  Google Scholar 

  6. Johns, T., & Alonso, J. G. (1990). Glycoalkaloid change during the domestication of the potato, Solanum Section Petota. Euphytica, 50, 203–210.

    Article  CAS  Google Scholar 

  7. Haliński, Ł. P., Topolewska, A., Rynkowska, A., et al. (2019). Impact of plant domestication on selected nutrient and anti-nutrient compounds in Solanaceae with edible leaves (Solanum spp.). Genetic Resources and Crop Evolution, 66, 89–103.

    Article  CAS  Google Scholar 

  8. Purrington, C. B. (2000). Costs of resistance. Current Opinion in Plant Biology, 3, 305–308.

    Article  CAS  PubMed  Google Scholar 

  9. Neilson, E. H., Goodger, J. Q. D., Woodrow, I. E., & Møller, B. L. (2013). Plant chemical defense: At what cost? Trends in Plant Science, 18, 250–258.

    Article  CAS  PubMed  Google Scholar 

  10. Gershenzon, J. (1994). Metabolic costs of terpenoid accumulation in higher plants. Journal of Chemical Ecology, 20, 1281–1328.

    Article  CAS  PubMed  Google Scholar 

  11. Poelman, E. H., & Kessler, A. (2016). Keystone herbivores and the evolution of plant defenses. Trends in Plant Science, 21, 477–485.

    Article  CAS  PubMed  Google Scholar 

  12. Kessler, A. (2015). The information landscape of plant constitutive and induced secondary metabolite production. Current Opinion in Insect Science, 8, 47–53.

    Article  PubMed  Google Scholar 

  13. Heil, M. (2001). The ecological concept of costs of induced systemic resistance (ISR). European Journal of Plant Pathology, 107, 137–146.

    Article  Google Scholar 

  14. Massad, T. J., Dyer, L. A., & Vega, C. G. (2012). Costs of defense and a test of the carbon-nutrient balance and growth-differentiation balance hypotheses for two co-occurring classes of plant defense. PLoS One, 7, e47554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Felton, G. W., & Korth, K. L. (2000). Trade-offs between pathogen and herbivore resistance. Current Opinion in Plant Biology, 3, 309–314.

    Article  CAS  PubMed  Google Scholar 

  16. Shepherd, T., & Griffiths, D. W. (2006). The effects of stress on plant cuticular waxes. The New Phytologist, 171, 469–499.

    Article  CAS  PubMed  Google Scholar 

  17. Friedman, M. (2002). Tomato glycoalkaloids: Role in the plant and in the diet. Journal of Agricultural and Food Chemistry, 50, 5751–5780.

    Article  CAS  PubMed  Google Scholar 

  18. Thagun, C., Imanishi, S., Judo, T., et al. (2016). Jasmonate-responsive ERF transcription factors regulate steroidal glycoalkaloid biosynthesis in tomato. Plant & Cell Physiology, 57, 961–975.

    Article  CAS  Google Scholar 

  19. Baldwin, I. T., & Callahan, P. (1993). Autotoxicity and chemical defense: Nicotine accumulation and carbon gain in solanaceous plants. Oecologia, 94, 534–541.

    Article  PubMed  Google Scholar 

  20. Alves, M. N., Sartoratto, A., & Trigo, J. R. (2007). Scopolamine in Brugmansia suaveolens (Solanaceae): Defense, allocation, costs, and induced response. Journal of Chemical Ecology, 33, 297–309.

    Article  CAS  PubMed  Google Scholar 

  21. Zangerl, A. R., Arntz, A. M., & Berenbaum, M. R. (1997). Physiological price of an induced chemical defense: Photosynthesis, respiration, biosynthesis, and growth. Oecologia, 109, 433–441.

    Article  CAS  PubMed  Google Scholar 

  22. Marak, H. B., Biere, A., & Van Damme, J. M. M. (2003). Fitness costs of chemical defense in Plantago lanceolata L.: Effects of nutrient and competition stress. Evolution, 57, 2519–2530.

    Article  CAS  PubMed  Google Scholar 

  23. Stowe, K. A., & Marquis, R. J. (2011). Costs of defense: Correlated responses to divergent selection for foliar glucosinolate content in Brassica rapa. Evolutionary Ecology, 25, 763–775.

    Article  Google Scholar 

  24. Negi, J. S., Singh, P., Pant, G. J. N., & Rawat, M. S. M. (2011). High-performance liquid chromatography analysis of plant saponins: An update 2005–2010. Pharmacognosy Reviews, 5, 155–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Khoddami, A., Wilkes, M. A., & Roberts, T. H. (2013). Techniques for analysis of plant phenolic compounds. Molecules, 18, 2328–2375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ballhorn, D. J., Kautz, S., Lion, U., & Heil, M. (2008). Trade-offs between direct and indirect defences of lima bean (Phaseolus lunatus). Journal of Ecology, 96, 971–980.

    Article  CAS  Google Scholar 

  27. Ballhorn, D. J., Pietrowski, A., & Lieberei, R. (2010). Direct trade-off between cyanogenesis and resistance to a fungal pathogen in lima bean (Phaseolus lunatus L.). Journal of Ecology, 98, 226–236.

    Article  CAS  Google Scholar 

  28. Agrawal, A. A. (2000). Benefits and costs of induced plant defense for Lepidium virginicum (Brassicaceae). Ecology, 81, 1804–1813.

    Article  Google Scholar 

  29. Agrawal, A. A., Gorski, P. M., & Tallamy, D. W. (1999). Polymorphism in plant defense against herbivory: Constitutive and induced resistance in Cucumis sativus. Journal of Chemical Ecology, 25, 2285–2304.

    Article  CAS  Google Scholar 

  30. Eck, G., Fiala, B., Linsenmair, K. E., et al. (2001). Trade-off between chemical and biotic antiherbivore defense in the South East Asian plant genus Macaranga. Journal of Chemical Ecology, 27, 1979–1996.

    Article  CAS  PubMed  Google Scholar 

  31. Todesco, M., Balasubramanian, S., Hu, T. T., et al. (2010). Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature, 465, 632–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wilkens, R. T., Shea, G. O., Halbreich, S., & Stamp, N. A. (1996). Resource availability and the trichome defenses of tomato plants. Oecologia, 106, 181–191.

    Article  PubMed  Google Scholar 

  33. Stout, M. J., Brovont, R. A., & Duffey, S. S. (1998). Effects of nitrogen availability on expression of constitutive and inducible chemical defenses in tomato, Lycopersicon esculentum. Journal of Chemical Ecology, 24, 945–963.

    Article  CAS  Google Scholar 

  34. Hoffland, E., Dicke, M., van Tintelen, W., et al. (2000). Nitrogen availability and defense of tomato against two-spotted spider mite. Journal of Chemical Ecology, 26, 2697–2711.

    Article  CAS  Google Scholar 

  35. Inbar, M., Doostdar, H., & Mayer, R. T. (2001). Suitability of stressed and vigorous plants to various insect herbivores. Oikos, 94, 228–235.

    Article  Google Scholar 

  36. Le Bot, J., Bénard, C., Robin, C., et al. (2009). The ‘trade-off’ between synthesis of primary and secondary compounds in young tomato leaves is altered by nitrate nutrition: Experimental evidence and model consistency. Journal of Experimental Botany, 60, 4301–4314.

    Article  PubMed  CAS  Google Scholar 

  37. Haak, D. C., Ballenger, B. A., & Moyle, L. C. (2014). No evidence for phylogenetic constraint on natural defense evolution among wild tomatoes. Ecology, 95, 1633–1641.

    Article  PubMed  Google Scholar 

  38. Simmons, A. T., & Gurr, G. M. (2005). Trichomes of Lycopersicon species and their hybrids: Effects on pests and natural enemies. Agricultural and Forest Entomology, 7(4), 265–276.

    Article  Google Scholar 

  39. Shapiro, J. A., Steffens, J. C., & Mutschler, M. A. (1994). Acylsugars of the wild tomato Lycopersicon pennellii in relation to geographic distribution of the species. Biochemical Systematics and Ecology, 22, 545–561.

    Article  CAS  Google Scholar 

  40. Antonious, G. F. (2001). Production and quantification of methyl ketones in wild tomato accessions. Journal of Environmental Science and Health. Part. B, 36, 835–848.

    Article  CAS  Google Scholar 

  41. Gonzales-Vigil, E., Hufnagel, D. E., Kim, J., et al. (2012). Evolution of TPS20-related terpene synthases influences chemical diversity in the glandular trichomes of the wild tomato relative Solanum habrochaites. The Plant Journal, 71, 921–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bleeker, P. M., Diergaarde, P. J., Ament, K., et al. (2009). The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiology, 151, 925–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Severson, R. F., Arrendale, R. F., Chortyk, O. T., et al. (1985). Isolation and characterization of the sucrose esters of the cuticular waxes of green tobacco leaf. Journal of Agricultural and Food Chemistry, 33, 870–875.

    Article  CAS  Google Scholar 

  44. Haliński, Ł. P., & Stepnowski, P. (2013). GC-MS and MALDI-TOF MS profiling of sucrose esters from Nicotiana tabacum and N. rustica. Z Naturforsch C. Journal of Biosciences, 68(5–6), 210–222.

    PubMed  Google Scholar 

  45. Ding, L., Xie, F., Zhao, M., et al. (2006). Rapid characterization of the sucrose esters from oriental tobacco using liquid chromatography/ion trap mass spectrometry. Rapid Communications in Mass Spectrometry, 20, 2816–2822.

    Article  CAS  PubMed  Google Scholar 

  46. Schilmiller, A., Shi, F., Kim, J., Charbonneau, A. L., et al. (2010). Mass spectrometry screening reveals widespread diversity in trichome specialized metabolites of tomato chromosomal substitution lines. The Plant Journal, 62, 391–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cataldi, T. R. I., Lelario, F., & Bufo, S. A. (2005). Analysis of tomato glycoalkaloids by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 19, 3103–3110.

    Article  CAS  PubMed  Google Scholar 

  48. Han, P., Wang, Z., Lavoir, A. V., et al. (2016). Increased water salinity applied to tomato plants accelerates the development of the leaf miner Tuta absoluta through bottom-up effects. Scientific Reports, 6, 32403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Laurila, J., Laakso, I., Väänänen, T., et al. (1999). Determination of solanidine- and tomatidine-type glycoalkaloid aglycons by gas chromatography/mass spectrometry. Journal of Agricultural and Food Chemistry, 47, 2738–2742.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz P. Haliński .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Haliński, Ł.P., Topolewska, A., Stepnowski, P. (2022). Mechanisms of Plant Defense and Trade-Offs Between Them: Bioanalytics in Chemistry and Biology. In: Buszewski, B., Baranowska, I. (eds) Handbook of Bioanalytics. Springer, Cham. https://doi.org/10.1007/978-3-030-63957-0_25-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63957-0_25-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63957-0

  • Online ISBN: 978-3-030-63957-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics